Show last authors
1 (% style="text-align:center" %)
2 [[image:1654846127817-788.png]]
3
4 **Contents:**
5
6
7
8
9
10
11
12
13 = 1.  Introduction =
14
15 == 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
16
17 (((
18
19
20 (((
21 The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
22
23
24 It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
25
26
27 The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
28
29
30 LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
31
32
33 Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34
35
36 (% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
37 )))
38 )))
39
40
41 [[image:1654847051249-359.png]]
42
43
44
45 == ​1.2  Features ==
46
47 * LoRaWAN 1.0.3 Class A
48 * Ultra low power consumption
49 * Distance Detection by Ultrasonic technology
50 * Flat object range 280mm - 7500mm
51 * Accuracy: ±(1cm+S*0.3%) (S: Distance)
52 * Cable Length : 25cm
53 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
54 * AT Commands to change parameters
55 * Uplink on periodically
56 * Downlink to change configure
57 * IP66 Waterproof Enclosure
58 * 4000mAh or 8500mAh Battery for long term use
59
60 == 1.3  Specification ==
61
62 === 1.3.1  Rated environmental conditions ===
63
64 [[image:image-20220610154839-1.png]]
65
66 **Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
67
68 **b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
69
70
71
72 === 1.3.2  Effective measurement range Reference beam pattern ===
73
74 **(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**[[image:image-20220610155021-2.png||height="440" width="1189"]]
75
76
77
78 **(2)** The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.[[image:image-20220610155021-3.png||height="437" width="1192"]]
79
80 (% style="display:none" %) (%%)
81
82
83 == 1.5 ​ Applications ==
84
85 * Horizontal distance measurement
86 * Liquid level measurement
87 * Parking management system
88 * Object proximity and presence detection
89 * Intelligent trash can management system
90 * Robot obstacle avoidance
91 * Automatic control
92 * Sewer
93 * Bottom water level monitoring
94
95
96 == 1.6  Pin mapping and power on ==
97
98
99 [[image:1654847583902-256.png]]
100
101
102 = 2.  Configure LDDS75 to connect to LoRaWAN network =
103
104 == 2.1  How it works ==
105
106 (((
107 The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
108 )))
109
110 (((
111 In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
112 )))
113
114
115 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
116
117 (((
118 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
119 )))
120
121 (((
122 [[image:1654848616367-242.png]]
123 )))
124
125 (((
126 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
127 )))
128
129 (((
130 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
131 )))
132
133 (((
134 Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
135 )))
136
137 [[image:image-20220607170145-1.jpeg]]
138
139
140 For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
141
142 Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
143
144 **Add APP EUI in the application**
145
146 [[image:image-20220610161353-4.png]]
147
148 [[image:image-20220610161353-5.png]]
149
150 [[image:image-20220610161353-6.png]]
151
152
153 [[image:image-20220610161353-7.png]]
154
155
156 You can also choose to create the device manually.
157
158 [[image:image-20220610161538-8.png]]
159
160
161
162 **Add APP KEY and DEV EUI**
163
164 [[image:image-20220610161538-9.png]]
165
166
167
168 (% style="color:blue" %)**Step 2**(%%): Power on LDDS75
169
170
171 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
172
173 [[image:image-20220610161724-10.png]]
174
175
176 (((
177 (% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
178 )))
179
180 [[image:1654833501679-968.png]]
181
182
183
184 == 2.3  ​Uplink Payload ==
185
186 (((
187 LLDS12 will uplink payload via LoRaWAN with below payload format: 
188 )))
189
190 (((
191 Uplink payload includes in total 11 bytes.
192 )))
193
194 (((
195
196 )))
197
198 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
199 |=(% style="width: 62.5px;" %)(((
200 **Size (bytes)**
201 )))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
202 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
203 [[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
204 )))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
205 [[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
206 )))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
207 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
208 )))
209
210 [[image:1654833689380-972.png]]
211
212
213
214 === 2.3.1  Battery Info ===
215
216
217 Check the battery voltage for LLDS12.
218
219 Ex1: 0x0B45 = 2885mV
220
221 Ex2: 0x0B49 = 2889mV
222
223
224
225 === 2.3.2  DS18B20 Temperature sensor ===
226
227 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
228
229
230 **Example**:
231
232 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
233
234 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
235
236
237
238 === 2.3.3  Distance ===
239
240 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
241
242
243 **Example**:
244
245 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
246
247
248
249 === 2.3.4  Distance signal strength ===
250
251 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
252
253
254 **Example**:
255
256 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
257
258 Customers can judge whether they need to adjust the environment based on the signal strength.
259
260
261
262 === 2.3.5  Interrupt Pin ===
263
264 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
265
266 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
267
268 **Example:**
269
270 0x00: Normal uplink packet.
271
272 0x01: Interrupt Uplink Packet.
273
274
275
276 === 2.3.6  LiDAR temp ===
277
278 Characterize the internal temperature value of the sensor.
279
280 **Example: **
281 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
282 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
283
284
285
286 === 2.3.7  Message Type ===
287
288 (((
289 For a normal uplink payload, the message type is always 0x01.
290 )))
291
292 (((
293 Valid Message Type:
294 )))
295
296
297 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
298 |=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
299 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
300 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
301
302 === 2.3.8  Decode payload in The Things Network ===
303
304 While using TTN network, you can add the payload format to decode the payload.
305
306
307 [[image:1654592762713-715.png]]
308
309 (((
310 The payload decoder function for TTN is here:
311 )))
312
313 (((
314 LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]]
315 )))
316
317
318
319 == 2.4  Uplink Interval ==
320
321 The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
322
323
324
325 == 2.5  ​Show Data in DataCake IoT Server ==
326
327 (((
328 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
329 )))
330
331 (((
332
333 )))
334
335 (((
336 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
337 )))
338
339 (((
340 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
341 )))
342
343
344 [[image:1654592790040-760.png]]
345
346
347 [[image:1654592800389-571.png]]
348
349
350 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
351
352 (% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
353
354 [[image:1654832691989-514.png]]
355
356
357 [[image:1654592833877-762.png]]
358
359
360 [[image:1654832740634-933.png]]
361
362
363
364 (((
365 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
366 )))
367
368 (((
369
370 )))
371
372 [[image:1654833065139-942.png]]
373
374
375
376 [[image:1654833092678-390.png]]
377
378
379
380 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
381
382 [[image:1654833163048-332.png]]
383
384
385
386 == 2.6  Frequency Plans ==
387
388 (((
389 The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
390 )))
391
392
393 === 2.6.1  EU863-870 (EU868) ===
394
395 (((
396 (% style="color:blue" %)**Uplink:**
397 )))
398
399 (((
400 868.1 - SF7BW125 to SF12BW125
401 )))
402
403 (((
404 868.3 - SF7BW125 to SF12BW125 and SF7BW250
405 )))
406
407 (((
408 868.5 - SF7BW125 to SF12BW125
409 )))
410
411 (((
412 867.1 - SF7BW125 to SF12BW125
413 )))
414
415 (((
416 867.3 - SF7BW125 to SF12BW125
417 )))
418
419 (((
420 867.5 - SF7BW125 to SF12BW125
421 )))
422
423 (((
424 867.7 - SF7BW125 to SF12BW125
425 )))
426
427 (((
428 867.9 - SF7BW125 to SF12BW125
429 )))
430
431 (((
432 868.8 - FSK
433 )))
434
435 (((
436
437 )))
438
439 (((
440 (% style="color:blue" %)**Downlink:**
441 )))
442
443 (((
444 Uplink channels 1-9 (RX1)
445 )))
446
447 (((
448 869.525 - SF9BW125 (RX2 downlink only)
449 )))
450
451
452
453 === 2.6.2  US902-928(US915) ===
454
455 (((
456 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
457 )))
458
459 (((
460 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
461 )))
462
463 (((
464 After Join success, the end node will switch to the correct sub band by:
465 )))
466
467 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
468 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
469
470 === 2.6.3  CN470-510 (CN470) ===
471
472 (((
473 Used in China, Default use CHE=1
474 )))
475
476 (((
477 (% style="color:blue" %)**Uplink:**
478 )))
479
480 (((
481 486.3 - SF7BW125 to SF12BW125
482 )))
483
484 (((
485 486.5 - SF7BW125 to SF12BW125
486 )))
487
488 (((
489 486.7 - SF7BW125 to SF12BW125
490 )))
491
492 (((
493 486.9 - SF7BW125 to SF12BW125
494 )))
495
496 (((
497 487.1 - SF7BW125 to SF12BW125
498 )))
499
500 (((
501 487.3 - SF7BW125 to SF12BW125
502 )))
503
504 (((
505 487.5 - SF7BW125 to SF12BW125
506 )))
507
508 (((
509 487.7 - SF7BW125 to SF12BW125
510 )))
511
512 (((
513
514 )))
515
516 (((
517 (% style="color:blue" %)**Downlink:**
518 )))
519
520 (((
521 506.7 - SF7BW125 to SF12BW125
522 )))
523
524 (((
525 506.9 - SF7BW125 to SF12BW125
526 )))
527
528 (((
529 507.1 - SF7BW125 to SF12BW125
530 )))
531
532 (((
533 507.3 - SF7BW125 to SF12BW125
534 )))
535
536 (((
537 507.5 - SF7BW125 to SF12BW125
538 )))
539
540 (((
541 507.7 - SF7BW125 to SF12BW125
542 )))
543
544 (((
545 507.9 - SF7BW125 to SF12BW125
546 )))
547
548 (((
549 508.1 - SF7BW125 to SF12BW125
550 )))
551
552 (((
553 505.3 - SF12BW125 (RX2 downlink only)
554 )))
555
556
557
558
559 === 2.6.4  AU915-928(AU915) ===
560
561 (((
562 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
563 )))
564
565 (((
566 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
567 )))
568
569 (((
570
571 )))
572
573 (((
574 After Join success, the end node will switch to the correct sub band by:
575 )))
576
577 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
578 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
579
580 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
581
582 (((
583 (% style="color:blue" %)**Default Uplink channel:**
584 )))
585
586 (((
587 923.2 - SF7BW125 to SF10BW125
588 )))
589
590 (((
591 923.4 - SF7BW125 to SF10BW125
592 )))
593
594 (((
595
596 )))
597
598 (((
599 (% style="color:blue" %)**Additional Uplink Channel**:
600 )))
601
602 (((
603 (OTAA mode, channel added by JoinAccept message)
604 )))
605
606 (((
607
608 )))
609
610 (((
611 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
612 )))
613
614 (((
615 922.2 - SF7BW125 to SF10BW125
616 )))
617
618 (((
619 922.4 - SF7BW125 to SF10BW125
620 )))
621
622 (((
623 922.6 - SF7BW125 to SF10BW125
624 )))
625
626 (((
627 922.8 - SF7BW125 to SF10BW125
628 )))
629
630 (((
631 923.0 - SF7BW125 to SF10BW125
632 )))
633
634 (((
635 922.0 - SF7BW125 to SF10BW125
636 )))
637
638 (((
639
640 )))
641
642 (((
643 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
644 )))
645
646 (((
647 923.6 - SF7BW125 to SF10BW125
648 )))
649
650 (((
651 923.8 - SF7BW125 to SF10BW125
652 )))
653
654 (((
655 924.0 - SF7BW125 to SF10BW125
656 )))
657
658 (((
659 924.2 - SF7BW125 to SF10BW125
660 )))
661
662 (((
663 924.4 - SF7BW125 to SF10BW125
664 )))
665
666 (((
667 924.6 - SF7BW125 to SF10BW125
668 )))
669
670 (((
671
672 )))
673
674 (((
675 (% style="color:blue" %)**Downlink:**
676 )))
677
678 (((
679 Uplink channels 1-8 (RX1)
680 )))
681
682 (((
683 923.2 - SF10BW125 (RX2)
684 )))
685
686
687
688
689 === 2.6.6  KR920-923 (KR920) ===
690
691 (((
692 (% style="color:blue" %)**Default channel:**
693 )))
694
695 (((
696 922.1 - SF7BW125 to SF12BW125
697 )))
698
699 (((
700 922.3 - SF7BW125 to SF12BW125
701 )))
702
703 (((
704 922.5 - SF7BW125 to SF12BW125
705 )))
706
707 (((
708
709 )))
710
711 (((
712 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
713 )))
714
715 (((
716 922.1 - SF7BW125 to SF12BW125
717 )))
718
719 (((
720 922.3 - SF7BW125 to SF12BW125
721 )))
722
723 (((
724 922.5 - SF7BW125 to SF12BW125
725 )))
726
727 (((
728 922.7 - SF7BW125 to SF12BW125
729 )))
730
731 (((
732 922.9 - SF7BW125 to SF12BW125
733 )))
734
735 (((
736 923.1 - SF7BW125 to SF12BW125
737 )))
738
739 (((
740 923.3 - SF7BW125 to SF12BW125
741 )))
742
743 (((
744
745 )))
746
747 (((
748 (% style="color:blue" %)**Downlink:**
749 )))
750
751 (((
752 Uplink channels 1-7(RX1)
753 )))
754
755 (((
756 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
757 )))
758
759
760
761
762 === 2.6.7  IN865-867 (IN865) ===
763
764 (((
765 (% style="color:blue" %)**Uplink:**
766 )))
767
768 (((
769 865.0625 - SF7BW125 to SF12BW125
770 )))
771
772 (((
773 865.4025 - SF7BW125 to SF12BW125
774 )))
775
776 (((
777 865.9850 - SF7BW125 to SF12BW125
778 )))
779
780 (((
781
782 )))
783
784 (((
785 (% style="color:blue" %)**Downlink:**
786 )))
787
788 (((
789 Uplink channels 1-3 (RX1)
790 )))
791
792 (((
793 866.550 - SF10BW125 (RX2)
794 )))
795
796
797
798
799 == 2.7  LED Indicator ==
800
801 The LLDS12 has an internal LED which is to show the status of different state.
802
803 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
804 * Blink once when device transmit a packet.
805
806 == 2.8  ​Firmware Change Log ==
807
808
809 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
810
811
812 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
813
814
815
816 = 3.  LiDAR ToF Measurement =
817
818 == 3.1 Principle of Distance Measurement ==
819
820 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
821
822 [[image:1654831757579-263.png]]
823
824
825
826 == 3.2 Distance Measurement Characteristics ==
827
828 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
829
830 [[image:1654831774373-275.png]]
831
832
833 (((
834 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
835 )))
836
837 (((
838 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
839 )))
840
841 (((
842 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
843 )))
844
845
846 (((
847 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
848 )))
849
850
851 [[image:1654831797521-720.png]]
852
853
854 (((
855 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
856 )))
857
858 [[image:1654831810009-716.png]]
859
860
861 (((
862 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
863 )))
864
865
866
867 == 3.3 Notice of usage: ==
868
869 Possible invalid /wrong reading for LiDAR ToF tech:
870
871 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
872 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
873 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
874 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
875
876 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
877
878 (((
879 (((
880 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
881 )))
882 )))
883
884 * (((
885 (((
886 AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
887 )))
888 )))
889 * (((
890 (((
891 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
892 )))
893 )))
894
895 (((
896 (((
897
898 )))
899
900 (((
901 There are two kinds of commands to configure LLDS12, they are:
902 )))
903 )))
904
905 * (((
906 (((
907 (% style="color:#4f81bd" %)** General Commands**.
908 )))
909 )))
910
911 (((
912 (((
913 These commands are to configure:
914 )))
915 )))
916
917 * (((
918 (((
919 General system settings like: uplink interval.
920 )))
921 )))
922 * (((
923 (((
924 LoRaWAN protocol & radio related command.
925 )))
926 )))
927
928 (((
929 (((
930 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
931 )))
932 )))
933
934 (((
935 (((
936
937 )))
938 )))
939
940 * (((
941 (((
942 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
943 )))
944 )))
945
946 (((
947 (((
948 These commands only valid for LLDS12, as below:
949 )))
950 )))
951
952
953
954 == 4.1  Set Transmit Interval Time ==
955
956 Feature: Change LoRaWAN End Node Transmit Interval.
957
958 (% style="color:#037691" %)**AT Command: AT+TDC**
959
960 [[image:image-20220607171554-8.png]]
961
962
963 (((
964 (% style="color:#037691" %)**Downlink Command: 0x01**
965 )))
966
967 (((
968 Format: Command Code (0x01) followed by 3 bytes time value.
969 )))
970
971 (((
972 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
973 )))
974
975 * (((
976 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
977 )))
978 * (((
979 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
980 )))
981
982 == 4.2  Set Interrupt Mode ==
983
984 Feature, Set Interrupt mode for GPIO_EXIT.
985
986 (% style="color:#037691" %)**AT Command: AT+INTMOD**
987
988 [[image:image-20220610105806-2.png]]
989
990
991 (((
992 (% style="color:#037691" %)**Downlink Command: 0x06**
993 )))
994
995 (((
996 Format: Command Code (0x06) followed by 3 bytes.
997 )))
998
999 (((
1000 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1001 )))
1002
1003 * (((
1004 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1005 )))
1006 * (((
1007 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1008 )))
1009
1010 == 4.3  Get Firmware Version Info ==
1011
1012 Feature: use downlink to get firmware version.
1013
1014 (% style="color:#037691" %)**Downlink Command: 0x26**
1015
1016 [[image:image-20220607171917-10.png]]
1017
1018 * Reply to the confirmation package: 26 01
1019 * Reply to non-confirmed packet: 26 00
1020
1021 Device will send an uplink after got this downlink command. With below payload:
1022
1023 Configures info payload:
1024
1025 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1026 |=(((
1027 **Size(bytes)**
1028 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1029 |**Value**|Software Type|(((
1030 Frequency
1031
1032 Band
1033 )))|Sub-band|(((
1034 Firmware
1035
1036 Version
1037 )))|Sensor Type|Reserve|(((
1038 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
1039 Always 0x02
1040 )))
1041
1042 **Software Type**: Always 0x03 for LLDS12
1043
1044
1045 **Frequency Band**:
1046
1047 *0x01: EU868
1048
1049 *0x02: US915
1050
1051 *0x03: IN865
1052
1053 *0x04: AU915
1054
1055 *0x05: KZ865
1056
1057 *0x06: RU864
1058
1059 *0x07: AS923
1060
1061 *0x08: AS923-1
1062
1063 *0x09: AS923-2
1064
1065 *0xa0: AS923-3
1066
1067
1068 **Sub-Band**: value 0x00 ~~ 0x08
1069
1070
1071 **Firmware Version**: 0x0100, Means: v1.0.0 version
1072
1073
1074 **Sensor Type**:
1075
1076 0x01: LSE01
1077
1078 0x02: LDDS75
1079
1080 0x03: LDDS20
1081
1082 0x04: LLMS01
1083
1084 0x05: LSPH01
1085
1086 0x06: LSNPK01
1087
1088 0x07: LLDS12
1089
1090
1091
1092 = 5.  Battery & How to replace =
1093
1094 == 5.1  Battery Type ==
1095
1096 (((
1097 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1098 )))
1099
1100 (((
1101 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1102 )))
1103
1104 [[image:1654593587246-335.png]]
1105
1106
1107 Minimum Working Voltage for the LLDS12:
1108
1109 LLDS12:  2.45v ~~ 3.6v
1110
1111
1112
1113 == 5.2  Replace Battery ==
1114
1115 (((
1116 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1117 )))
1118
1119 (((
1120 And make sure the positive and negative pins match.
1121 )))
1122
1123
1124
1125 == 5.3  Power Consumption Analyze ==
1126
1127 (((
1128 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1129 )))
1130
1131 (((
1132 Instruction to use as below:
1133 )))
1134
1135
1136 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1137
1138 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1139
1140
1141 **Step 2**: Open it and choose
1142
1143 * Product Model
1144 * Uplink Interval
1145 * Working Mode
1146
1147 And the Life expectation in difference case will be shown on the right.
1148
1149 [[image:1654593605679-189.png]]
1150
1151
1152 The battery related documents as below:
1153
1154 * (((
1155 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1156 )))
1157 * (((
1158 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1159 )))
1160 * (((
1161 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1162 )))
1163
1164 [[image:image-20220607172042-11.png]]
1165
1166
1167
1168 === 5.3.1  ​Battery Note ===
1169
1170 (((
1171 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1172 )))
1173
1174
1175
1176 === ​5.3.2  Replace the battery ===
1177
1178 (((
1179 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1180 )))
1181
1182 (((
1183 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1184 )))
1185
1186
1187
1188 = 6.  Use AT Command =
1189
1190 == 6.1  Access AT Commands ==
1191
1192 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1193
1194 [[image:1654593668970-604.png]]
1195
1196 **Connection:**
1197
1198 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1199
1200 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1201
1202 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1203
1204
1205 (((
1206 (((
1207 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1208 )))
1209
1210 (((
1211 LLDS12 will output system info once power on as below:
1212 )))
1213 )))
1214
1215
1216 [[image:1654593712276-618.png]]
1217
1218 Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1219
1220
1221 = 7.  FAQ =
1222
1223 == 7.1  How to change the LoRa Frequency Bands/Region ==
1224
1225 You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1226 When downloading the images, choose the required image file for download. ​
1227
1228
1229 = 8.  Trouble Shooting =
1230
1231 == 8.1  AT Commands input doesn’t work ==
1232
1233
1234 (((
1235 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1236 )))
1237
1238
1239 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1240
1241
1242 (((
1243 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1244 )))
1245
1246 (((
1247 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1248 )))
1249
1250 (((
1251
1252 )))
1253
1254 (((
1255 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1256 )))
1257
1258 (((
1259 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1260 )))
1261
1262
1263
1264 = 9.  Order Info =
1265
1266
1267 Part Number: (% style="color:blue" %)**LLDS12-XX**
1268
1269
1270 (% style="color:blue" %)**XX**(%%): The default frequency band
1271
1272 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1273 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1274 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1275 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1276 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1277 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1278 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1279 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1280
1281 = 10. ​ Packing Info =
1282
1283
1284 **Package Includes**:
1285
1286 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1287
1288 **Dimension and weight**:
1289
1290 * Device Size: cm
1291 * Device Weight: g
1292 * Package Size / pcs : cm
1293 * Weight / pcs : g
1294
1295 = 11.  ​Support =
1296
1297 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1298 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0