Show last authors
1 (% style="text-align:center" %)
2 [[image:1654846127817-788.png]]
3
4 **Contents:**
5
6
7
8
9
10
11
12
13 = 1.  Introduction =
14
15 == 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
16
17 (((
18
19
20 (((
21 The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
22
23
24 It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
25
26
27 The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
28
29
30 LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
31
32
33 Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34
35
36 (% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
37 )))
38 )))
39
40
41 [[image:1654847051249-359.png]]
42
43
44
45 == ​1.2  Features ==
46
47 * LoRaWAN 1.0.3 Class A
48 * Ultra low power consumption
49 * Distance Detection by Ultrasonic technology
50 * Flat object range 280mm - 7500mm
51 * Accuracy: ±(1cm+S*0.3%) (S: Distance)
52 * Cable Length : 25cm
53 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
54 * AT Commands to change parameters
55 * Uplink on periodically
56 * Downlink to change configure
57 * IP66 Waterproof Enclosure
58 * 4000mAh or 8500mAh Battery for long term use
59
60 == 1.3  Specification ==
61
62 === 1.3.1  Rated environmental conditions ===
63
64 [[image:image-20220610154839-1.png]]
65
66 **Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
67
68 **b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
69
70
71
72 === 1.3.2  Effective measurement range Reference beam pattern ===
73
74 **(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**[[image:image-20220610155021-2.png||height="440" width="1189"]]
75
76
77
78 **(2)** The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.[[image:image-20220610155021-3.png||height="437" width="1192"]]
79
80 (% style="display:none" %) (%%)
81
82
83 == 1.5 ​ Applications ==
84
85 * Horizontal distance measurement
86 * Liquid level measurement
87 * Parking management system
88 * Object proximity and presence detection
89 * Intelligent trash can management system
90 * Robot obstacle avoidance
91 * Automatic control
92 * Sewer
93 * Bottom water level monitoring
94
95 == 1.6  Pin mapping and power on ==
96
97
98 [[image:1654847583902-256.png]]
99
100
101 = 2.  Configure LDDS75 to connect to LoRaWAN network =
102
103 == 2.1  How it works ==
104
105 (((
106 The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
107 )))
108
109 (((
110 In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
111 )))
112
113
114 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
115
116 (((
117 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
118 )))
119
120 (((
121 [[image:1654848616367-242.png]]
122 )))
123
124 (((
125 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
126 )))
127
128 (((
129 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
130 )))
131
132 (((
133 Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
134 )))
135
136 [[image:image-20220607170145-1.jpeg]]
137
138
139 For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
140
141 Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
142
143 **Add APP EUI in the application**
144
145 [[image:image-20220610161353-4.png]]
146
147 [[image:image-20220610161353-5.png]]
148
149 [[image:image-20220610161353-6.png]]
150
151
152 [[image:image-20220610161353-7.png]]
153
154
155 You can also choose to create the device manually.
156
157 [[image:image-20220610161538-8.png]]
158
159
160
161 **Add APP KEY and DEV EUI**
162
163 [[image:image-20220610161538-9.png]]
164
165
166
167 (% style="color:blue" %)**Step 2**(%%): Power on LDDS75
168
169
170 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
171
172 [[image:image-20220610161724-10.png]]
173
174
175 (((
176 (% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
177 )))
178
179 [[image:1654849068701-275.png]]
180
181
182
183 == 2.3  ​Uplink Payload ==
184
185 (((
186 LDDS75 will uplink payload via LoRaWAN with below payload format: 
187
188 Uplink payload includes in total 4 bytes.
189 Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
190 )))
191
192 (((
193
194 )))
195
196 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
197 |=(% style="width: 62.5px;" %)(((
198 **Size (bytes)**
199 )))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
200 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
201 [[Distance>>||anchor="H2.3.3A0Distance"]]
202
203 (unit: mm)
204 )))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
205 [[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
206 )))|[[Sensor Flag>>path:#Sensor_Flag]]
207
208 [[image:1654850511545-399.png]]
209
210
211
212 === 2.3.1  Battery Info ===
213
214
215 Check the battery voltage for LDDS75.
216
217 Ex1: 0x0B45 = 2885mV
218
219 Ex2: 0x0B49 = 2889mV
220
221
222
223 === 2.3.2  Distance ===
224
225 Get the distance. Flat object range 280mm - 7500mm.
226
227 For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
228
229
230 * If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
231 * If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
232
233
234
235 === 2.3.3  Interrupt Pin ===
236
237 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
238
239 **Example:**
240
241 0x00: Normal uplink packet.
242
243 0x01: Interrupt Uplink Packet.
244
245
246 === 2.3.4  DS18B20 Temperature sensor ===
247
248 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
249
250 **Example**:
251
252 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
253
254 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
255
256 (% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
257
258
259
260 === 2.3.5  Sensor Flag ===
261
262 0x01: Detect Ultrasonic Sensor
263
264 0x00: No Ultrasonic Sensor
265
266
267 ===
268 (% style="color:inherit; font-family:inherit" %)2.3.6  Decode payload in The Things Network(%%) ===
269
270 While using TTN network, you can add the payload format to decode the payload.
271
272
273 [[image:1654592762713-715.png]]
274
275 (((
276 The payload decoder function for TTN is here:
277 )))
278
279 (((
280 LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]]
281 )))
282
283
284
285 == 2.4  Uplink Interval ==
286
287 The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
288
289
290
291 == 2.5  ​Show Data in DataCake IoT Server ==
292
293 (((
294 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
295 )))
296
297 (((
298
299 )))
300
301 (((
302 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
303 )))
304
305 (((
306 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
307 )))
308
309
310 [[image:1654592790040-760.png]]
311
312
313 [[image:1654592800389-571.png]]
314
315
316 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
317
318 (% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
319
320 [[image:1654832691989-514.png]]
321
322
323 [[image:1654592833877-762.png]]
324
325
326 [[image:1654832740634-933.png]]
327
328
329
330 (((
331 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
332 )))
333
334 (((
335
336 )))
337
338 [[image:1654833065139-942.png]]
339
340
341
342 [[image:1654833092678-390.png]]
343
344
345
346 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
347
348 [[image:1654833163048-332.png]]
349
350
351
352 == 2.6  Frequency Plans ==
353
354 (((
355 The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
356 )))
357
358
359 === 2.6.1  EU863-870 (EU868) ===
360
361 (((
362 (% style="color:blue" %)**Uplink:**
363 )))
364
365 (((
366 868.1 - SF7BW125 to SF12BW125
367 )))
368
369 (((
370 868.3 - SF7BW125 to SF12BW125 and SF7BW250
371 )))
372
373 (((
374 868.5 - SF7BW125 to SF12BW125
375 )))
376
377 (((
378 867.1 - SF7BW125 to SF12BW125
379 )))
380
381 (((
382 867.3 - SF7BW125 to SF12BW125
383 )))
384
385 (((
386 867.5 - SF7BW125 to SF12BW125
387 )))
388
389 (((
390 867.7 - SF7BW125 to SF12BW125
391 )))
392
393 (((
394 867.9 - SF7BW125 to SF12BW125
395 )))
396
397 (((
398 868.8 - FSK
399 )))
400
401 (((
402
403 )))
404
405 (((
406 (% style="color:blue" %)**Downlink:**
407 )))
408
409 (((
410 Uplink channels 1-9 (RX1)
411 )))
412
413 (((
414 869.525 - SF9BW125 (RX2 downlink only)
415 )))
416
417
418
419 === 2.6.2  US902-928(US915) ===
420
421 (((
422 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
423 )))
424
425 (((
426 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
427 )))
428
429 (((
430 After Join success, the end node will switch to the correct sub band by:
431 )))
432
433 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
434 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
435
436 === 2.6.3  CN470-510 (CN470) ===
437
438 (((
439 Used in China, Default use CHE=1
440 )))
441
442 (((
443 (% style="color:blue" %)**Uplink:**
444 )))
445
446 (((
447 486.3 - SF7BW125 to SF12BW125
448 )))
449
450 (((
451 486.5 - SF7BW125 to SF12BW125
452 )))
453
454 (((
455 486.7 - SF7BW125 to SF12BW125
456 )))
457
458 (((
459 486.9 - SF7BW125 to SF12BW125
460 )))
461
462 (((
463 487.1 - SF7BW125 to SF12BW125
464 )))
465
466 (((
467 487.3 - SF7BW125 to SF12BW125
468 )))
469
470 (((
471 487.5 - SF7BW125 to SF12BW125
472 )))
473
474 (((
475 487.7 - SF7BW125 to SF12BW125
476 )))
477
478 (((
479
480 )))
481
482 (((
483 (% style="color:blue" %)**Downlink:**
484 )))
485
486 (((
487 506.7 - SF7BW125 to SF12BW125
488 )))
489
490 (((
491 506.9 - SF7BW125 to SF12BW125
492 )))
493
494 (((
495 507.1 - SF7BW125 to SF12BW125
496 )))
497
498 (((
499 507.3 - SF7BW125 to SF12BW125
500 )))
501
502 (((
503 507.5 - SF7BW125 to SF12BW125
504 )))
505
506 (((
507 507.7 - SF7BW125 to SF12BW125
508 )))
509
510 (((
511 507.9 - SF7BW125 to SF12BW125
512 )))
513
514 (((
515 508.1 - SF7BW125 to SF12BW125
516 )))
517
518 (((
519 505.3 - SF12BW125 (RX2 downlink only)
520 )))
521
522
523
524
525 === 2.6.4  AU915-928(AU915) ===
526
527 (((
528 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
529 )))
530
531 (((
532 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
533 )))
534
535 (((
536
537 )))
538
539 (((
540 After Join success, the end node will switch to the correct sub band by:
541 )))
542
543 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
544 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
545
546 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
547
548 (((
549 (% style="color:blue" %)**Default Uplink channel:**
550 )))
551
552 (((
553 923.2 - SF7BW125 to SF10BW125
554 )))
555
556 (((
557 923.4 - SF7BW125 to SF10BW125
558 )))
559
560 (((
561
562 )))
563
564 (((
565 (% style="color:blue" %)**Additional Uplink Channel**:
566 )))
567
568 (((
569 (OTAA mode, channel added by JoinAccept message)
570 )))
571
572 (((
573
574 )))
575
576 (((
577 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
578 )))
579
580 (((
581 922.2 - SF7BW125 to SF10BW125
582 )))
583
584 (((
585 922.4 - SF7BW125 to SF10BW125
586 )))
587
588 (((
589 922.6 - SF7BW125 to SF10BW125
590 )))
591
592 (((
593 922.8 - SF7BW125 to SF10BW125
594 )))
595
596 (((
597 923.0 - SF7BW125 to SF10BW125
598 )))
599
600 (((
601 922.0 - SF7BW125 to SF10BW125
602 )))
603
604 (((
605
606 )))
607
608 (((
609 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
610 )))
611
612 (((
613 923.6 - SF7BW125 to SF10BW125
614 )))
615
616 (((
617 923.8 - SF7BW125 to SF10BW125
618 )))
619
620 (((
621 924.0 - SF7BW125 to SF10BW125
622 )))
623
624 (((
625 924.2 - SF7BW125 to SF10BW125
626 )))
627
628 (((
629 924.4 - SF7BW125 to SF10BW125
630 )))
631
632 (((
633 924.6 - SF7BW125 to SF10BW125
634 )))
635
636 (((
637
638 )))
639
640 (((
641 (% style="color:blue" %)**Downlink:**
642 )))
643
644 (((
645 Uplink channels 1-8 (RX1)
646 )))
647
648 (((
649 923.2 - SF10BW125 (RX2)
650 )))
651
652
653
654
655 === 2.6.6  KR920-923 (KR920) ===
656
657 (((
658 (% style="color:blue" %)**Default channel:**
659 )))
660
661 (((
662 922.1 - SF7BW125 to SF12BW125
663 )))
664
665 (((
666 922.3 - SF7BW125 to SF12BW125
667 )))
668
669 (((
670 922.5 - SF7BW125 to SF12BW125
671 )))
672
673 (((
674
675 )))
676
677 (((
678 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
679 )))
680
681 (((
682 922.1 - SF7BW125 to SF12BW125
683 )))
684
685 (((
686 922.3 - SF7BW125 to SF12BW125
687 )))
688
689 (((
690 922.5 - SF7BW125 to SF12BW125
691 )))
692
693 (((
694 922.7 - SF7BW125 to SF12BW125
695 )))
696
697 (((
698 922.9 - SF7BW125 to SF12BW125
699 )))
700
701 (((
702 923.1 - SF7BW125 to SF12BW125
703 )))
704
705 (((
706 923.3 - SF7BW125 to SF12BW125
707 )))
708
709 (((
710
711 )))
712
713 (((
714 (% style="color:blue" %)**Downlink:**
715 )))
716
717 (((
718 Uplink channels 1-7(RX1)
719 )))
720
721 (((
722 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
723 )))
724
725
726
727
728 === 2.6.7  IN865-867 (IN865) ===
729
730 (((
731 (% style="color:blue" %)**Uplink:**
732 )))
733
734 (((
735 865.0625 - SF7BW125 to SF12BW125
736 )))
737
738 (((
739 865.4025 - SF7BW125 to SF12BW125
740 )))
741
742 (((
743 865.9850 - SF7BW125 to SF12BW125
744 )))
745
746 (((
747
748 )))
749
750 (((
751 (% style="color:blue" %)**Downlink:**
752 )))
753
754 (((
755 Uplink channels 1-3 (RX1)
756 )))
757
758 (((
759 866.550 - SF10BW125 (RX2)
760 )))
761
762
763
764
765 == 2.7  LED Indicator ==
766
767 The LLDS12 has an internal LED which is to show the status of different state.
768
769 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
770 * Blink once when device transmit a packet.
771
772 == 2.8  ​Firmware Change Log ==
773
774
775 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
776
777
778 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
779
780
781
782 = 3.  LiDAR ToF Measurement =
783
784 == 3.1 Principle of Distance Measurement ==
785
786 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
787
788 [[image:1654831757579-263.png]]
789
790
791
792 == 3.2 Distance Measurement Characteristics ==
793
794 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
795
796 [[image:1654831774373-275.png]]
797
798
799 (((
800 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
801 )))
802
803 (((
804 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
805 )))
806
807 (((
808 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
809 )))
810
811
812 (((
813 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
814 )))
815
816
817 [[image:1654831797521-720.png]]
818
819
820 (((
821 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
822 )))
823
824 [[image:1654831810009-716.png]]
825
826
827 (((
828 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
829 )))
830
831
832
833 == 3.3 Notice of usage: ==
834
835 Possible invalid /wrong reading for LiDAR ToF tech:
836
837 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
838 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
839 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
840 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
841
842 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
843
844 (((
845 (((
846 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
847 )))
848 )))
849
850 * (((
851 (((
852 AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
853 )))
854 )))
855 * (((
856 (((
857 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
858 )))
859 )))
860
861 (((
862 (((
863
864 )))
865
866 (((
867 There are two kinds of commands to configure LLDS12, they are:
868 )))
869 )))
870
871 * (((
872 (((
873 (% style="color:#4f81bd" %)** General Commands**.
874 )))
875 )))
876
877 (((
878 (((
879 These commands are to configure:
880 )))
881 )))
882
883 * (((
884 (((
885 General system settings like: uplink interval.
886 )))
887 )))
888 * (((
889 (((
890 LoRaWAN protocol & radio related command.
891 )))
892 )))
893
894 (((
895 (((
896 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
897 )))
898 )))
899
900 (((
901 (((
902
903 )))
904 )))
905
906 * (((
907 (((
908 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
909 )))
910 )))
911
912 (((
913 (((
914 These commands only valid for LLDS12, as below:
915 )))
916 )))
917
918
919
920 == 4.1  Set Transmit Interval Time ==
921
922 Feature: Change LoRaWAN End Node Transmit Interval.
923
924 (% style="color:#037691" %)**AT Command: AT+TDC**
925
926 [[image:image-20220607171554-8.png]]
927
928
929 (((
930 (% style="color:#037691" %)**Downlink Command: 0x01**
931 )))
932
933 (((
934 Format: Command Code (0x01) followed by 3 bytes time value.
935 )))
936
937 (((
938 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
939 )))
940
941 * (((
942 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
943 )))
944 * (((
945 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
946 )))
947
948 == 4.2  Set Interrupt Mode ==
949
950 Feature, Set Interrupt mode for GPIO_EXIT.
951
952 (% style="color:#037691" %)**AT Command: AT+INTMOD**
953
954 [[image:image-20220610105806-2.png]]
955
956
957 (((
958 (% style="color:#037691" %)**Downlink Command: 0x06**
959 )))
960
961 (((
962 Format: Command Code (0x06) followed by 3 bytes.
963 )))
964
965 (((
966 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
967 )))
968
969 * (((
970 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
971 )))
972 * (((
973 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
974 )))
975
976 == 4.3  Get Firmware Version Info ==
977
978 Feature: use downlink to get firmware version.
979
980 (% style="color:#037691" %)**Downlink Command: 0x26**
981
982 [[image:image-20220607171917-10.png]]
983
984 * Reply to the confirmation package: 26 01
985 * Reply to non-confirmed packet: 26 00
986
987 Device will send an uplink after got this downlink command. With below payload:
988
989 Configures info payload:
990
991 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
992 |=(((
993 **Size(bytes)**
994 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
995 |**Value**|Software Type|(((
996 Frequency
997
998 Band
999 )))|Sub-band|(((
1000 Firmware
1001
1002 Version
1003 )))|Sensor Type|Reserve|(((
1004 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
1005 Always 0x02
1006 )))
1007
1008 **Software Type**: Always 0x03 for LLDS12
1009
1010
1011 **Frequency Band**:
1012
1013 *0x01: EU868
1014
1015 *0x02: US915
1016
1017 *0x03: IN865
1018
1019 *0x04: AU915
1020
1021 *0x05: KZ865
1022
1023 *0x06: RU864
1024
1025 *0x07: AS923
1026
1027 *0x08: AS923-1
1028
1029 *0x09: AS923-2
1030
1031 *0xa0: AS923-3
1032
1033
1034 **Sub-Band**: value 0x00 ~~ 0x08
1035
1036
1037 **Firmware Version**: 0x0100, Means: v1.0.0 version
1038
1039
1040 **Sensor Type**:
1041
1042 0x01: LSE01
1043
1044 0x02: LDDS75
1045
1046 0x03: LDDS20
1047
1048 0x04: LLMS01
1049
1050 0x05: LSPH01
1051
1052 0x06: LSNPK01
1053
1054 0x07: LLDS12
1055
1056
1057
1058 = 5.  Battery & How to replace =
1059
1060 == 5.1  Battery Type ==
1061
1062 (((
1063 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1064 )))
1065
1066 (((
1067 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1068 )))
1069
1070 [[image:1654593587246-335.png]]
1071
1072
1073 Minimum Working Voltage for the LLDS12:
1074
1075 LLDS12:  2.45v ~~ 3.6v
1076
1077
1078
1079 == 5.2  Replace Battery ==
1080
1081 (((
1082 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1083 )))
1084
1085 (((
1086 And make sure the positive and negative pins match.
1087 )))
1088
1089
1090
1091 == 5.3  Power Consumption Analyze ==
1092
1093 (((
1094 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1095 )))
1096
1097 (((
1098 Instruction to use as below:
1099 )))
1100
1101
1102 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1103
1104 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1105
1106
1107 **Step 2**: Open it and choose
1108
1109 * Product Model
1110 * Uplink Interval
1111 * Working Mode
1112
1113 And the Life expectation in difference case will be shown on the right.
1114
1115 [[image:1654593605679-189.png]]
1116
1117
1118 The battery related documents as below:
1119
1120 * (((
1121 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1122 )))
1123 * (((
1124 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1125 )))
1126 * (((
1127 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1128 )))
1129
1130 [[image:image-20220607172042-11.png]]
1131
1132
1133
1134 === 5.3.1  ​Battery Note ===
1135
1136 (((
1137 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1138 )))
1139
1140
1141
1142 === ​5.3.2  Replace the battery ===
1143
1144 (((
1145 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1146 )))
1147
1148 (((
1149 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1150 )))
1151
1152
1153
1154 = 6.  Use AT Command =
1155
1156 == 6.1  Access AT Commands ==
1157
1158 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1159
1160 [[image:1654593668970-604.png]]
1161
1162 **Connection:**
1163
1164 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1165
1166 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1167
1168 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1169
1170
1171 (((
1172 (((
1173 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1174 )))
1175
1176 (((
1177 LLDS12 will output system info once power on as below:
1178 )))
1179 )))
1180
1181
1182 [[image:1654593712276-618.png]]
1183
1184 Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1185
1186
1187 = 7.  FAQ =
1188
1189 == 7.1  How to change the LoRa Frequency Bands/Region ==
1190
1191 You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1192 When downloading the images, choose the required image file for download. ​
1193
1194
1195 = 8.  Trouble Shooting =
1196
1197 == 8.1  AT Commands input doesn’t work ==
1198
1199
1200 (((
1201 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1202 )))
1203
1204
1205 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1206
1207
1208 (((
1209 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1210 )))
1211
1212 (((
1213 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1214 )))
1215
1216 (((
1217
1218 )))
1219
1220 (((
1221 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1222 )))
1223
1224 (((
1225 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1226 )))
1227
1228
1229
1230 = 9.  Order Info =
1231
1232
1233 Part Number: (% style="color:blue" %)**LLDS12-XX**
1234
1235
1236 (% style="color:blue" %)**XX**(%%): The default frequency band
1237
1238 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1239 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1240 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1241 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1242 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1243 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1244 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1245 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1246
1247 = 10. ​ Packing Info =
1248
1249
1250 **Package Includes**:
1251
1252 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1253
1254 **Dimension and weight**:
1255
1256 * Device Size: cm
1257 * Device Weight: g
1258 * Package Size / pcs : cm
1259 * Weight / pcs : g
1260
1261 = 11.  ​Support =
1262
1263 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1264 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0