Show last authors
1 (% style="text-align:center" %)
2 [[image:1654846127817-788.png]]
3
4 **Contents:**
5
6
7
8
9
10
11
12
13 = 1.  Introduction =
14
15 == 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
16
17 (((
18
19
20 (((
21 The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
22
23
24 It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
25
26
27 The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
28
29
30 LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
31
32
33 Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34
35
36 (% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
37 )))
38 )))
39
40
41 [[image:1654847051249-359.png]]
42
43
44
45 == ​1.2  Features ==
46
47 * LoRaWAN 1.0.3 Class A
48 * Ultra low power consumption
49 * Distance Detection by Ultrasonic technology
50 * Flat object range 280mm - 7500mm
51 * Accuracy: ±(1cm+S*0.3%) (S: Distance)
52 * Cable Length : 25cm
53 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
54 * AT Commands to change parameters
55 * Uplink on periodically
56 * Downlink to change configure
57 * IP66 Waterproof Enclosure
58 * 4000mAh or 8500mAh Battery for long term use
59
60 == 1.3  Specification ==
61
62 === 1.3.1  Rated environmental conditions ===
63
64 [[image:image-20220610154839-1.png]]
65
66 **Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
67
68 **b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
69
70
71
72 === 1.3.2  Effective measurement range Reference beam pattern ===
73
74 **(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**[[image:image-20220610155021-2.png||height="440" width="1189"]]
75
76
77
78 **(2)** The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.[[image:image-20220610155021-3.png||height="437" width="1192"]]
79
80 (% style="display:none" %) (%%)
81
82
83 == 1.5 ​ Applications ==
84
85 * Horizontal distance measurement
86 * Liquid level measurement
87 * Parking management system
88 * Object proximity and presence detection
89 * Intelligent trash can management system
90 * Robot obstacle avoidance
91 * Automatic control
92 * Sewer
93 * Bottom water level monitoring
94
95 == 1.6  Pin mapping and power on ==
96
97
98 [[image:1654847583902-256.png]]
99
100
101 = 2.  Configure LDDS75 to connect to LoRaWAN network =
102
103 == 2.1  How it works ==
104
105 (((
106 The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
107 )))
108
109 (((
110 In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
111 )))
112
113
114 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
115
116 (((
117 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
118 )))
119
120 (((
121 [[image:1654848616367-242.png]]
122 )))
123
124 (((
125 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
126 )))
127
128 (((
129 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
130 )))
131
132 (((
133 Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
134 )))
135
136 [[image:image-20220607170145-1.jpeg]]
137
138
139 For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
140
141 Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
142
143 **Add APP EUI in the application**
144
145 [[image:image-20220610161353-4.png]]
146
147 [[image:image-20220610161353-5.png]]
148
149 [[image:image-20220610161353-6.png]]
150
151
152 [[image:image-20220610161353-7.png]]
153
154
155 You can also choose to create the device manually.
156
157 [[image:image-20220610161538-8.png]]
158
159
160
161 **Add APP KEY and DEV EUI**
162
163 [[image:image-20220610161538-9.png]]
164
165
166
167 (% style="color:blue" %)**Step 2**(%%): Power on LDDS75
168
169
170 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
171
172 [[image:image-20220610161724-10.png]]
173
174
175 (((
176 (% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
177 )))
178
179 [[image:1654849068701-275.png]]
180
181
182
183 == 2.3  ​Uplink Payload ==
184
185 (((
186 LDDS75 will uplink payload via LoRaWAN with below payload format: 
187
188 Uplink payload includes in total 4 bytes.
189 Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
190 )))
191
192 (((
193
194 )))
195
196 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
197 |=(% style="width: 62.5px;" %)(((
198 **Size (bytes)**
199 )))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
200 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
201 [[Distance>>||anchor="H2.3.3A0Distance"]]
202
203 (unit: mm)
204 )))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
205 [[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
206 )))|[[Sensor Flag>>path:#Sensor_Flag]]
207
208 [[image:1654850511545-399.png]]
209
210
211
212 === 2.3.1  Battery Info ===
213
214
215 Check the battery voltage for LDDS75.
216
217 Ex1: 0x0B45 = 2885mV
218
219 Ex2: 0x0B49 = 2889mV
220
221
222
223 === 2.3.2  Distance ===
224
225 Get the distance. Flat object range 280mm - 7500mm.
226
227 For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
228
229
230 * If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
231 * If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
232
233
234
235 === 2.3.3  Interrupt Pin ===
236
237 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
238
239 **Example:**
240
241 0x00: Normal uplink packet.
242
243 0x01: Interrupt Uplink Packet.
244
245
246 === 2.3.4  DS18B20 Temperature sensor ===
247
248 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
249
250 **Example**:
251
252 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
253
254 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
255
256 (% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
257
258
259
260 === 2.3.5  Sensor Flag ===
261
262 0x01: Detect Ultrasonic Sensor
263
264 0x00: No Ultrasonic Sensor
265
266
267 ===
268 (% style="color:inherit; font-family:inherit" %)2.3.6  Decode payload in The Things Network(%%) ===
269
270 While using TTN network, you can add the payload format to decode the payload.
271
272
273 [[image:1654850829385-439.png]]
274
275 The payload decoder function for TTN V3 is here:
276
277 LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
278
279
280
281 == 2.4  Uplink Interval ==
282
283 The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
284
285
286
287 == 2.5  ​Show Data in DataCake IoT Server ==
288
289 (((
290 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
291 )))
292
293 (((
294
295 )))
296
297 (((
298 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
299 )))
300
301 (((
302 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
303 )))
304
305
306 [[image:1654592790040-760.png]]
307
308
309 [[image:1654592800389-571.png]]
310
311
312 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
313
314 (% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
315
316 [[image:1654851029373-510.png]]
317
318
319 After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
320
321 [[image:image-20220610165129-11.png||height="595" width="1088"]]
322
323
324
325 == 2.6  Frequency Plans ==
326
327 (((
328 The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
329 )))
330
331
332
333 === 2.6.1  EU863-870 (EU868) ===
334
335 (((
336 (% style="color:blue" %)**Uplink:**
337 )))
338
339 (((
340 868.1 - SF7BW125 to SF12BW125
341 )))
342
343 (((
344 868.3 - SF7BW125 to SF12BW125 and SF7BW250
345 )))
346
347 (((
348 868.5 - SF7BW125 to SF12BW125
349 )))
350
351 (((
352 867.1 - SF7BW125 to SF12BW125
353 )))
354
355 (((
356 867.3 - SF7BW125 to SF12BW125
357 )))
358
359 (((
360 867.5 - SF7BW125 to SF12BW125
361 )))
362
363 (((
364 867.7 - SF7BW125 to SF12BW125
365 )))
366
367 (((
368 867.9 - SF7BW125 to SF12BW125
369 )))
370
371 (((
372 868.8 - FSK
373 )))
374
375 (((
376
377 )))
378
379 (((
380 (% style="color:blue" %)**Downlink:**
381 )))
382
383 (((
384 Uplink channels 1-9 (RX1)
385 )))
386
387 (((
388 869.525 - SF9BW125 (RX2 downlink only)
389 )))
390
391
392
393 === 2.6.2  US902-928(US915) ===
394
395 (((
396 Used in USA, Canada and South America. Default use CHE=2
397
398 (% style="color:blue" %)**Uplink:**
399
400 903.9 - SF7BW125 to SF10BW125
401
402 904.1 - SF7BW125 to SF10BW125
403
404 904.3 - SF7BW125 to SF10BW125
405
406 904.5 - SF7BW125 to SF10BW125
407
408 904.7 - SF7BW125 to SF10BW125
409
410 904.9 - SF7BW125 to SF10BW125
411
412 905.1 - SF7BW125 to SF10BW125
413
414 905.3 - SF7BW125 to SF10BW125
415
416
417 (% style="color:blue" %)**Downlink:**
418
419 923.3 - SF7BW500 to SF12BW500
420
421 923.9 - SF7BW500 to SF12BW500
422
423 924.5 - SF7BW500 to SF12BW500
424
425 925.1 - SF7BW500 to SF12BW500
426
427 925.7 - SF7BW500 to SF12BW500
428
429 926.3 - SF7BW500 to SF12BW500
430
431 926.9 - SF7BW500 to SF12BW500
432
433 927.5 - SF7BW500 to SF12BW500
434
435 923.3 - SF12BW500(RX2 downlink only)
436
437
438
439 )))
440
441 === 2.6.3  CN470-510 (CN470) ===
442
443 (((
444 Used in China, Default use CHE=1
445 )))
446
447 (((
448 (% style="color:blue" %)**Uplink:**
449 )))
450
451 (((
452 486.3 - SF7BW125 to SF12BW125
453 )))
454
455 (((
456 486.5 - SF7BW125 to SF12BW125
457 )))
458
459 (((
460 486.7 - SF7BW125 to SF12BW125
461 )))
462
463 (((
464 486.9 - SF7BW125 to SF12BW125
465 )))
466
467 (((
468 487.1 - SF7BW125 to SF12BW125
469 )))
470
471 (((
472 487.3 - SF7BW125 to SF12BW125
473 )))
474
475 (((
476 487.5 - SF7BW125 to SF12BW125
477 )))
478
479 (((
480 487.7 - SF7BW125 to SF12BW125
481 )))
482
483 (((
484
485 )))
486
487 (((
488 (% style="color:blue" %)**Downlink:**
489 )))
490
491 (((
492 506.7 - SF7BW125 to SF12BW125
493 )))
494
495 (((
496 506.9 - SF7BW125 to SF12BW125
497 )))
498
499 (((
500 507.1 - SF7BW125 to SF12BW125
501 )))
502
503 (((
504 507.3 - SF7BW125 to SF12BW125
505 )))
506
507 (((
508 507.5 - SF7BW125 to SF12BW125
509 )))
510
511 (((
512 507.7 - SF7BW125 to SF12BW125
513 )))
514
515 (((
516 507.9 - SF7BW125 to SF12BW125
517 )))
518
519 (((
520 508.1 - SF7BW125 to SF12BW125
521 )))
522
523 (((
524 505.3 - SF12BW125 (RX2 downlink only)
525 )))
526
527
528
529
530 === 2.6.4  AU915-928(AU915) ===
531
532 (((
533 Default use CHE=2
534
535 (% style="color:blue" %)**Uplink:**
536
537 916.8 - SF7BW125 to SF12BW125
538
539 917.0 - SF7BW125 to SF12BW125
540
541 917.2 - SF7BW125 to SF12BW125
542
543 917.4 - SF7BW125 to SF12BW125
544
545 917.6 - SF7BW125 to SF12BW125
546
547 917.8 - SF7BW125 to SF12BW125
548
549 918.0 - SF7BW125 to SF12BW125
550
551 918.2 - SF7BW125 to SF12BW125
552
553
554 (% style="color:blue" %)**Downlink:**
555
556 923.3 - SF7BW500 to SF12BW500
557
558 923.9 - SF7BW500 to SF12BW500
559
560 924.5 - SF7BW500 to SF12BW500
561
562 925.1 - SF7BW500 to SF12BW500
563
564 925.7 - SF7BW500 to SF12BW500
565
566 926.3 - SF7BW500 to SF12BW500
567
568 926.9 - SF7BW500 to SF12BW500
569
570 927.5 - SF7BW500 to SF12BW500
571
572 923.3 - SF12BW500(RX2 downlink only)
573
574
575
576 )))
577
578 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
579
580 (((
581 (% style="color:blue" %)**Default Uplink channel:**
582 )))
583
584 (((
585 923.2 - SF7BW125 to SF10BW125
586 )))
587
588 (((
589 923.4 - SF7BW125 to SF10BW125
590 )))
591
592 (((
593
594 )))
595
596 (((
597 (% style="color:blue" %)**Additional Uplink Channel**:
598 )))
599
600 (((
601 (OTAA mode, channel added by JoinAccept message)
602 )))
603
604 (((
605
606 )))
607
608 (((
609 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
610 )))
611
612 (((
613 922.2 - SF7BW125 to SF10BW125
614 )))
615
616 (((
617 922.4 - SF7BW125 to SF10BW125
618 )))
619
620 (((
621 922.6 - SF7BW125 to SF10BW125
622 )))
623
624 (((
625 922.8 - SF7BW125 to SF10BW125
626 )))
627
628 (((
629 923.0 - SF7BW125 to SF10BW125
630 )))
631
632 (((
633 922.0 - SF7BW125 to SF10BW125
634 )))
635
636 (((
637
638 )))
639
640 (((
641 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
642 )))
643
644 (((
645 923.6 - SF7BW125 to SF10BW125
646 )))
647
648 (((
649 923.8 - SF7BW125 to SF10BW125
650 )))
651
652 (((
653 924.0 - SF7BW125 to SF10BW125
654 )))
655
656 (((
657 924.2 - SF7BW125 to SF10BW125
658 )))
659
660 (((
661 924.4 - SF7BW125 to SF10BW125
662 )))
663
664 (((
665 924.6 - SF7BW125 to SF10BW125
666 )))
667
668 (((
669
670 )))
671
672 (((
673 (% style="color:blue" %)**Downlink:**
674 )))
675
676 (((
677 Uplink channels 1-8 (RX1)
678 )))
679
680 (((
681 923.2 - SF10BW125 (RX2)
682 )))
683
684
685
686
687 === 2.6.6  KR920-923 (KR920) ===
688
689 (((
690 (% style="color:blue" %)**Default channel:**
691 )))
692
693 (((
694 922.1 - SF7BW125 to SF12BW125
695 )))
696
697 (((
698 922.3 - SF7BW125 to SF12BW125
699 )))
700
701 (((
702 922.5 - SF7BW125 to SF12BW125
703 )))
704
705 (((
706
707 )))
708
709 (((
710 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
711 )))
712
713 (((
714 922.1 - SF7BW125 to SF12BW125
715 )))
716
717 (((
718 922.3 - SF7BW125 to SF12BW125
719 )))
720
721 (((
722 922.5 - SF7BW125 to SF12BW125
723 )))
724
725 (((
726 922.7 - SF7BW125 to SF12BW125
727 )))
728
729 (((
730 922.9 - SF7BW125 to SF12BW125
731 )))
732
733 (((
734 923.1 - SF7BW125 to SF12BW125
735 )))
736
737 (((
738 923.3 - SF7BW125 to SF12BW125
739 )))
740
741 (((
742
743 )))
744
745 (((
746 (% style="color:blue" %)**Downlink:**
747 )))
748
749 (((
750 Uplink channels 1-7(RX1)
751 )))
752
753 (((
754 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
755 )))
756
757
758
759
760 === 2.6.7  IN865-867 (IN865) ===
761
762 (((
763 (% style="color:blue" %)**Uplink:**
764 )))
765
766 (((
767 865.0625 - SF7BW125 to SF12BW125
768 )))
769
770 (((
771 865.4025 - SF7BW125 to SF12BW125
772 )))
773
774 (((
775 865.9850 - SF7BW125 to SF12BW125
776 )))
777
778 (((
779
780 )))
781
782 (((
783 (% style="color:blue" %)**Downlink:**
784 )))
785
786 (((
787 Uplink channels 1-3 (RX1)
788 )))
789
790 (((
791 866.550 - SF10BW125 (RX2)
792 )))
793
794
795
796
797 == 2.7  LED Indicator ==
798
799 The LLDS12 has an internal LED which is to show the status of different state.
800
801 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
802 * Blink once when device transmit a packet.
803
804 == 2.8  ​Firmware Change Log ==
805
806
807 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
808
809
810 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
811
812
813
814 = 3.  LiDAR ToF Measurement =
815
816 == 3.1 Principle of Distance Measurement ==
817
818 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
819
820 [[image:1654831757579-263.png]]
821
822
823
824 == 3.2 Distance Measurement Characteristics ==
825
826 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
827
828 [[image:1654831774373-275.png]]
829
830
831 (((
832 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
833 )))
834
835 (((
836 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
837 )))
838
839 (((
840 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
841 )))
842
843
844 (((
845 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
846 )))
847
848
849 [[image:1654831797521-720.png]]
850
851
852 (((
853 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
854 )))
855
856 [[image:1654831810009-716.png]]
857
858
859 (((
860 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
861 )))
862
863
864
865 == 3.3 Notice of usage: ==
866
867 Possible invalid /wrong reading for LiDAR ToF tech:
868
869 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
870 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
871 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
872 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
873
874 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
875
876 (((
877 (((
878 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
879 )))
880 )))
881
882 * (((
883 (((
884 AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
885 )))
886 )))
887 * (((
888 (((
889 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
890 )))
891 )))
892
893 (((
894 (((
895
896 )))
897
898 (((
899 There are two kinds of commands to configure LLDS12, they are:
900 )))
901 )))
902
903 * (((
904 (((
905 (% style="color:#4f81bd" %)** General Commands**.
906 )))
907 )))
908
909 (((
910 (((
911 These commands are to configure:
912 )))
913 )))
914
915 * (((
916 (((
917 General system settings like: uplink interval.
918 )))
919 )))
920 * (((
921 (((
922 LoRaWAN protocol & radio related command.
923 )))
924 )))
925
926 (((
927 (((
928 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
929 )))
930 )))
931
932 (((
933 (((
934
935 )))
936 )))
937
938 * (((
939 (((
940 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
941 )))
942 )))
943
944 (((
945 (((
946 These commands only valid for LLDS12, as below:
947 )))
948 )))
949
950
951
952 == 4.1  Set Transmit Interval Time ==
953
954 Feature: Change LoRaWAN End Node Transmit Interval.
955
956 (% style="color:#037691" %)**AT Command: AT+TDC**
957
958 [[image:image-20220607171554-8.png]]
959
960
961 (((
962 (% style="color:#037691" %)**Downlink Command: 0x01**
963 )))
964
965 (((
966 Format: Command Code (0x01) followed by 3 bytes time value.
967 )))
968
969 (((
970 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
971 )))
972
973 * (((
974 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
975 )))
976 * (((
977 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
978 )))
979
980 == 4.2  Set Interrupt Mode ==
981
982 Feature, Set Interrupt mode for GPIO_EXIT.
983
984 (% style="color:#037691" %)**AT Command: AT+INTMOD**
985
986 [[image:image-20220610105806-2.png]]
987
988
989 (((
990 (% style="color:#037691" %)**Downlink Command: 0x06**
991 )))
992
993 (((
994 Format: Command Code (0x06) followed by 3 bytes.
995 )))
996
997 (((
998 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
999 )))
1000
1001 * (((
1002 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1003 )))
1004 * (((
1005 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1006 )))
1007
1008 == 4.3  Get Firmware Version Info ==
1009
1010 Feature: use downlink to get firmware version.
1011
1012 (% style="color:#037691" %)**Downlink Command: 0x26**
1013
1014 [[image:image-20220607171917-10.png]]
1015
1016 * Reply to the confirmation package: 26 01
1017 * Reply to non-confirmed packet: 26 00
1018
1019 Device will send an uplink after got this downlink command. With below payload:
1020
1021 Configures info payload:
1022
1023 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1024 |=(((
1025 **Size(bytes)**
1026 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1027 |**Value**|Software Type|(((
1028 Frequency
1029
1030 Band
1031 )))|Sub-band|(((
1032 Firmware
1033
1034 Version
1035 )))|Sensor Type|Reserve|(((
1036 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
1037 Always 0x02
1038 )))
1039
1040 **Software Type**: Always 0x03 for LLDS12
1041
1042
1043 **Frequency Band**:
1044
1045 *0x01: EU868
1046
1047 *0x02: US915
1048
1049 *0x03: IN865
1050
1051 *0x04: AU915
1052
1053 *0x05: KZ865
1054
1055 *0x06: RU864
1056
1057 *0x07: AS923
1058
1059 *0x08: AS923-1
1060
1061 *0x09: AS923-2
1062
1063 *0xa0: AS923-3
1064
1065
1066 **Sub-Band**: value 0x00 ~~ 0x08
1067
1068
1069 **Firmware Version**: 0x0100, Means: v1.0.0 version
1070
1071
1072 **Sensor Type**:
1073
1074 0x01: LSE01
1075
1076 0x02: LDDS75
1077
1078 0x03: LDDS20
1079
1080 0x04: LLMS01
1081
1082 0x05: LSPH01
1083
1084 0x06: LSNPK01
1085
1086 0x07: LLDS12
1087
1088
1089
1090 = 5.  Battery & How to replace =
1091
1092 == 5.1  Battery Type ==
1093
1094 (((
1095 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1096 )))
1097
1098 (((
1099 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1100 )))
1101
1102 [[image:1654593587246-335.png]]
1103
1104
1105 Minimum Working Voltage for the LLDS12:
1106
1107 LLDS12:  2.45v ~~ 3.6v
1108
1109
1110
1111 == 5.2  Replace Battery ==
1112
1113 (((
1114 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1115 )))
1116
1117 (((
1118 And make sure the positive and negative pins match.
1119 )))
1120
1121
1122
1123 == 5.3  Power Consumption Analyze ==
1124
1125 (((
1126 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1127 )))
1128
1129 (((
1130 Instruction to use as below:
1131 )))
1132
1133
1134 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1135
1136 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1137
1138
1139 **Step 2**: Open it and choose
1140
1141 * Product Model
1142 * Uplink Interval
1143 * Working Mode
1144
1145 And the Life expectation in difference case will be shown on the right.
1146
1147 [[image:1654593605679-189.png]]
1148
1149
1150 The battery related documents as below:
1151
1152 * (((
1153 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1154 )))
1155 * (((
1156 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1157 )))
1158 * (((
1159 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1160 )))
1161
1162 [[image:image-20220607172042-11.png]]
1163
1164
1165
1166 === 5.3.1  ​Battery Note ===
1167
1168 (((
1169 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1170 )))
1171
1172
1173
1174 === ​5.3.2  Replace the battery ===
1175
1176 (((
1177 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1178 )))
1179
1180 (((
1181 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1182 )))
1183
1184
1185
1186 = 6.  Use AT Command =
1187
1188 == 6.1  Access AT Commands ==
1189
1190 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1191
1192 [[image:1654593668970-604.png]]
1193
1194 **Connection:**
1195
1196 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1197
1198 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1199
1200 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1201
1202
1203 (((
1204 (((
1205 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1206 )))
1207
1208 (((
1209 LLDS12 will output system info once power on as below:
1210 )))
1211 )))
1212
1213
1214 [[image:1654593712276-618.png]]
1215
1216 Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1217
1218
1219 = 7.  FAQ =
1220
1221 == 7.1  How to change the LoRa Frequency Bands/Region ==
1222
1223 You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1224 When downloading the images, choose the required image file for download. ​
1225
1226
1227 = 8.  Trouble Shooting =
1228
1229 == 8.1  AT Commands input doesn’t work ==
1230
1231
1232 (((
1233 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1234 )))
1235
1236
1237 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1238
1239
1240 (((
1241 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1242 )))
1243
1244 (((
1245 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1246 )))
1247
1248 (((
1249
1250 )))
1251
1252 (((
1253 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1254 )))
1255
1256 (((
1257 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1258 )))
1259
1260
1261
1262 = 9.  Order Info =
1263
1264
1265 Part Number: (% style="color:blue" %)**LLDS12-XX**
1266
1267
1268 (% style="color:blue" %)**XX**(%%): The default frequency band
1269
1270 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1271 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1272 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1273 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1274 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1275 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1276 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1277 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1278
1279 = 10. ​ Packing Info =
1280
1281
1282 **Package Includes**:
1283
1284 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1285
1286 **Dimension and weight**:
1287
1288 * Device Size: cm
1289 * Device Weight: g
1290 * Package Size / pcs : cm
1291 * Weight / pcs : g
1292
1293 = 11.  ​Support =
1294
1295 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1296 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0