Show last authors
1 (% style="text-align:center" %)
2 [[image:1654846127817-788.png]]
3
4 **Contents:**
5
6
7
8
9
10
11
12
13 = 1.  Introduction =
14
15 == 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
16
17 (((
18
19
20 (((
21 The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
22
23
24 It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
25
26
27 The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
28
29
30 LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
31
32
33 Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34
35
36 (% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
37 )))
38 )))
39
40
41 [[image:1654847051249-359.png]]
42
43
44
45 == ​1.2  Features ==
46
47 * LoRaWAN 1.0.3 Class A
48 * Ultra low power consumption
49 * Distance Detection by Ultrasonic technology
50 * Flat object range 280mm - 7500mm
51 * Accuracy: ±(1cm+S*0.3%) (S: Distance)
52 * Cable Length : 25cm
53 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
54 * AT Commands to change parameters
55 * Uplink on periodically
56 * Downlink to change configure
57 * IP66 Waterproof Enclosure
58 * 4000mAh or 8500mAh Battery for long term use
59
60 == 1.3  Specification ==
61
62 === 1.3.1  Rated environmental conditions ===
63
64 [[image:image-20220610154839-1.png]]
65
66 **Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
67
68 **b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
69
70
71
72 === 1.3.2  Effective measurement range Reference beam pattern ===
73
74 **(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**[[image:image-20220610155021-2.png||height="440" width="1189"]]
75
76
77
78 **(2)** The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.[[image:image-20220610155021-3.png||height="437" width="1192"]]
79
80 (% style="display:none" %) (%%)
81
82
83 == 1.5 ​ Applications ==
84
85 * Horizontal distance measurement
86 * Liquid level measurement
87 * Parking management system
88 * Object proximity and presence detection
89 * Intelligent trash can management system
90 * Robot obstacle avoidance
91 * Automatic control
92 * Sewer
93 * Bottom water level monitoring
94
95
96 == 1.6  Pin mapping and power on ==
97
98
99 [[image:1654847583902-256.png]]
100
101
102 = 2.  Configure LDDS75 to connect to LoRaWAN network =
103
104 == 2.1  How it works ==
105
106 (((
107 The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
108 )))
109
110 (((
111 In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
112 )))
113
114
115 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
116
117 (((
118 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
119 )))
120
121 (((
122 [[image:1654848616367-242.png]]
123 )))
124
125 (((
126 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
127 )))
128
129 (((
130 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
131 )))
132
133 (((
134 Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
135 )))
136
137 [[image:image-20220607170145-1.jpeg]]
138
139
140 For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
141
142 Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
143
144 **Add APP EUI in the application**
145
146 [[image:image-20220610161353-4.png]]
147
148 [[image:image-20220610161353-5.png]]
149
150 [[image:image-20220610161353-6.png]]
151
152
153 [[image:image-20220610161353-7.png]]
154
155
156 You can also choose to create the device manually.
157
158 [[image:image-20220610161538-8.png]]
159
160
161
162 **Add APP KEY and DEV EUI**
163
164 [[image:image-20220610161538-9.png]]
165
166
167
168 (% style="color:blue" %)**Step 2**(%%): Power on LDDS75
169
170
171 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
172
173 [[image:image-20220610161724-10.png]]
174
175
176 (((
177 (% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
178 )))
179
180 [[image:1654849068701-275.png]]
181
182
183
184 == 2.3  ​Uplink Payload ==
185
186 (((
187 LDDS75 will uplink payload via LoRaWAN with below payload format:
188
189 Uplink payload includes in total 4 bytes.
190 Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
191 )))
192
193 (((
194
195 )))
196
197 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
198 |=(% style="width: 62.5px;" %)(((
199 **Size (bytes)**
200 )))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
201 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
202 [[Distance>>||anchor="H2.3.3A0Distance"]]
203
204 (unit: mm)
205 )))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
206 [[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
207 )))|[[Sensor Flag>>path:#Sensor_Flag]]
208
209 [[image:1654833689380-972.png]]
210
211
212
213 === 2.3.1  Battery Info ===
214
215
216 Check the battery voltage for LDDS75.
217
218 Ex1: 0x0B45 = 2885mV
219
220 Ex2: 0x0B49 = 2889mV
221
222
223
224 === 2.3.2  Distance ===
225
226 Get the distance. Flat object range 280mm - 7500mm.
227
228 For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is
229
230 **0B05(H) = 2821 (D) = 2821 mm.**
231
232
233 * If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
234 * If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
235
236
237 === 2.3.3  Interrupt Pin ===
238
239 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
240
241 **Example:**
242
243 0x00: Normal uplink packet.
244
245 0x01: Interrupt Uplink Packet.
246
247
248 === 2.3.4  DS18B20 Temperature sensor ===
249
250 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
251
252 **Example**:
253
254 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
255
256 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
257
258 (% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
259
260
261
262 === 2.3.5  Sensor Flag ===
263
264 0x01: Detect Ultrasonic Sensor
265
266 0x00: No Ultrasonic Sensor
267
268
269 ===
270 (% style="color:inherit; font-family:inherit" %)2.3.6  Decode payload in The Things Network(%%) ===
271
272 While using TTN network, you can add the payload format to decode the payload.
273
274
275 [[image:1654592762713-715.png]]
276
277 (((
278 The payload decoder function for TTN is here:
279 )))
280
281 (((
282 LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]]
283 )))
284
285
286
287 == 2.4  Uplink Interval ==
288
289 The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
290
291
292
293 == 2.5  ​Show Data in DataCake IoT Server ==
294
295 (((
296 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
297 )))
298
299 (((
300
301 )))
302
303 (((
304 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
305 )))
306
307 (((
308 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
309 )))
310
311
312 [[image:1654592790040-760.png]]
313
314
315 [[image:1654592800389-571.png]]
316
317
318 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
319
320 (% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
321
322 [[image:1654832691989-514.png]]
323
324
325 [[image:1654592833877-762.png]]
326
327
328 [[image:1654832740634-933.png]]
329
330
331
332 (((
333 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
334 )))
335
336 (((
337
338 )))
339
340 [[image:1654833065139-942.png]]
341
342
343
344 [[image:1654833092678-390.png]]
345
346
347
348 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
349
350 [[image:1654833163048-332.png]]
351
352
353
354 == 2.6  Frequency Plans ==
355
356 (((
357 The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
358 )))
359
360
361 === 2.6.1  EU863-870 (EU868) ===
362
363 (((
364 (% style="color:blue" %)**Uplink:**
365 )))
366
367 (((
368 868.1 - SF7BW125 to SF12BW125
369 )))
370
371 (((
372 868.3 - SF7BW125 to SF12BW125 and SF7BW250
373 )))
374
375 (((
376 868.5 - SF7BW125 to SF12BW125
377 )))
378
379 (((
380 867.1 - SF7BW125 to SF12BW125
381 )))
382
383 (((
384 867.3 - SF7BW125 to SF12BW125
385 )))
386
387 (((
388 867.5 - SF7BW125 to SF12BW125
389 )))
390
391 (((
392 867.7 - SF7BW125 to SF12BW125
393 )))
394
395 (((
396 867.9 - SF7BW125 to SF12BW125
397 )))
398
399 (((
400 868.8 - FSK
401 )))
402
403 (((
404
405 )))
406
407 (((
408 (% style="color:blue" %)**Downlink:**
409 )))
410
411 (((
412 Uplink channels 1-9 (RX1)
413 )))
414
415 (((
416 869.525 - SF9BW125 (RX2 downlink only)
417 )))
418
419
420
421 === 2.6.2  US902-928(US915) ===
422
423 (((
424 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
425 )))
426
427 (((
428 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
429 )))
430
431 (((
432 After Join success, the end node will switch to the correct sub band by:
433 )))
434
435 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
436 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
437
438 === 2.6.3  CN470-510 (CN470) ===
439
440 (((
441 Used in China, Default use CHE=1
442 )))
443
444 (((
445 (% style="color:blue" %)**Uplink:**
446 )))
447
448 (((
449 486.3 - SF7BW125 to SF12BW125
450 )))
451
452 (((
453 486.5 - SF7BW125 to SF12BW125
454 )))
455
456 (((
457 486.7 - SF7BW125 to SF12BW125
458 )))
459
460 (((
461 486.9 - SF7BW125 to SF12BW125
462 )))
463
464 (((
465 487.1 - SF7BW125 to SF12BW125
466 )))
467
468 (((
469 487.3 - SF7BW125 to SF12BW125
470 )))
471
472 (((
473 487.5 - SF7BW125 to SF12BW125
474 )))
475
476 (((
477 487.7 - SF7BW125 to SF12BW125
478 )))
479
480 (((
481
482 )))
483
484 (((
485 (% style="color:blue" %)**Downlink:**
486 )))
487
488 (((
489 506.7 - SF7BW125 to SF12BW125
490 )))
491
492 (((
493 506.9 - SF7BW125 to SF12BW125
494 )))
495
496 (((
497 507.1 - SF7BW125 to SF12BW125
498 )))
499
500 (((
501 507.3 - SF7BW125 to SF12BW125
502 )))
503
504 (((
505 507.5 - SF7BW125 to SF12BW125
506 )))
507
508 (((
509 507.7 - SF7BW125 to SF12BW125
510 )))
511
512 (((
513 507.9 - SF7BW125 to SF12BW125
514 )))
515
516 (((
517 508.1 - SF7BW125 to SF12BW125
518 )))
519
520 (((
521 505.3 - SF12BW125 (RX2 downlink only)
522 )))
523
524
525
526
527 === 2.6.4  AU915-928(AU915) ===
528
529 (((
530 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
531 )))
532
533 (((
534 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
535 )))
536
537 (((
538
539 )))
540
541 (((
542 After Join success, the end node will switch to the correct sub band by:
543 )))
544
545 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
546 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
547
548 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
549
550 (((
551 (% style="color:blue" %)**Default Uplink channel:**
552 )))
553
554 (((
555 923.2 - SF7BW125 to SF10BW125
556 )))
557
558 (((
559 923.4 - SF7BW125 to SF10BW125
560 )))
561
562 (((
563
564 )))
565
566 (((
567 (% style="color:blue" %)**Additional Uplink Channel**:
568 )))
569
570 (((
571 (OTAA mode, channel added by JoinAccept message)
572 )))
573
574 (((
575
576 )))
577
578 (((
579 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
580 )))
581
582 (((
583 922.2 - SF7BW125 to SF10BW125
584 )))
585
586 (((
587 922.4 - SF7BW125 to SF10BW125
588 )))
589
590 (((
591 922.6 - SF7BW125 to SF10BW125
592 )))
593
594 (((
595 922.8 - SF7BW125 to SF10BW125
596 )))
597
598 (((
599 923.0 - SF7BW125 to SF10BW125
600 )))
601
602 (((
603 922.0 - SF7BW125 to SF10BW125
604 )))
605
606 (((
607
608 )))
609
610 (((
611 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
612 )))
613
614 (((
615 923.6 - SF7BW125 to SF10BW125
616 )))
617
618 (((
619 923.8 - SF7BW125 to SF10BW125
620 )))
621
622 (((
623 924.0 - SF7BW125 to SF10BW125
624 )))
625
626 (((
627 924.2 - SF7BW125 to SF10BW125
628 )))
629
630 (((
631 924.4 - SF7BW125 to SF10BW125
632 )))
633
634 (((
635 924.6 - SF7BW125 to SF10BW125
636 )))
637
638 (((
639
640 )))
641
642 (((
643 (% style="color:blue" %)**Downlink:**
644 )))
645
646 (((
647 Uplink channels 1-8 (RX1)
648 )))
649
650 (((
651 923.2 - SF10BW125 (RX2)
652 )))
653
654
655
656
657 === 2.6.6  KR920-923 (KR920) ===
658
659 (((
660 (% style="color:blue" %)**Default channel:**
661 )))
662
663 (((
664 922.1 - SF7BW125 to SF12BW125
665 )))
666
667 (((
668 922.3 - SF7BW125 to SF12BW125
669 )))
670
671 (((
672 922.5 - SF7BW125 to SF12BW125
673 )))
674
675 (((
676
677 )))
678
679 (((
680 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
681 )))
682
683 (((
684 922.1 - SF7BW125 to SF12BW125
685 )))
686
687 (((
688 922.3 - SF7BW125 to SF12BW125
689 )))
690
691 (((
692 922.5 - SF7BW125 to SF12BW125
693 )))
694
695 (((
696 922.7 - SF7BW125 to SF12BW125
697 )))
698
699 (((
700 922.9 - SF7BW125 to SF12BW125
701 )))
702
703 (((
704 923.1 - SF7BW125 to SF12BW125
705 )))
706
707 (((
708 923.3 - SF7BW125 to SF12BW125
709 )))
710
711 (((
712
713 )))
714
715 (((
716 (% style="color:blue" %)**Downlink:**
717 )))
718
719 (((
720 Uplink channels 1-7(RX1)
721 )))
722
723 (((
724 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
725 )))
726
727
728
729
730 === 2.6.7  IN865-867 (IN865) ===
731
732 (((
733 (% style="color:blue" %)**Uplink:**
734 )))
735
736 (((
737 865.0625 - SF7BW125 to SF12BW125
738 )))
739
740 (((
741 865.4025 - SF7BW125 to SF12BW125
742 )))
743
744 (((
745 865.9850 - SF7BW125 to SF12BW125
746 )))
747
748 (((
749
750 )))
751
752 (((
753 (% style="color:blue" %)**Downlink:**
754 )))
755
756 (((
757 Uplink channels 1-3 (RX1)
758 )))
759
760 (((
761 866.550 - SF10BW125 (RX2)
762 )))
763
764
765
766
767 == 2.7  LED Indicator ==
768
769 The LLDS12 has an internal LED which is to show the status of different state.
770
771 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
772 * Blink once when device transmit a packet.
773
774 == 2.8  ​Firmware Change Log ==
775
776
777 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
778
779
780 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
781
782
783
784 = 3.  LiDAR ToF Measurement =
785
786 == 3.1 Principle of Distance Measurement ==
787
788 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
789
790 [[image:1654831757579-263.png]]
791
792
793
794 == 3.2 Distance Measurement Characteristics ==
795
796 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
797
798 [[image:1654831774373-275.png]]
799
800
801 (((
802 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
803 )))
804
805 (((
806 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
807 )))
808
809 (((
810 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
811 )))
812
813
814 (((
815 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
816 )))
817
818
819 [[image:1654831797521-720.png]]
820
821
822 (((
823 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
824 )))
825
826 [[image:1654831810009-716.png]]
827
828
829 (((
830 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
831 )))
832
833
834
835 == 3.3 Notice of usage: ==
836
837 Possible invalid /wrong reading for LiDAR ToF tech:
838
839 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
840 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
841 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
842 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
843
844 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
845
846 (((
847 (((
848 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
849 )))
850 )))
851
852 * (((
853 (((
854 AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
855 )))
856 )))
857 * (((
858 (((
859 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
860 )))
861 )))
862
863 (((
864 (((
865
866 )))
867
868 (((
869 There are two kinds of commands to configure LLDS12, they are:
870 )))
871 )))
872
873 * (((
874 (((
875 (% style="color:#4f81bd" %)** General Commands**.
876 )))
877 )))
878
879 (((
880 (((
881 These commands are to configure:
882 )))
883 )))
884
885 * (((
886 (((
887 General system settings like: uplink interval.
888 )))
889 )))
890 * (((
891 (((
892 LoRaWAN protocol & radio related command.
893 )))
894 )))
895
896 (((
897 (((
898 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
899 )))
900 )))
901
902 (((
903 (((
904
905 )))
906 )))
907
908 * (((
909 (((
910 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
911 )))
912 )))
913
914 (((
915 (((
916 These commands only valid for LLDS12, as below:
917 )))
918 )))
919
920
921
922 == 4.1  Set Transmit Interval Time ==
923
924 Feature: Change LoRaWAN End Node Transmit Interval.
925
926 (% style="color:#037691" %)**AT Command: AT+TDC**
927
928 [[image:image-20220607171554-8.png]]
929
930
931 (((
932 (% style="color:#037691" %)**Downlink Command: 0x01**
933 )))
934
935 (((
936 Format: Command Code (0x01) followed by 3 bytes time value.
937 )))
938
939 (((
940 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
941 )))
942
943 * (((
944 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
945 )))
946 * (((
947 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
948 )))
949
950 == 4.2  Set Interrupt Mode ==
951
952 Feature, Set Interrupt mode for GPIO_EXIT.
953
954 (% style="color:#037691" %)**AT Command: AT+INTMOD**
955
956 [[image:image-20220610105806-2.png]]
957
958
959 (((
960 (% style="color:#037691" %)**Downlink Command: 0x06**
961 )))
962
963 (((
964 Format: Command Code (0x06) followed by 3 bytes.
965 )))
966
967 (((
968 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
969 )))
970
971 * (((
972 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
973 )))
974 * (((
975 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
976 )))
977
978 == 4.3  Get Firmware Version Info ==
979
980 Feature: use downlink to get firmware version.
981
982 (% style="color:#037691" %)**Downlink Command: 0x26**
983
984 [[image:image-20220607171917-10.png]]
985
986 * Reply to the confirmation package: 26 01
987 * Reply to non-confirmed packet: 26 00
988
989 Device will send an uplink after got this downlink command. With below payload:
990
991 Configures info payload:
992
993 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
994 |=(((
995 **Size(bytes)**
996 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
997 |**Value**|Software Type|(((
998 Frequency
999
1000 Band
1001 )))|Sub-band|(((
1002 Firmware
1003
1004 Version
1005 )))|Sensor Type|Reserve|(((
1006 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
1007 Always 0x02
1008 )))
1009
1010 **Software Type**: Always 0x03 for LLDS12
1011
1012
1013 **Frequency Band**:
1014
1015 *0x01: EU868
1016
1017 *0x02: US915
1018
1019 *0x03: IN865
1020
1021 *0x04: AU915
1022
1023 *0x05: KZ865
1024
1025 *0x06: RU864
1026
1027 *0x07: AS923
1028
1029 *0x08: AS923-1
1030
1031 *0x09: AS923-2
1032
1033 *0xa0: AS923-3
1034
1035
1036 **Sub-Band**: value 0x00 ~~ 0x08
1037
1038
1039 **Firmware Version**: 0x0100, Means: v1.0.0 version
1040
1041
1042 **Sensor Type**:
1043
1044 0x01: LSE01
1045
1046 0x02: LDDS75
1047
1048 0x03: LDDS20
1049
1050 0x04: LLMS01
1051
1052 0x05: LSPH01
1053
1054 0x06: LSNPK01
1055
1056 0x07: LLDS12
1057
1058
1059
1060 = 5.  Battery & How to replace =
1061
1062 == 5.1  Battery Type ==
1063
1064 (((
1065 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1066 )))
1067
1068 (((
1069 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1070 )))
1071
1072 [[image:1654593587246-335.png]]
1073
1074
1075 Minimum Working Voltage for the LLDS12:
1076
1077 LLDS12:  2.45v ~~ 3.6v
1078
1079
1080
1081 == 5.2  Replace Battery ==
1082
1083 (((
1084 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1085 )))
1086
1087 (((
1088 And make sure the positive and negative pins match.
1089 )))
1090
1091
1092
1093 == 5.3  Power Consumption Analyze ==
1094
1095 (((
1096 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1097 )))
1098
1099 (((
1100 Instruction to use as below:
1101 )))
1102
1103
1104 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1105
1106 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1107
1108
1109 **Step 2**: Open it and choose
1110
1111 * Product Model
1112 * Uplink Interval
1113 * Working Mode
1114
1115 And the Life expectation in difference case will be shown on the right.
1116
1117 [[image:1654593605679-189.png]]
1118
1119
1120 The battery related documents as below:
1121
1122 * (((
1123 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1124 )))
1125 * (((
1126 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1127 )))
1128 * (((
1129 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1130 )))
1131
1132 [[image:image-20220607172042-11.png]]
1133
1134
1135
1136 === 5.3.1  ​Battery Note ===
1137
1138 (((
1139 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1140 )))
1141
1142
1143
1144 === ​5.3.2  Replace the battery ===
1145
1146 (((
1147 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1148 )))
1149
1150 (((
1151 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1152 )))
1153
1154
1155
1156 = 6.  Use AT Command =
1157
1158 == 6.1  Access AT Commands ==
1159
1160 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1161
1162 [[image:1654593668970-604.png]]
1163
1164 **Connection:**
1165
1166 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1167
1168 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1169
1170 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1171
1172
1173 (((
1174 (((
1175 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1176 )))
1177
1178 (((
1179 LLDS12 will output system info once power on as below:
1180 )))
1181 )))
1182
1183
1184 [[image:1654593712276-618.png]]
1185
1186 Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1187
1188
1189 = 7.  FAQ =
1190
1191 == 7.1  How to change the LoRa Frequency Bands/Region ==
1192
1193 You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1194 When downloading the images, choose the required image file for download. ​
1195
1196
1197 = 8.  Trouble Shooting =
1198
1199 == 8.1  AT Commands input doesn’t work ==
1200
1201
1202 (((
1203 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1204 )))
1205
1206
1207 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1208
1209
1210 (((
1211 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1212 )))
1213
1214 (((
1215 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1216 )))
1217
1218 (((
1219
1220 )))
1221
1222 (((
1223 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1224 )))
1225
1226 (((
1227 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1228 )))
1229
1230
1231
1232 = 9.  Order Info =
1233
1234
1235 Part Number: (% style="color:blue" %)**LLDS12-XX**
1236
1237
1238 (% style="color:blue" %)**XX**(%%): The default frequency band
1239
1240 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1241 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1242 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1243 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1244 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1245 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1246 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1247 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1248
1249 = 10. ​ Packing Info =
1250
1251
1252 **Package Includes**:
1253
1254 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1255
1256 **Dimension and weight**:
1257
1258 * Device Size: cm
1259 * Device Weight: g
1260 * Package Size / pcs : cm
1261 * Weight / pcs : g
1262
1263 = 11.  ​Support =
1264
1265 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1266 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0