Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18 == 1.1 What is LT Series I/O Controller ==
19
20 (((
21
22
23 (((
24 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 )))
26 )))
27
28 (((
29 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
30 )))
31
32 (((
33 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 )))
35
36 (((
37 The use environment includes:
38 )))
39
40 (((
41 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 )))
43
44 (((
45 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
46
47
48 )))
49
50 (((
51 [[image:1653295757274-912.png]]
52
53
54 )))
55
56 == 1.2  Specifications ==
57
58 (((
59
60
61 (% style="color:#037691" %)**Hardware System:**
62 )))
63
64 * (((
65 STM32L072xxxx MCU
66 )))
67 * (((
68 SX1276/78 Wireless Chip 
69 )))
70 * (((
71 (((
72 Power Consumption:
73 )))
74
75 * (((
76 Idle: 4mA@12v
77 )))
78 * (((
79 20dB Transmit: 34mA@12v
80 )))
81 )))
82
83 (((
84
85
86 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 )))
88
89 * (((
90 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 )))
92 * (((
93 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 )))
95 * (((
96 2 x Relay Output (5A@250VAC / 30VDC)
97 )))
98 * (((
99 2 x 0~~20mA Analog Input (res:0.01mA)
100 )))
101 * (((
102 2 x 0~~30V Analog Input (res:0.01v)
103 )))
104 * (((
105 Power Input 7~~ 24V DC. 
106 )))
107
108 (((
109
110
111 (% style="color:#037691" %)**LoRa Spec:**
112 )))
113
114 * (((
115 (((
116 Frequency Range:
117 )))
118
119 * (((
120 Band 1 (HF): 862 ~~ 1020 Mhz
121 )))
122 * (((
123 Band 2 (LF): 410 ~~ 528 Mhz
124 )))
125 )))
126 * (((
127 168 dB maximum link budget.
128 )))
129 * (((
130 +20 dBm - 100 mW constant RF output vs.
131 )))
132 * (((
133 +14 dBm high efficiency PA.
134 )))
135 * (((
136 Programmable bit rate up to 300 kbps.
137 )))
138 * (((
139 High sensitivity: down to -148 dBm.
140 )))
141 * (((
142 Bullet-proof front end: IIP3 = -12.5 dBm.
143 )))
144 * (((
145 Excellent blocking immunity.
146 )))
147 * (((
148 Low RX current of 10.3 mA, 200 nA register retention.
149 )))
150 * (((
151 Fully integrated synthesizer with a resolution of 61 Hz.
152 )))
153 * (((
154 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 )))
156 * (((
157 Built-in bit synchronizer for clock recovery.
158 )))
159 * (((
160 Preamble detection.
161 )))
162 * (((
163 127 dB Dynamic Range RSSI.
164 )))
165 * (((
166 Automatic RF Sense and CAD with ultra-fast AFC.
167 )))
168 * (((
169 Packet engine up to 256 bytes with CRC.
170
171
172
173 )))
174
175 == 1.3 Features ==
176
177
178 * LoRaWAN Class A & Class C protocol
179
180 * Optional Customized LoRa Protocol
181
182 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
183
184 * AT Commands to change parameters
185
186 * Remote configure parameters via LoRa Downlink
187
188 * Firmware upgradable via program port
189
190 * Counting
191
192 == 1.4  Applications ==
193
194
195 * Smart Buildings & Home Automation
196
197 * Logistics and Supply Chain Management
198
199 * Smart Metering
200
201 * Smart Agriculture
202
203 * Smart Cities
204
205 * Smart Factory
206
207 == 1.5 Hardware Variants ==
208
209
210 (% border="1" style="background-color:#f2f2f2; width:500px" %)
211 |(% style="background-color:#d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:334px" %)**Description**
212 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
213 (% style="text-align:center" %)
214 [[image:image-20230424115112-1.png||height="106" width="58"]]
215 )))|(% style="width:334px" %)(((
216 * 2 x Digital Input (Bi-direction)
217 * 2 x Digital Output
218 * 2 x Relay Output (5A@250VAC / 30VDC)
219 * 2 x 0~~20mA Analog Input (res:0.01mA)
220 * 2 x 0~~30V Analog Input (res:0.01v)
221 * 1 x Counting Port
222 )))
223
224 = 2. Power ON Device =
225
226
227 (((
228 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
229 )))
230
231 (((
232 PWR will on when device is properly powered.
233
234
235 )))
236
237 [[image:1653297104069-180.png]]
238
239
240 = 3. Operation Mode =
241
242 == 3.1 How it works? ==
243
244
245 (((
246 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
247 )))
248
249 (((
250 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
251 )))
252
253
254 == 3.2 Example to join LoRaWAN network ==
255
256
257 (((
258 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
259
260
261 )))
262
263 [[image:image-20220523172350-1.png||height="266" width="864"]]
264
265
266 (((
267 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
268
269
270 )))
271
272 (((
273 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
274 )))
275
276 (((
277 Each LT is shipped with a sticker with the default device EUI as below:
278 )))
279
280 [[image:image-20230425173427-2.png||height="246" width="530"]]
281
282
283 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
284
285 **Add APP EUI in the application.**
286
287 [[image:1653297955910-247.png||height="321" width="716"]]
288
289
290 **Add APP KEY and DEV EUI**
291
292 [[image:1653298023685-319.png]]
293
294
295
296 (((
297 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
298
299
300 )))
301
302 [[image:1653298044601-602.png||height="405" width="709"]]
303
304
305 == 3.3 Uplink Payload ==
306
307
308 There are five working modes + one interrupt mode on LT for different type application:
309
310 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
311
312 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
313
314 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
315
316 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
317
318 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
319
320 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
321
322 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
323
324
325 (((
326 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
327
328 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
329 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
330 |Value|(((
331 AVI1 voltage
332 )))|(((
333 AVI2 voltage
334 )))|(((
335 ACI1 Current
336 )))|(((
337 ACI2 Current
338 )))|DIDORO*|(((
339 Reserve
340 )))|MOD
341 )))
342
343 (((
344 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
345
346 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
347 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
348 |RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
349 )))
350
351 * RO is for relay. ROx=1 : close,ROx=0 always open.
352 * DI is for digital input. DIx=1: high or float, DIx=0: low.
353 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
354
355 (% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
356
357 For example if payload is: [[image:image-20220523175847-2.png]]
358
359
360 **The value for the interface is:  **
361
362 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
363
364 AVI2 channel voltage is 0x04AC/1000=1.196V
365
366 ACI1 channel current is 0x1310/1000=4.880mA
367
368 ACI2 channel current is 0x1300/1000=4.864mA
369
370 The last byte 0xAA= 10101010(B) means
371
372 * [1] RO1 relay channel is close and the RO1 LED is ON.
373 * [0] RO2 relay channel is open and RO2 LED is OFF;
374
375 **LT22222-L:**
376
377 * [1] DI2 channel is high input and DI2 LED is ON;
378 * [0] DI1 channel is low input;
379
380 * [0] DO3 channel output state
381 ** DO3 is float in case no load between DO3 and V+.;
382 ** DO3 is high in case there is load between DO3 and V+.
383 ** DO3 LED is off in both case
384 * [1] DO2 channel output is low and DO2 LED is ON.
385 * [0] DO1 channel output state
386 ** DO1 is float in case no load between DO1 and V+.;
387 ** DO1 is high in case there is load between DO1 and V+.
388 ** DO1 LED is off in both case
389
390 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
391
392
393 (((
394 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
395 )))
396
397 (((
398 Total : 11 bytes payload
399
400 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
401 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
402 |Value|COUNT1|COUNT2 |DIDORO*|(((
403 Reserve
404 )))|MOD
405 )))
406
407 (((
408 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
409
410 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
411 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
412 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
413
414 RO is for relay. ROx=1 : close,ROx=0 always open.
415 )))
416
417 * FIRST: Indicate this is the first packet after join network.
418 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
419
420 (((
421 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
422 )))
423
424 (((
425
426
427 **To use counting mode, please run:**
428 )))
429
430 (% class="box infomessage" %)
431 (((
432 (((
433 (((
434 **AT+MOD=2**
435 )))
436
437 (((
438 **ATZ**
439 )))
440 )))
441 )))
442
443 (((
444
445
446 (% style="color:#4f81bd" %)**AT Commands for counting:**
447 )))
448
449 (((
450 **For LT22222-L:**
451
452 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
453
454 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
455
456 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
457
458 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
459
460 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
461
462 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
463 )))
464
465
466 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
467
468
469 **LT22222-L**: This mode the DI1 is used as a counting pin.
470
471 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
472 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
473 |Value|COUNT1|(((
474 ACI1 Current
475 )))|(((
476 ACI2 Current
477 )))|DIDORO*|Reserve|MOD
478
479 (((
480 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
481
482 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
483 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
484 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
485 )))
486
487 * RO is for relay. ROx=1 : close,ROx=0 always open.
488 * FIRST: Indicate this is the first packet after join network.
489 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
490
491 (((
492 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
493 )))
494
495
496 (((
497 **To use counting mode, please run:**
498 )))
499
500 (% class="box infomessage" %)
501 (((
502 (((
503 (((
504 **AT+MOD=3**
505 )))
506
507 (((
508 **ATZ**
509 )))
510 )))
511 )))
512
513 (((
514 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
515 )))
516
517
518 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
519
520
521 (((
522 **LT22222-L**: This mode the DI1 is used as a counting pin.
523 )))
524
525 (((
526 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
527
528 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
529 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
530 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
531 Reserve
532 )))|MOD
533 )))
534
535 (((
536 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
537
538 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
539 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
540 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
541 )))
542
543 * RO is for relay. ROx=1 : close,ROx=0 always open.
544 * FIRST: Indicate this is the first packet after join network.
545 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
546
547 (((
548 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
549 )))
550
551 (((
552
553
554 **To use this mode, please run:**
555 )))
556
557 (% class="box infomessage" %)
558 (((
559 (((
560 (((
561 **AT+MOD=4**
562 )))
563
564 (((
565 **ATZ**
566 )))
567 )))
568 )))
569
570
571 (((
572 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
573 )))
574
575 (((
576 **Plus below command for AVI1 Counting:**
577
578 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
579
580 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
581
582 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
583
584 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
585 )))
586
587
588 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
589
590
591 **LT22222-L**: This mode the DI1 is used as a counting pin.
592
593 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
594 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
595 |Value|(((
596 AVI1 voltage
597 )))|(((
598 AVI2 voltage
599 )))|(((
600 ACI1 Current
601 )))|COUNT1|DIDORO*|(((
602 Reserve
603 )))|MOD
604
605 (((
606 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
607
608 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
609 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
610 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
611 )))
612
613 * RO is for relay. ROx=1 : close,ROx=0 always open.
614 * FIRST: Indicate this is the first packet after join network.
615 * (((
616 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
617 )))
618
619 (((
620 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
621 )))
622
623 (((
624
625
626 **To use this mode, please run:**
627 )))
628
629 (% class="box infomessage" %)
630 (((
631 (((
632 (((
633 **AT+MOD=5**
634 )))
635
636 (((
637 **ATZ**
638 )))
639 )))
640 )))
641
642 (((
643 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
644 )))
645
646
647 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
648
649
650 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
651
652 For example, if user has configured below commands:
653
654 * **AT+MOD=1 ** **~-~->**  The normal working mode
655 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
656
657 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
658
659 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
660 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
661
662 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
663
664
665 (% style="color:#4f81bd" %)**Trigger base on voltage**:
666
667 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
668
669
670 **Example:**
671
672 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
673
674 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
675
676
677
678 (% style="color:#4f81bd" %)**Trigger base on current**:
679
680 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
681
682
683 **Example:**
684
685 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
686
687
688
689 (% style="color:#4f81bd" %)**Trigger base on DI status**:
690
691 DI status trigger Flag.
692
693 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
694
695
696 **Example:**
697
698 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
699
700
701 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
702
703 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
704
705 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
706
707 AA: Code for this downlink Command:
708
709 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
710
711 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
712
713 yy2 yy2: AC1 or AV1 high limit.
714
715 yy3 yy3: AC2 or AV2 low limit.
716
717 Yy4 yy4: AC2 or AV2 high limit.
718
719
720 **Example1**: AA 00 13 88 00 00 00 00 00 00
721
722 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
723
724
725 **Example2**: AA 02 01 00
726
727 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
728
729
730
731 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
732
733 MOD6 Payload : total 11 bytes payload
734
735 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
736 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**1**
737 |Value|(((
738 TRI_A FLAG
739 )))|(((
740 TRI_A Status
741 )))|(((
742 TRI_DI FLAG+STA
743 )))|Reserve|Enable/Disable MOD6|(((
744 MOD(6)
745 )))
746
747 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
748
749 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
750 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
751 |(((
752 AV1_LOW
753 )))|(((
754 AV1_HIGH
755 )))|(((
756 AV2_LOW
757 )))|(((
758 AV2_HIGH
759 )))|(((
760 AC1_LOW
761 )))|(((
762 AC1_HIGH
763 )))|(((
764 AC2_LOW
765 )))|(((
766 AC2_HIGH
767 )))
768
769 * Each bits shows if the corresponding trigger has been configured.
770
771 **Example:**
772
773 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
774
775
776 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
777
778 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
779 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
780 |(((
781 AV1_LOW
782 )))|(((
783 AV1_HIGH
784 )))|(((
785 AV2_LOW
786 )))|(((
787 AV2_HIGH
788 )))|(((
789 AC1_LOW
790 )))|(((
791 AC1_HIGH
792 )))|(((
793 AC2_LOW
794 )))|(((
795 AC2_HIGH
796 )))
797
798 * Each bits shows which status has been trigger on this uplink.
799
800 **Example:**
801
802 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
803
804
805 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
806
807 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
808 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
809 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
810
811 * Each bits shows which status has been trigger on this uplink.
812
813 **Example:**
814
815 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
816
817 00000101: Means both DI1 and DI2 trigger are enabled.
818
819
820 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
821
822 Downlink command to poll MOD6 status:
823
824 **AB 06**
825
826 When device got this command, it will send the MOD6 payload.
827
828
829 === 3.3.7 Payload Decoder ===
830
831 (((
832
833
834 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
835 )))
836
837
838 == 3.4 ​Configure LT via AT or Downlink ==
839
840
841 (((
842 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
843 )))
844
845 (((
846 (((
847 There are two kinds of Commands:
848 )))
849 )))
850
851 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
852
853 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
854
855 === 3.4.1 Common Commands ===
856
857
858 (((
859 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
860 )))
861
862
863 === 3.4.2 Sensor related commands ===
864
865 ==== 3.4.2.1 Set Transmit Interval ====
866
867
868 Set device uplink interval.
869
870 * (% style="color:#037691" %)**AT Command:**
871
872 (% style="color:blue" %)**AT+TDC=N **
873
874
875 **Example: **AT+TDC=30000. Means set interval to 30 seconds
876
877
878 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
879
880 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
881
882
883
884 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
885
886
887 Set work mode.
888
889 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
890
891 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
892
893 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
894
895 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
896
897
898
899 ==== 3.4.2.3 Poll an uplink ====
900
901
902 * (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
903
904 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
905
906 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
907
908 **Example**: 0x08FF, ask device to send an Uplink
909
910
911
912 ==== 3.4.2.4 Enable Trigger Mode ====
913
914
915 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
916
917 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
918
919 (% style="color:red" %)**1:** (%%)Enable Trigger Mode
920
921 (% style="color:red" %)**0: **(%%)Disable Trigger Mode
922
923
924 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
925
926 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
927
928
929
930 ==== 3.4.2.5 Poll trigger settings ====
931
932
933 Poll trigger settings
934
935 * (% style="color:#037691" %)**AT Command:**
936
937 There is no AT Command for this feature.
938
939 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
940
941 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
942
943
944
945 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
946
947
948 Enable Disable DI1/DI2/DI2 as trigger,
949
950 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
951
952 **Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
953
954
955 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
956
957 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
958
959
960
961 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
962
963
964 Set DI1 or DI3(for LT-33222-L) trigger.
965
966 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
967
968 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
969
970 (% style="color:red" %)**b :** (%%)delay timing.
971
972 **Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
973
974
975 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
976
977 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
978
979
980
981 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
982
983
984 Set DI2 trigger.
985
986 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
987
988 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
989
990 (% style="color:red" %)**b :** (%%)delay timing.
991
992 **Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
993
994
995 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
996
997 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
998
999
1000
1001 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
1002
1003
1004 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1005
1006 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
1007
1008 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
1009
1010 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1011
1012
1013
1014 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1015
1016
1017 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1018
1019 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
1020
1021 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
1022
1023 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1024
1025
1026
1027 ==== 3.4.2.11 Trigger – Set minimum interval ====
1028
1029
1030 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
1031
1032 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
1033
1034 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
1035
1036 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
1037
1038 (((
1039 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
1040 )))
1041
1042
1043
1044 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1045
1046
1047 * (% style="color:#037691" %)**AT Command**
1048
1049 There is no AT Command to control Digital Output
1050
1051
1052 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1053
1054 (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1055
1056 (((
1057 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1058 )))
1059
1060 (((
1061 01: Low,  00: High ,  11: No action
1062
1063 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
1064 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO3**
1065 |02  01  00  11|Low|High|No Action
1066 |02  00  11  01|High|No Action|Low
1067 |02  11  01  00|No Action|Low|High
1068 )))
1069
1070 (((
1071 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1072 )))
1073
1074 (((
1075 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1076 )))
1077
1078
1079
1080 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1081
1082
1083 * (% style="color:#037691" %)**AT Command**
1084
1085 There is no AT Command to control Digital Output
1086
1087
1088 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1089
1090 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1091
1092
1093 This is to control the digital output time of DO pin. Include four bytes:
1094
1095 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1096
1097 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1098
1099 01: DO pins will change back to original state after timeout.
1100
1101 00: DO pins will change to an inverter state after timeout 
1102
1103
1104 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1105
1106 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1107 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1108 |0x01|DO1 set to low
1109 |0x00|DO1 set to high
1110 |0x11|DO1 NO Action
1111
1112 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1113
1114 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1115 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1116 |0x01|DO2 set to low
1117 |0x00|DO2 set to high
1118 |0x11|DO2 NO Action
1119
1120 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1121
1122 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1123 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1124 |0x01|DO3 set to low
1125 |0x00|DO3 set to high
1126 |0x11|DO3 NO Action
1127
1128 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1129
1130
1131 (% style="color:red" %)**Note: **
1132
1133 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1134
1135 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1136
1137 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1138
1139
1140 **Example payload:**
1141
1142 **~1. A9 01 01 01 01 07 D0**
1143
1144 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1145
1146 **2. A9 01 00 01 11 07 D0**
1147
1148 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1149
1150 **3. A9 00 00 00 00 07 D0**
1151
1152 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1153
1154 **4. A9 00 11 01 00 07 D0**
1155
1156 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1157
1158
1159
1160 ==== 3.4.2. 14 Relay ~-~- Control Relay Output RO1/RO2 ====
1161
1162
1163 * (% style="color:#037691" %)**AT Command:**
1164
1165 There is no AT Command to control Relay Output
1166
1167
1168 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1169
1170 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1171
1172
1173 (((
1174 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1175 )))
1176
1177 (((
1178 01: Close ,  00: Open , 11: No action
1179
1180 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1181 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO2**
1182 |03  00  11|Open|No Action
1183 |03  01  11|Close|No Action
1184 |03  11  00|No Action|Open
1185 |03  11  01|No Action|Close
1186 |03  00  00|Open|Open
1187 |03  01  01|Close|Close
1188 |03  01  00|Close|Open
1189 |03  00  01|Open|Close
1190 )))
1191
1192 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1193
1194
1195
1196 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1197
1198
1199 * (% style="color:#037691" %)**AT Command:**
1200
1201 There is no AT Command to control Relay Output
1202
1203
1204 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1205
1206 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1207
1208
1209 This is to control the relay output time of relay. Include four bytes:
1210
1211 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1212
1213 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1214
1215 01: Relays will change back to original state after timeout.
1216
1217 00: Relays will change to an inverter state after timeout
1218
1219
1220 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1221
1222 [[image:image-20221008095908-1.png||height="364" width="564"]]
1223
1224
1225 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1226
1227
1228 (% style="color:red" %)**Note:**
1229
1230 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1231
1232 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1233
1234
1235 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1236
1237
1238 **Example payload:**
1239
1240 **~1. 05 01 11 07 D0**
1241
1242 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1243
1244 **2. 05 01 10 07 D0**
1245
1246 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1247
1248 **3. 05 00 01 07 D0**
1249
1250 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1251
1252 **4. 05 00 00 07 D0**
1253
1254 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1255
1256
1257
1258 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1259
1260
1261 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1262
1263 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1264
1265 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1266
1267 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1268
1269
1270
1271 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1272
1273
1274 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1275
1276 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1277
1278 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1279
1280
1281 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1282
1283 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1284
1285
1286
1287 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1288
1289
1290 Clear counting for counting mode
1291
1292 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1293
1294 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1295
1296 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1297
1298
1299
1300 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1301
1302
1303 * (% style="color:#037691" %)**AT Command:**
1304
1305 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1306
1307
1308 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1309
1310 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1311
1312 (((
1313 range: aa bb cc:0 to 16777215,  (unit:second)
1314 )))
1315
1316
1317
1318 ==== 3.4.2.20 Reset save RO DO state ====
1319
1320
1321 * (% style="color:#037691" %)**AT Command:**
1322
1323 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1324
1325 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1326
1327
1328 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1329
1330 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1331
1332
1333
1334 ==== 3.4.2.21 Encrypted payload ====
1335
1336
1337 * (% style="color:#037691" %)**AT Command:**
1338
1339 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1340
1341 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1342
1343
1344
1345 ==== 3.4.2.22 Get sensor value ====
1346
1347
1348 * (% style="color:#037691" %)**AT Command:**
1349
1350 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1351
1352 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1353
1354
1355
1356 ==== 3.4.2.23 Resets the downlink packet count ====
1357
1358
1359 * (% style="color:#037691" %)**AT Command:**
1360
1361 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1362
1363 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1364
1365
1366
1367 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1368
1369
1370 * (% style="color:#037691" %)**AT Command:**
1371
1372 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1373
1374 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1375
1376
1377 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1378
1379 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1380
1381
1382
1383 ==== 3.4.2.25 Copy downlink to uplink ====
1384
1385
1386 * (% style="color:#037691" %)**AT Command**(%%)**:**
1387
1388 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1389
1390 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1391
1392
1393 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1394
1395 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1396
1397
1398
1399 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1400
1401 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1402
1403
1404
1405 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1406
1407
1408 * (((
1409 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1410
1411 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1412
1413
1414 )))
1415
1416 **Example:**
1417
1418 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1419
1420
1421 == 3.5 Integrate with Mydevice ==
1422
1423
1424 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1425
1426 (((
1427 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1428 )))
1429
1430 (((
1431 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1432
1433
1434 )))
1435
1436 [[image:image-20220719105525-1.png||height="377" width="677"]]
1437
1438
1439
1440 [[image:image-20220719110247-2.png||height="388" width="683"]]
1441
1442
1443 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1444
1445 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1446
1447 Search under The things network
1448
1449 [[image:1653356838789-523.png||height="337" width="740"]]
1450
1451
1452
1453 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1454
1455 [[image:image-20220524094909-1.png||height="335" width="729"]]
1456
1457
1458 [[image:image-20220524094909-2.png||height="337" width="729"]]
1459
1460
1461 [[image:image-20220524094909-3.png||height="338" width="727"]]
1462
1463
1464 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1465
1466
1467 [[image:image-20220524094909-5.png||height="341" width="734"]]
1468
1469
1470 == 3.6 Interface Detail ==
1471
1472 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1473
1474
1475 Support NPN Type sensor
1476
1477 [[image:1653356991268-289.png]]
1478
1479
1480 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1481
1482
1483 (((
1484 The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1485 )))
1486
1487 (((
1488 (((
1489 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1490
1491
1492 )))
1493 )))
1494
1495 [[image:1653357170703-587.png]]
1496
1497 (((
1498 (((
1499 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1500 )))
1501 )))
1502
1503 (((
1504
1505 )))
1506
1507 (((
1508 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1509 )))
1510
1511 (((
1512 This type of sensor will output a low signal GND when active.
1513 )))
1514
1515 * (((
1516 Connect sensor's output to DI1-
1517 )))
1518 * (((
1519 Connect sensor's VCC to DI1+.
1520 )))
1521
1522 (((
1523 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1524 )))
1525
1526 (((
1527 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1528 )))
1529
1530 (((
1531 If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1532 )))
1533
1534 (((
1535
1536 )))
1537
1538 (((
1539 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1540 )))
1541
1542 (((
1543 This type of sensor will output a high signal (example 24v) when active.
1544 )))
1545
1546 * (((
1547 Connect sensor's output to DI1+
1548 )))
1549 * (((
1550 Connect sensor's GND DI1-.
1551 )))
1552
1553 (((
1554 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1555 )))
1556
1557 (((
1558 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1559 )))
1560
1561 (((
1562 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1563 )))
1564
1565 (((
1566
1567 )))
1568
1569 (((
1570 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1571 )))
1572
1573 (((
1574 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1575 )))
1576
1577 * (((
1578 Connect sensor's output to DI1+ with a serial 50K resistor
1579 )))
1580 * (((
1581 Connect sensor's GND DI1-.
1582 )))
1583
1584 (((
1585 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1586 )))
1587
1588 (((
1589 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1590 )))
1591
1592 (((
1593 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1594 )))
1595
1596
1597 (% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1598
1599 From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1600
1601 To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1602
1603 [[image:image-20230616235145-1.png]]
1604
1605
1606
1607 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1608
1609
1610 (% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1611
1612 (% style="color:red" %)**Note: DO pins go to float when device is power off.**
1613
1614 [[image:1653357531600-905.png]]
1615
1616
1617 === 3.6.4 Analog Input Interface ===
1618
1619
1620 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1621
1622
1623 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1624
1625 [[image:1653357592296-182.png]]
1626
1627 Example to connect a 4~~20mA sensor
1628
1629 We take the wind speed sensor as an example for reference only.
1630
1631
1632 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1633
1634 (% style="color:red" %)**Red:  12~~24v**
1635
1636 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1637
1638 **Black:  GND**
1639
1640 **Connection diagram:**
1641
1642 [[image:1653357640609-758.png]]
1643
1644 [[image:1653357648330-671.png||height="155" width="733"]]
1645
1646
1647 Example connected to a regulated power supply to measure voltage
1648
1649 [[image:image-20230608101532-1.png||height="606" width="447"]]
1650
1651 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
1652
1653 [[image:image-20230608101722-3.png||height="102" width="1139"]]
1654
1655
1656 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1657
1658 (% style="color:red" %)**Red:  12~~24v**
1659
1660 **Black:  GND**
1661
1662
1663 === 3.6.5 Relay Output ===
1664
1665
1666 (((
1667 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1668
1669 **Note**: RO pins go to Open(NO) when device is power off.
1670 )))
1671
1672 [[image:image-20220524100215-9.png]]
1673
1674
1675 [[image:image-20220524100215-10.png||height="382" width="723"]]
1676
1677
1678 == 3.7 LEDs Indicators ==
1679
1680
1681 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
1682 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**LEDs**|(% style="background-color:#d9e2f3; color:#0070c0; width:470px" %)**Feature**
1683 |**PWR**|Always on if there is power
1684 |**SYS**|(((
1685 After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message.
1686 )))
1687 |**TX**|(((
1688 (((
1689 Device boot: TX blinks 5 times.
1690 )))
1691
1692 (((
1693 Successful join network: TX ON for 5 seconds.
1694 )))
1695
1696 (((
1697 Transmit a LoRa packet: TX blinks once
1698 )))
1699 )))
1700 |**RX**|RX blinks once when receive a packet.
1701 |**DO1**|
1702 |**DO2**|
1703 |**DO3**|
1704 |**DI2**|(((
1705 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1706 )))
1707 |**DI2**|(((
1708 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1709 )))
1710 |**DI2**|(((
1711 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1712 )))
1713 |**RO1**|
1714 |**RO2**|
1715
1716 = 4. Use AT Command =
1717
1718 == 4.1 Access AT Command ==
1719
1720
1721 (((
1722 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1723 )))
1724
1725 (((
1726
1727 )))
1728
1729 [[image:1653358238933-385.png]]
1730
1731
1732 (((
1733 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1734 )))
1735
1736 [[image:1653358355238-883.png]]
1737
1738
1739 (((
1740 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1741 )))
1742
1743 (((
1744 AT+<CMD>?        : Help on <CMD>
1745 )))
1746
1747 (((
1748 AT+<CMD>         : Run <CMD>
1749 )))
1750
1751 (((
1752 AT+<CMD>=<value> : Set the value
1753 )))
1754
1755 (((
1756 AT+<CMD>=?       :  Get the value
1757 )))
1758
1759 (((
1760 ATZ: Trig a reset of the MCU
1761 )))
1762
1763 (((
1764 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1765 )))
1766
1767 (((
1768 AT+DEUI: Get or Set the Device EUI
1769 )))
1770
1771 (((
1772 AT+DADDR: Get or Set the Device Address
1773 )))
1774
1775 (((
1776 AT+APPKEY: Get or Set the Application Key
1777 )))
1778
1779 (((
1780 AT+NWKSKEY: Get or Set the Network Session Key
1781 )))
1782
1783 (((
1784 AT+APPSKEY:  Get or Set the Application Session Key
1785 )))
1786
1787 (((
1788 AT+APPEUI:  Get or Set the Application EUI
1789 )))
1790
1791 (((
1792 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1793 )))
1794
1795 (((
1796 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1797 )))
1798
1799 (((
1800 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1801 )))
1802
1803 (((
1804 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1805 )))
1806
1807 (((
1808 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1809 )))
1810
1811 (((
1812 AT+RX2FQ: Get or Set the Rx2 window frequency
1813 )))
1814
1815 (((
1816 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1817 )))
1818
1819 (((
1820 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1821 )))
1822
1823 (((
1824 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1825 )))
1826
1827 (((
1828 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1829 )))
1830
1831 (((
1832 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1833 )))
1834
1835 (((
1836 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1837 )))
1838
1839 (((
1840 AT+NWKID: Get or Set the Network ID
1841 )))
1842
1843 (((
1844 AT+FCU: Get or Set the Frame Counter Uplink
1845 )))
1846
1847 (((
1848 AT+FCD: Get or Set the Frame Counter Downlink
1849 )))
1850
1851 (((
1852 AT+CLASS: Get or Set the Device Class
1853 )))
1854
1855 (((
1856 AT+JOIN: Join network
1857 )))
1858
1859 (((
1860 AT+NJS: Get OTAA Join Status
1861 )))
1862
1863 (((
1864 AT+SENDB: Send hexadecimal data along with the application port
1865 )))
1866
1867 (((
1868 AT+SEND: Send text data along with the application port
1869 )))
1870
1871 (((
1872 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1873 )))
1874
1875 (((
1876 AT+RECV: Print last received data in raw format
1877 )))
1878
1879 (((
1880 AT+VER:  Get current image version and Frequency Band
1881 )))
1882
1883 (((
1884 AT+CFM: Get or Set the confirmation mode (0-1)
1885 )))
1886
1887 (((
1888 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1889 )))
1890
1891 (((
1892 AT+SNR: Get the SNR of the last received packet
1893 )))
1894
1895 (((
1896 AT+RSSI: Get the RSSI of the last received packet
1897 )))
1898
1899 (((
1900 AT+TDC: Get or set the application data transmission interval in ms
1901 )))
1902
1903 (((
1904 AT+PORT: Get or set the application port
1905 )))
1906
1907 (((
1908 AT+DISAT: Disable AT commands
1909 )))
1910
1911 (((
1912 AT+PWORD: Set password, max 9 digits
1913 )))
1914
1915 (((
1916 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1917 )))
1918
1919 (((
1920 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1921 )))
1922
1923 (((
1924 AT+CFG: Print all settings
1925 )))
1926
1927
1928 == 4.2 Common AT Command Sequence ==
1929
1930 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1931
1932 (((
1933
1934
1935 (((
1936 (% style="color:blue" %)**If device has not joined network yet:**
1937 )))
1938 )))
1939
1940 (((
1941 (% style="background-color:#dcdcdc" %)**123456**
1942 )))
1943
1944 (((
1945 (% style="background-color:#dcdcdc" %)**AT+FDR**
1946 )))
1947
1948 (((
1949 (% style="background-color:#dcdcdc" %)**123456**
1950 )))
1951
1952 (((
1953 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1954 )))
1955
1956 (((
1957 (% style="background-color:#dcdcdc" %)**ATZ**
1958 )))
1959
1960
1961 (((
1962 (% style="color:blue" %)**If device already joined network:**
1963 )))
1964
1965 (((
1966 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1967 )))
1968
1969 (((
1970 (% style="background-color:#dcdcdc" %)**ATZ**
1971 )))
1972
1973
1974 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1975
1976 (((
1977
1978
1979 (((
1980 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1981 )))
1982 )))
1983
1984 (((
1985 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1986 )))
1987
1988 (((
1989 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1990 )))
1991
1992 (((
1993 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1994 )))
1995
1996 (((
1997 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1998 )))
1999
2000 (((
2001 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
2002 )))
2003
2004 (((
2005 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
2006 )))
2007
2008 (((
2009 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
2010 )))
2011
2012 (((
2013 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
2014 )))
2015
2016 (((
2017 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
2018 )))
2019
2020 (((
2021 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
2022 )))
2023
2024 (((
2025 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
2026 )))
2027
2028 (((
2029 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
2030
2031
2032 )))
2033
2034 (((
2035 (% style="color:red" %)**Note:**
2036 )))
2037
2038 (((
2039 **~1. Make sure the device is set to ABP mode in the IoT Server.**
2040
2041 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
2042
2043 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
2044 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2045
2046 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
2047
2048
2049 )))
2050
2051 (((
2052 [[image:1653359097980-169.png||height="188" width="729"]]
2053 )))
2054
2055 (((
2056
2057 )))
2058
2059 === 4.2.3 Change to Class A ===
2060
2061
2062 (((
2063 (% style="color:blue" %)**If sensor JOINED:**
2064
2065 (% style="background-color:#dcdcdc" %)**AT+CLASS=A
2066 ATZ**
2067 )))
2068
2069
2070 = 5. Case Study =
2071
2072 == 5.1 Counting how many objects pass in Flow Line ==
2073
2074
2075 Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
2076
2077
2078 = 6. FAQ =
2079
2080 == 6.1 How to upgrade the image? ==
2081
2082
2083 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2084
2085 * Support new features
2086 * For bug fix
2087 * Change LoRaWAN bands.
2088
2089 Below shows the hardware connection for how to upload an image to the LT:
2090
2091 [[image:1653359603330-121.png]]
2092
2093
2094 (((
2095 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2096 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2097 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2098
2099
2100 (((
2101 (% style="color:blue" %)**For LT-22222-L**(%%):
2102 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2103 )))
2104
2105
2106 )))
2107
2108 [[image:image-20220524103407-12.png]]
2109
2110
2111 [[image:image-20220524103429-13.png]]
2112
2113
2114 [[image:image-20220524104033-15.png]]
2115
2116
2117 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2118
2119
2120 [[image:1653360054704-518.png||height="186" width="745"]]
2121
2122
2123 (((
2124 (((
2125 == 6.2 How to change the LoRa Frequency Bands/Region? ==
2126
2127
2128 )))
2129 )))
2130
2131 (((
2132 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2133 )))
2134
2135 (((
2136
2137
2138 == 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2139
2140
2141 )))
2142
2143 (((
2144 (((
2145 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2146 )))
2147 )))
2148
2149 (((
2150 (((
2151 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2152
2153
2154 )))
2155 )))
2156
2157 (((
2158 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2159
2160
2161 )))
2162
2163 (((
2164 [[image:1653360231087-571.png||height="401" width="727"]]
2165
2166
2167 )))
2168
2169 (((
2170 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2171 )))
2172
2173
2174
2175 (((
2176 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2177
2178
2179 )))
2180
2181 (((
2182 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2183 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2184 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2185 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2186 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2187 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2188 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2189 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2190 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2191 )))
2192
2193
2194 (((
2195 As shown in below:
2196 )))
2197
2198 [[image:1653360498588-932.png||height="485" width="726"]]
2199
2200
2201 == 6.4 How to change the uplink interval? ==
2202
2203
2204 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2205
2206
2207 == 6.5 Can I see counting event in Serial? ==
2208
2209
2210 (((
2211 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2212
2213
2214 == 6.6 Can i use point to point communication for LT-22222-L? ==
2215
2216
2217 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2218
2219
2220 )))
2221
2222 (((
2223 == 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2224
2225
2226 If the device is not shut down, but directly powered off.
2227
2228 It will default that this is a power-off state.
2229
2230 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2231
2232 After restart, the status before power failure will be read from flash.
2233
2234
2235 == 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2236
2237
2238 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2239
2240
2241 [[image:image-20221006170630-1.png||height="610" width="945"]]
2242
2243
2244 == 6.9 Can LT22222-L save RO state? ==
2245
2246
2247 Firmware version needs to be no less than 1.6.0.
2248
2249
2250 = 7. Trouble Shooting =
2251 )))
2252
2253 (((
2254 (((
2255 == 7.1 Downlink doesn't work, how to solve it? ==
2256
2257
2258 )))
2259 )))
2260
2261 (((
2262 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2263 )))
2264
2265 (((
2266
2267
2268 == 7.2 Have trouble to upload image. ==
2269
2270
2271 )))
2272
2273 (((
2274 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2275 )))
2276
2277 (((
2278
2279
2280 == 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2281
2282
2283 )))
2284
2285 (((
2286 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2287 )))
2288
2289
2290 = 8. Order Info =
2291
2292
2293 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2294
2295 (% style="color:#4f81bd" %)**XXX:**
2296
2297 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2298 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2299 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2300 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2301 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2302 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2303 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2304 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2305 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2306
2307 = 9. Packing Info =
2308
2309
2310 **Package Includes**:
2311
2312 * LT-22222-L I/O Controller x 1
2313 * Stick Antenna for LoRa RF part x 1
2314 * Bracket for controller x1
2315 * Program cable x 1
2316
2317 **Dimension and weight**:
2318
2319 * Device Size: 13.5 x 7 x 3 cm
2320 * Device Weight: 105g
2321 * Package Size / pcs : 14.5 x 8 x 5 cm
2322 * Weight / pcs : 170g
2323
2324 = 10. Support =
2325
2326
2327 * (((
2328 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2329 )))
2330 * (((
2331 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2332
2333
2334
2335 )))
2336
2337 = 11. Reference​​​​​ =
2338
2339
2340 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2341 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2342 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
2343
2344
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0