Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18 == 1.1 What is LT Series I/O Controller ==
19
20 (((
21
22
23 (((
24 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 )))
26 )))
27
28 (((
29 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
30 )))
31
32 (((
33 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 )))
35
36 (((
37 The use environment includes:
38 )))
39
40 (((
41 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 )))
43
44 (((
45 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
46
47
48 )))
49
50 (((
51 [[image:1653295757274-912.png]]
52
53
54 )))
55
56 == 1.2  Specifications ==
57
58 (((
59
60
61 (% style="color:#037691" %)**Hardware System:**
62 )))
63
64 * (((
65 STM32L072xxxx MCU
66 )))
67 * (((
68 SX1276/78 Wireless Chip 
69 )))
70 * (((
71 (((
72 Power Consumption:
73 )))
74
75 * (((
76 Idle: 4mA@12v
77 )))
78 * (((
79 20dB Transmit: 34mA@12v
80 )))
81 )))
82
83 (((
84
85
86 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 )))
88
89 * (((
90 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 )))
92 * (((
93 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 )))
95 * (((
96 2 x Relay Output (5A@250VAC / 30VDC)
97 )))
98 * (((
99 2 x 0~~20mA Analog Input (res:0.01mA)
100 )))
101 * (((
102 2 x 0~~30V Analog Input (res:0.01v)
103 )))
104 * (((
105 Power Input 7~~ 24V DC. 
106 )))
107
108 (((
109
110
111 (% style="color:#037691" %)**LoRa Spec:**
112 )))
113
114 * (((
115 (((
116 Frequency Range:
117 )))
118
119 * (((
120 Band 1 (HF): 862 ~~ 1020 Mhz
121 )))
122 * (((
123 Band 2 (LF): 410 ~~ 528 Mhz
124 )))
125 )))
126 * (((
127 168 dB maximum link budget.
128 )))
129 * (((
130 +20 dBm - 100 mW constant RF output vs.
131 )))
132 * (((
133 +14 dBm high efficiency PA.
134 )))
135 * (((
136 Programmable bit rate up to 300 kbps.
137 )))
138 * (((
139 High sensitivity: down to -148 dBm.
140 )))
141 * (((
142 Bullet-proof front end: IIP3 = -12.5 dBm.
143 )))
144 * (((
145 Excellent blocking immunity.
146 )))
147 * (((
148 Low RX current of 10.3 mA, 200 nA register retention.
149 )))
150 * (((
151 Fully integrated synthesizer with a resolution of 61 Hz.
152 )))
153 * (((
154 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 )))
156 * (((
157 Built-in bit synchronizer for clock recovery.
158 )))
159 * (((
160 Preamble detection.
161 )))
162 * (((
163 127 dB Dynamic Range RSSI.
164 )))
165 * (((
166 Automatic RF Sense and CAD with ultra-fast AFC.
167 )))
168 * (((
169 Packet engine up to 256 bytes with CRC.
170
171
172
173 )))
174
175 == 1.3 Features ==
176
177
178 * LoRaWAN Class A & Class C protocol
179
180 * Optional Customized LoRa Protocol
181
182 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
183
184 * AT Commands to change parameters
185
186 * Remote configure parameters via LoRa Downlink
187
188 * Firmware upgradable via program port
189
190 * Counting
191
192
193 == 1.4  Applications ==
194
195
196 * Smart Buildings & Home Automation
197
198 * Logistics and Supply Chain Management
199
200 * Smart Metering
201
202 * Smart Agriculture
203
204 * Smart Cities
205
206 * Smart Factory
207
208
209 == 1.5 Hardware Variants ==
210
211
212 (% border="1" style="background-color:#f2f2f2; width:500px" %)
213 |(% style="background-color:#d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:334px" %)**Description**
214 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
215 (% style="text-align:center" %)
216 [[image:image-20230424115112-1.png||height="106" width="58"]]
217 )))|(% style="width:334px" %)(((
218 * 2 x Digital Input (Bi-direction)
219 * 2 x Digital Output
220 * 2 x Relay Output (5A@250VAC / 30VDC)
221 * 2 x 0~~20mA Analog Input (res:0.01mA)
222 * 2 x 0~~30V Analog Input (res:0.01v)
223 * 1 x Counting Port
224 )))
225
226
227 = 2. Power ON Device =
228
229
230 (((
231 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
232 )))
233
234 (((
235 PWR will on when device is properly powered.
236
237
238 )))
239
240 [[image:1653297104069-180.png]]
241
242
243 = 3. Operation Mode =
244
245 == 3.1 How it works? ==
246
247
248 (((
249 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
250 )))
251
252 (((
253 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
254 )))
255
256
257 == 3.2 Example to join LoRaWAN network ==
258
259
260 (((
261 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
262
263
264 )))
265
266 [[image:image-20220523172350-1.png||height="266" width="864"]]
267
268
269 (((
270 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
271
272
273 )))
274
275 (((
276 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
277 )))
278
279 (((
280 Each LT is shipped with a sticker with the default device EUI as below:
281 )))
282
283 [[image:image-20230425173427-2.png||height="246" width="530"]]
284
285
286 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
287
288 **Add APP EUI in the application.**
289
290 [[image:1653297955910-247.png||height="321" width="716"]]
291
292
293 **Add APP KEY and DEV EUI**
294
295 [[image:1653298023685-319.png]]
296
297
298
299 (((
300 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
301
302
303 )))
304
305 [[image:1653298044601-602.png||height="405" width="709"]]
306
307
308 == 3.3 Uplink Payload ==
309
310
311 There are five working modes + one interrupt mode on LT for different type application:
312
313 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
314
315 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
316
317 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
318
319 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
320
321 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
322
323 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
324
325
326 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
327
328
329 (((
330 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
331
332 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
333 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
334 |Value|(((
335 AVI1 voltage
336 )))|(((
337 AVI2 voltage
338 )))|(((
339 ACI1 Current
340 )))|(((
341 ACI2 Current
342 )))|DIDORO*|(((
343 Reserve
344 )))|MOD
345 )))
346
347 (((
348 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
349
350 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
351 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
352 |RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
353 )))
354
355 * RO is for relay. ROx=1 : close,ROx=0 always open.
356 * DI is for digital input. DIx=1: high or float, DIx=0: low.
357 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
358
359 (% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
360
361 For example if payload is: [[image:image-20220523175847-2.png]]
362
363
364 **The value for the interface is:  **
365
366 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
367
368 AVI2 channel voltage is 0x04AC/1000=1.196V
369
370 ACI1 channel current is 0x1310/1000=4.880mA
371
372 ACI2 channel current is 0x1300/1000=4.864mA
373
374 The last byte 0xAA= 10101010(B) means
375
376 * [1] RO1 relay channel is close and the RO1 LED is ON.
377 * [0] RO2 relay channel is open and RO2 LED is OFF;
378
379 **LT22222-L:**
380
381 * [1] DI2 channel is high input and DI2 LED is ON;
382 * [0] DI1 channel is low input;
383
384 * [0] DO3 channel output state
385 ** DO3 is float in case no load between DO3 and V+.;
386 ** DO3 is high in case there is load between DO3 and V+.
387 ** DO3 LED is off in both case
388 * [1] DO2 channel output is low and DO2 LED is ON.
389 * [0] DO1 channel output state
390 ** DO1 is float in case no load between DO1 and V+.;
391 ** DO1 is high in case there is load between DO1 and V+.
392 ** DO1 LED is off in both case
393
394
395 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
396
397
398 (((
399 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
400 )))
401
402 (((
403 Total : 11 bytes payload
404
405 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
406 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
407 |Value|COUNT1|COUNT2 |DIDORO*|(((
408 Reserve
409 )))|MOD
410 )))
411
412 (((
413 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
414
415 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
416 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
417 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
418
419 RO is for relay. ROx=1 : close,ROx=0 always open.
420 )))
421
422 * FIRST: Indicate this is the first packet after join network.
423 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
424
425 (((
426 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
427 )))
428
429 (((
430
431
432 **To use counting mode, please run:**
433 )))
434
435 (% class="box infomessage" %)
436 (((
437 (((
438 (((
439 **AT+MOD=2**
440 )))
441
442 (((
443 **ATZ**
444 )))
445 )))
446 )))
447
448 (((
449
450
451 (% style="color:#4f81bd" %)**AT Commands for counting:**
452 )))
453
454 (((
455 **For LT22222-L:**
456
457 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
458
459 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
460
461 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
462
463 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
464
465 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
466
467 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
468 )))
469
470
471 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
472
473
474 **LT22222-L**: This mode the DI1 is used as a counting pin.
475
476 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
477 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
478 |Value|COUNT1|(((
479 ACI1 Current
480 )))|(((
481 ACI2 Current
482 )))|DIDORO*|Reserve|MOD
483
484 (((
485 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
486
487 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
488 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
489 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
490 )))
491
492 * RO is for relay. ROx=1 : close,ROx=0 always open.
493 * FIRST: Indicate this is the first packet after join network.
494 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
495
496 (((
497 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
498 )))
499
500
501 (((
502 **To use counting mode, please run:**
503 )))
504
505 (% class="box infomessage" %)
506 (((
507 (((
508 (((
509 **AT+MOD=3**
510 )))
511
512 (((
513 **ATZ**
514 )))
515 )))
516 )))
517
518 (((
519 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
520 )))
521
522
523 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
524
525
526 (((
527 **LT22222-L**: This mode the DI1 is used as a counting pin.
528 )))
529
530 (((
531 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
532
533 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
534 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
535 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
536 Reserve
537 )))|MOD
538 )))
539
540 (((
541 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
542
543 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
544 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
545 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
546 )))
547
548 * RO is for relay. ROx=1 : close,ROx=0 always open.
549 * FIRST: Indicate this is the first packet after join network.
550 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
551
552 (((
553 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
554 )))
555
556 (((
557
558
559 **To use this mode, please run:**
560 )))
561
562 (% class="box infomessage" %)
563 (((
564 (((
565 (((
566 **AT+MOD=4**
567 )))
568
569 (((
570 **ATZ**
571 )))
572 )))
573 )))
574
575
576 (((
577 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
578 )))
579
580 (((
581 **Plus below command for AVI1 Counting:**
582
583 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
584
585 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
586
587 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
588
589 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
590 )))
591
592
593 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
594
595
596 **LT22222-L**: This mode the DI1 is used as a counting pin.
597
598 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
599 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
600 |Value|(((
601 AVI1 voltage
602 )))|(((
603 AVI2 voltage
604 )))|(((
605 ACI1 Current
606 )))|COUNT1|DIDORO*|(((
607 Reserve
608 )))|MOD
609
610 (((
611 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
612
613 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
614 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
615 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
616 )))
617
618 * RO is for relay. ROx=1 : close,ROx=0 always open.
619 * FIRST: Indicate this is the first packet after join network.
620 * (((
621 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
622 )))
623
624 (((
625 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
626 )))
627
628 (((
629
630
631 **To use this mode, please run:**
632 )))
633
634 (% class="box infomessage" %)
635 (((
636 (((
637 (((
638 **AT+MOD=5**
639 )))
640
641 (((
642 **ATZ**
643 )))
644 )))
645 )))
646
647 (((
648 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
649 )))
650
651
652 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
653
654
655 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
656
657 For example, if user has configured below commands:
658
659 * **AT+MOD=1 ** **~-~->**  The normal working mode
660 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
661
662 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
663
664 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
665 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
666
667 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
668
669
670 (% style="color:#4f81bd" %)**Trigger base on voltage**:
671
672 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
673
674
675 **Example:**
676
677 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
678
679 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
680
681
682
683 (% style="color:#4f81bd" %)**Trigger base on current**:
684
685 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
686
687
688 **Example:**
689
690 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
691
692
693
694 (% style="color:#4f81bd" %)**Trigger base on DI status**:
695
696 DI status trigger Flag.
697
698 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
699
700
701 **Example:**
702
703 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
704
705
706 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
707
708 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
709
710 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
711
712 AA: Code for this downlink Command:
713
714 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
715
716 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
717
718 yy2 yy2: AC1 or AV1 high limit.
719
720 yy3 yy3: AC2 or AV2 low limit.
721
722 Yy4 yy4: AC2 or AV2 high limit.
723
724
725 **Example1**: AA 00 13 88 00 00 00 00 00 00
726
727 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
728
729
730 **Example2**: AA 02 01 00
731
732 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
733
734
735
736 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
737
738 MOD6 Payload : total 11 bytes payload
739
740 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
741 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**1**
742 |Value|(((
743 TRI_A FLAG
744 )))|(((
745 TRI_A Status
746 )))|(((
747 TRI_DI FLAG+STA
748 )))|Reserve|Enable/Disable MOD6|(((
749 MOD(6)
750 )))
751
752 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
753
754 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
755 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
756 |(((
757 AV1_LOW
758 )))|(((
759 AV1_HIGH
760 )))|(((
761 AV2_LOW
762 )))|(((
763 AV2_HIGH
764 )))|(((
765 AC1_LOW
766 )))|(((
767 AC1_HIGH
768 )))|(((
769 AC2_LOW
770 )))|(((
771 AC2_HIGH
772 )))
773
774 * Each bits shows if the corresponding trigger has been configured.
775
776 **Example:**
777
778 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
779
780
781 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
782
783 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
784 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
785 |(((
786 AV1_LOW
787 )))|(((
788 AV1_HIGH
789 )))|(((
790 AV2_LOW
791 )))|(((
792 AV2_HIGH
793 )))|(((
794 AC1_LOW
795 )))|(((
796 AC1_HIGH
797 )))|(((
798 AC2_LOW
799 )))|(((
800 AC2_HIGH
801 )))
802
803 * Each bits shows which status has been trigger on this uplink.
804
805 **Example:**
806
807 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
808
809
810 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
811
812 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
813 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
814 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
815
816 * Each bits shows which status has been trigger on this uplink.
817
818 **Example:**
819
820 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
821
822 00000101: Means both DI1 and DI2 trigger are enabled.
823
824
825 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
826
827 Downlink command to poll MOD6 status:
828
829 **AB 06**
830
831 When device got this command, it will send the MOD6 payload.
832
833
834 === 3.3.7 Payload Decoder ===
835
836 (((
837
838
839 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
840 )))
841
842
843 == 3.4 ​Configure LT via AT or Downlink ==
844
845
846 (((
847 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
848 )))
849
850 (((
851 (((
852 There are two kinds of Commands:
853 )))
854 )))
855
856 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
857
858 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
859
860
861 === 3.4.1 Common Commands ===
862
863
864 (((
865 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
866 )))
867
868
869 === 3.4.2 Sensor related commands ===
870
871 ==== 3.4.2.1 Set Transmit Interval ====
872
873
874 Set device uplink interval.
875
876 * (% style="color:#037691" %)**AT Command:**
877
878 (% style="color:blue" %)**AT+TDC=N **
879
880
881 **Example: **AT+TDC=30000. Means set interval to 30 seconds
882
883
884 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
885
886 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
887
888
889
890 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
891
892
893 Set work mode.
894
895 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
896
897 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
898
899 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
900
901 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
902
903
904
905 ==== 3.4.2.3 Poll an uplink ====
906
907
908 * (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
909
910 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
911
912 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
913
914 **Example**: 0x08FF, ask device to send an Uplink
915
916
917
918 ==== 3.4.2.4 Enable Trigger Mode ====
919
920
921 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
922
923 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
924
925 (% style="color:red" %)**1:** (%%)Enable Trigger Mode
926
927 (% style="color:red" %)**0: **(%%)Disable Trigger Mode
928
929
930 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
931
932 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
933
934
935
936 ==== 3.4.2.5 Poll trigger settings ====
937
938
939 Poll trigger settings
940
941 * (% style="color:#037691" %)**AT Command:**
942
943 There is no AT Command for this feature.
944
945 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
946
947 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
948
949
950
951 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
952
953
954 Enable Disable DI1/DI2/DI2 as trigger,
955
956 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
957
958 **Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
959
960
961 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
962
963 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
964
965
966
967 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
968
969
970 Set DI1 or DI3(for LT-33222-L) trigger.
971
972 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
973
974 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
975
976 (% style="color:red" %)**b :** (%%)delay timing.
977
978 **Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
979
980
981 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
982
983 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
984
985
986
987 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
988
989
990 Set DI2 trigger.
991
992 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
993
994 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
995
996 (% style="color:red" %)**b :** (%%)delay timing.
997
998 **Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
999
1000
1001 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
1002
1003 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
1004
1005
1006
1007 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
1008
1009
1010 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1011
1012 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
1013
1014 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
1015
1016 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1017
1018
1019
1020 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1021
1022
1023 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1024
1025 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
1026
1027 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
1028
1029 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1030
1031
1032
1033 ==== 3.4.2.11 Trigger – Set minimum interval ====
1034
1035
1036 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
1037
1038 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
1039
1040 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
1041
1042 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
1043
1044 (((
1045 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
1046 )))
1047
1048
1049
1050 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1051
1052
1053 * (% style="color:#037691" %)**AT Command**
1054
1055 There is no AT Command to control Digital Output
1056
1057
1058 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1059
1060 (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1061
1062 (((
1063 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1064 )))
1065
1066 (((
1067 01: Low,  00: High ,  11: No action
1068
1069 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
1070 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO3**
1071 |02  01  00  11|Low|High|No Action
1072 |02  00  11  01|High|No Action|Low
1073 |02  11  01  00|No Action|Low|High
1074 )))
1075
1076 (((
1077 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1078 )))
1079
1080 (((
1081 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1082 )))
1083
1084
1085
1086 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1087
1088
1089 * (% style="color:#037691" %)**AT Command**
1090
1091 There is no AT Command to control Digital Output
1092
1093
1094 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1095
1096 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1097
1098
1099 This is to control the digital output time of DO pin. Include four bytes:
1100
1101 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1102
1103 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1104
1105 01: DO pins will change back to original state after timeout.
1106
1107 00: DO pins will change to an inverter state after timeout 
1108
1109
1110 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1111
1112 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1113 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1114 |0x01|DO1 set to low
1115 |0x00|DO1 set to high
1116 |0x11|DO1 NO Action
1117
1118 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1119
1120 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1121 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1122 |0x01|DO2 set to low
1123 |0x00|DO2 set to high
1124 |0x11|DO2 NO Action
1125
1126 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1127
1128 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1129 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1130 |0x01|DO3 set to low
1131 |0x00|DO3 set to high
1132 |0x11|DO3 NO Action
1133
1134 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1135
1136
1137 (% style="color:red" %)**Note: **
1138
1139 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1140
1141 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1142
1143 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1144
1145
1146 **Example payload:**
1147
1148 **~1. A9 01 01 01 01 07 D0**
1149
1150 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1151
1152 **2. A9 01 00 01 11 07 D0**
1153
1154 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1155
1156 **3. A9 00 00 00 00 07 D0**
1157
1158 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1159
1160 **4. A9 00 11 01 00 07 D0**
1161
1162 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1163
1164
1165
1166 ==== 3.4.2. 14 Relay ~-~- Control Relay Output RO1/RO2 ====
1167
1168
1169 * (% style="color:#037691" %)**AT Command:**
1170
1171 There is no AT Command to control Relay Output
1172
1173
1174 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1175
1176 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1177
1178
1179 (((
1180 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1181 )))
1182
1183 (((
1184 01: Close ,  00: Open , 11: No action
1185
1186 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1187 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO2**
1188 |03  00  11|Open|No Action
1189 |03  01  11|Close|No Action
1190 |03  11  00|No Action|Open
1191 |03  11  01|No Action|Close
1192 |03  00  00|Open|Open
1193 |03  01  01|Close|Close
1194 |03  01  00|Close|Open
1195 |03  00  01|Open|Close
1196 )))
1197
1198 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1199
1200
1201
1202 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1203
1204
1205 * (% style="color:#037691" %)**AT Command:**
1206
1207 There is no AT Command to control Relay Output
1208
1209
1210 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1211
1212 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1213
1214
1215 This is to control the relay output time of relay. Include four bytes:
1216
1217 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1218
1219 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1220
1221 01: Relays will change back to original state after timeout.
1222
1223 00: Relays will change to an inverter state after timeout
1224
1225
1226 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1227
1228 [[image:image-20221008095908-1.png||height="364" width="564"]]
1229
1230
1231 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1232
1233
1234 (% style="color:red" %)**Note:**
1235
1236 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1237
1238 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1239
1240
1241 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1242
1243
1244 **Example payload:**
1245
1246 **~1. 05 01 11 07 D0**
1247
1248 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1249
1250 **2. 05 01 10 07 D0**
1251
1252 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1253
1254 **3. 05 00 01 07 D0**
1255
1256 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1257
1258 **4. 05 00 00 07 D0**
1259
1260 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1261
1262
1263
1264 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1265
1266
1267 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1268
1269 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1270
1271 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1272
1273 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1274
1275
1276
1277 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1278
1279
1280 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1281
1282 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1283
1284 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1285
1286
1287 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1288
1289 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1290
1291
1292
1293 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1294
1295
1296 Clear counting for counting mode
1297
1298 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1299
1300 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1301
1302 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1303
1304
1305
1306 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1307
1308
1309 * (% style="color:#037691" %)**AT Command:**
1310
1311 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1312
1313
1314 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1315
1316 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1317
1318 (((
1319 range: aa bb cc:0 to 16777215,  (unit:second)
1320 )))
1321
1322
1323
1324 ==== 3.4.2.20 Reset save RO DO state ====
1325
1326
1327 * (% style="color:#037691" %)**AT Command:**
1328
1329 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1330
1331 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1332
1333
1334 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1335
1336 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1337
1338
1339
1340 ==== 3.4.2.21 Encrypted payload ====
1341
1342
1343 * (% style="color:#037691" %)**AT Command:**
1344
1345 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1346
1347 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1348
1349
1350
1351 ==== 3.4.2.22 Get sensor value ====
1352
1353
1354 * (% style="color:#037691" %)**AT Command:**
1355
1356 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1357
1358 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1359
1360
1361
1362 ==== 3.4.2.23 Resets the downlink packet count ====
1363
1364
1365 * (% style="color:#037691" %)**AT Command:**
1366
1367 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1368
1369 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1370
1371
1372
1373 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1374
1375
1376 * (% style="color:#037691" %)**AT Command:**
1377
1378 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1379
1380 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1381
1382
1383 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1384
1385 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1386
1387
1388
1389 ==== 3.4.2.25 Copy downlink to uplink ====
1390
1391
1392 * (% style="color:#037691" %)**AT Command**(%%)**:**
1393
1394 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1395
1396 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1397
1398
1399 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1400
1401 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1402
1403
1404
1405 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1406
1407 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1408
1409
1410
1411 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1412
1413
1414 * (((
1415 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1416
1417 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1418
1419
1420 )))
1421
1422 **Example:**
1423
1424 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1425
1426
1427 == 3.5 Integrate with Mydevice ==
1428
1429
1430 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1431
1432 (((
1433 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1434 )))
1435
1436 (((
1437 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1438
1439
1440 )))
1441
1442 [[image:image-20220719105525-1.png||height="377" width="677"]]
1443
1444
1445
1446 [[image:image-20220719110247-2.png||height="388" width="683"]]
1447
1448
1449 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1450
1451 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1452
1453 Search under The things network
1454
1455 [[image:1653356838789-523.png||height="337" width="740"]]
1456
1457
1458
1459 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1460
1461 [[image:image-20220524094909-1.png||height="335" width="729"]]
1462
1463
1464 [[image:image-20220524094909-2.png||height="337" width="729"]]
1465
1466
1467 [[image:image-20220524094909-3.png||height="338" width="727"]]
1468
1469
1470 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1471
1472
1473 [[image:image-20220524094909-5.png||height="341" width="734"]]
1474
1475
1476 == 3.6 Interface Detail ==
1477
1478 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1479
1480
1481 Support NPN Type sensor
1482
1483 [[image:1653356991268-289.png]]
1484
1485
1486 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1487
1488
1489 (((
1490 The DI port of LT-22222-L can support NPN or PNP output sensor.
1491 )))
1492
1493 (((
1494 (((
1495 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1496
1497
1498 )))
1499 )))
1500
1501 [[image:1653357170703-587.png]]
1502
1503 (((
1504 (((
1505 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1506 )))
1507 )))
1508
1509 (((
1510
1511 )))
1512
1513 (((
1514 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1515 )))
1516
1517 (((
1518 This type of sensor will output a low signal GND when active.
1519 )))
1520
1521 * (((
1522 Connect sensor's output to DI1-
1523 )))
1524 * (((
1525 Connect sensor's VCC to DI1+.
1526 )))
1527
1528 (((
1529 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1530 )))
1531
1532 (((
1533 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1534 )))
1535
1536 (((
1537 If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1538 )))
1539
1540 (((
1541
1542 )))
1543
1544 (((
1545 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1546 )))
1547
1548 (((
1549 This type of sensor will output a high signal (example 24v) when active.
1550 )))
1551
1552 * (((
1553 Connect sensor's output to DI1+
1554 )))
1555 * (((
1556 Connect sensor's GND DI1-.
1557 )))
1558
1559 (((
1560 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1561 )))
1562
1563 (((
1564 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1565 )))
1566
1567 (((
1568 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1569 )))
1570
1571 (((
1572
1573 )))
1574
1575 (((
1576 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1577 )))
1578
1579 (((
1580 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1581 )))
1582
1583 * (((
1584 Connect sensor's output to DI1+ with a serial 50K resistor
1585 )))
1586 * (((
1587 Connect sensor's GND DI1-.
1588 )))
1589
1590 (((
1591 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1592 )))
1593
1594 (((
1595 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1596 )))
1597
1598 (((
1599 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1600 )))
1601
1602
1603 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1604
1605
1606 (% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1607
1608 (% style="color:red" %)**Note: DO pins go to float when device is power off.**
1609
1610 [[image:1653357531600-905.png]]
1611
1612
1613 === 3.6.4 Analog Input Interface ===
1614
1615
1616 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1617
1618
1619 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1620
1621 [[image:1653357592296-182.png]]
1622
1623 Example to connect a 4~~20mA sensor
1624
1625 We take the wind speed sensor as an example for reference only.
1626
1627
1628 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1629
1630 (% style="color:red" %)**Red:  12~~24v**
1631
1632 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1633
1634 **Black:  GND**
1635
1636 **Connection diagram:**
1637
1638 [[image:1653357640609-758.png]]
1639
1640 [[image:1653357648330-671.png||height="155" width="733"]]
1641
1642
1643 Example connected to a regulated power supply to measure voltage
1644
1645 [[image:image-20230608101532-1.png||height="606" width="447"]]
1646
1647 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
1648
1649 [[image:image-20230608101722-3.png||height="102" width="1139"]]
1650
1651
1652 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1653
1654 (% style="color:red" %)**Red:  12~~24v**
1655
1656 **Black:  GND**
1657
1658
1659 === 3.6.5 Relay Output ===
1660
1661
1662 (((
1663 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1664
1665 **Note**: RO pins go to Open(NO) when device is power off.
1666 )))
1667
1668 [[image:image-20220524100215-9.png]]
1669
1670
1671 [[image:image-20220524100215-10.png||height="382" width="723"]]
1672
1673
1674 == 3.7 LEDs Indicators ==
1675
1676
1677 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
1678 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**LEDs**|(% style="background-color:#d9e2f3; color:#0070c0; width:470px" %)**Feature**
1679 |**PWR**|Always on if there is power
1680 |**SYS**|(((
1681 After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message.
1682 )))
1683 |**TX**|(((
1684 (((
1685 Device boot: TX blinks 5 times.
1686 )))
1687
1688 (((
1689 Successful join network: TX ON for 5 seconds.
1690 )))
1691
1692 (((
1693 Transmit a LoRa packet: TX blinks once
1694 )))
1695 )))
1696 |**RX**|RX blinks once when receive a packet.
1697 |**DO1**|
1698 |**DO2**|
1699 |**DO3**|
1700 |**DI2**|(((
1701 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1702 )))
1703 |**DI2**|(((
1704 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1705 )))
1706 |**DI2**|(((
1707 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1708 )))
1709 |**RO1**|
1710 |**RO2**|
1711
1712
1713 = 4. Use AT Command =
1714
1715 == 4.1 Access AT Command ==
1716
1717
1718 (((
1719 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1720 )))
1721
1722 (((
1723
1724 )))
1725
1726 [[image:1653358238933-385.png]]
1727
1728
1729 (((
1730 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1731 )))
1732
1733 [[image:1653358355238-883.png]]
1734
1735
1736 (((
1737 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1738 )))
1739
1740 (((
1741 AT+<CMD>?        : Help on <CMD>
1742 )))
1743
1744 (((
1745 AT+<CMD>         : Run <CMD>
1746 )))
1747
1748 (((
1749 AT+<CMD>=<value> : Set the value
1750 )))
1751
1752 (((
1753 AT+<CMD>=?       :  Get the value
1754 )))
1755
1756 (((
1757 ATZ: Trig a reset of the MCU
1758 )))
1759
1760 (((
1761 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1762 )))
1763
1764 (((
1765 AT+DEUI: Get or Set the Device EUI
1766 )))
1767
1768 (((
1769 AT+DADDR: Get or Set the Device Address
1770 )))
1771
1772 (((
1773 AT+APPKEY: Get or Set the Application Key
1774 )))
1775
1776 (((
1777 AT+NWKSKEY: Get or Set the Network Session Key
1778 )))
1779
1780 (((
1781 AT+APPSKEY:  Get or Set the Application Session Key
1782 )))
1783
1784 (((
1785 AT+APPEUI:  Get or Set the Application EUI
1786 )))
1787
1788 (((
1789 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1790 )))
1791
1792 (((
1793 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1794 )))
1795
1796 (((
1797 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1798 )))
1799
1800 (((
1801 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1802 )))
1803
1804 (((
1805 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1806 )))
1807
1808 (((
1809 AT+RX2FQ: Get or Set the Rx2 window frequency
1810 )))
1811
1812 (((
1813 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1814 )))
1815
1816 (((
1817 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1818 )))
1819
1820 (((
1821 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1822 )))
1823
1824 (((
1825 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1826 )))
1827
1828 (((
1829 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1830 )))
1831
1832 (((
1833 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1834 )))
1835
1836 (((
1837 AT+NWKID: Get or Set the Network ID
1838 )))
1839
1840 (((
1841 AT+FCU: Get or Set the Frame Counter Uplink
1842 )))
1843
1844 (((
1845 AT+FCD: Get or Set the Frame Counter Downlink
1846 )))
1847
1848 (((
1849 AT+CLASS: Get or Set the Device Class
1850 )))
1851
1852 (((
1853 AT+JOIN: Join network
1854 )))
1855
1856 (((
1857 AT+NJS: Get OTAA Join Status
1858 )))
1859
1860 (((
1861 AT+SENDB: Send hexadecimal data along with the application port
1862 )))
1863
1864 (((
1865 AT+SEND: Send text data along with the application port
1866 )))
1867
1868 (((
1869 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1870 )))
1871
1872 (((
1873 AT+RECV: Print last received data in raw format
1874 )))
1875
1876 (((
1877 AT+VER:  Get current image version and Frequency Band
1878 )))
1879
1880 (((
1881 AT+CFM: Get or Set the confirmation mode (0-1)
1882 )))
1883
1884 (((
1885 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1886 )))
1887
1888 (((
1889 AT+SNR: Get the SNR of the last received packet
1890 )))
1891
1892 (((
1893 AT+RSSI: Get the RSSI of the last received packet
1894 )))
1895
1896 (((
1897 AT+TDC: Get or set the application data transmission interval in ms
1898 )))
1899
1900 (((
1901 AT+PORT: Get or set the application port
1902 )))
1903
1904 (((
1905 AT+DISAT: Disable AT commands
1906 )))
1907
1908 (((
1909 AT+PWORD: Set password, max 9 digits
1910 )))
1911
1912 (((
1913 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1914 )))
1915
1916 (((
1917 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1918 )))
1919
1920 (((
1921 AT+CFG: Print all settings
1922 )))
1923
1924
1925 == 4.2 Common AT Command Sequence ==
1926
1927 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1928
1929 (((
1930
1931
1932 (((
1933 (% style="color:blue" %)**If device has not joined network yet:**
1934 )))
1935 )))
1936
1937 (((
1938 (% style="background-color:#dcdcdc" %)**123456**
1939 )))
1940
1941 (((
1942 (% style="background-color:#dcdcdc" %)**AT+FDR**
1943 )))
1944
1945 (((
1946 (% style="background-color:#dcdcdc" %)**123456**
1947 )))
1948
1949 (((
1950 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1951 )))
1952
1953 (((
1954 (% style="background-color:#dcdcdc" %)**ATZ**
1955 )))
1956
1957
1958 (((
1959 (% style="color:blue" %)**If device already joined network:**
1960 )))
1961
1962 (((
1963 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1964 )))
1965
1966 (((
1967 (% style="background-color:#dcdcdc" %)**ATZ**
1968 )))
1969
1970
1971 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1972
1973 (((
1974
1975
1976 (((
1977 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1978 )))
1979 )))
1980
1981 (((
1982 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1983 )))
1984
1985 (((
1986 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1987 )))
1988
1989 (((
1990 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1991 )))
1992
1993 (((
1994 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1995 )))
1996
1997 (((
1998 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
1999 )))
2000
2001 (((
2002 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
2003 )))
2004
2005 (((
2006 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
2007 )))
2008
2009 (((
2010 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
2011 )))
2012
2013 (((
2014 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
2015 )))
2016
2017 (((
2018 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
2019 )))
2020
2021 (((
2022 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
2023 )))
2024
2025 (((
2026 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
2027
2028
2029 )))
2030
2031 (((
2032 (% style="color:red" %)**Note:**
2033 )))
2034
2035 (((
2036 **~1. Make sure the device is set to ABP mode in the IoT Server.**
2037
2038 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
2039
2040 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
2041 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2042
2043 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
2044
2045
2046 )))
2047
2048 (((
2049 [[image:1653359097980-169.png||height="188" width="729"]]
2050 )))
2051
2052 (((
2053
2054 )))
2055
2056 === 4.2.3 Change to Class A ===
2057
2058
2059 (((
2060 (% style="color:blue" %)**If sensor JOINED:**
2061
2062 (% style="background-color:#dcdcdc" %)**AT+CLASS=A
2063 ATZ**
2064 )))
2065
2066
2067 = 5. Case Study =
2068
2069 == 5.1 Counting how many objects pass in Flow Line ==
2070
2071
2072 Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
2073
2074
2075 = 6. FAQ =
2076
2077 == 6.1 How to upgrade the image? ==
2078
2079
2080 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2081
2082 * Support new features
2083 * For bug fix
2084 * Change LoRaWAN bands.
2085
2086 Below shows the hardware connection for how to upload an image to the LT:
2087
2088 [[image:1653359603330-121.png]]
2089
2090
2091 (((
2092 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2093 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2094 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2095
2096
2097 (((
2098 (% style="color:blue" %)**For LT-22222-L**(%%):
2099 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2100 )))
2101
2102
2103 )))
2104
2105 [[image:image-20220524103407-12.png]]
2106
2107
2108 [[image:image-20220524103429-13.png]]
2109
2110
2111 [[image:image-20220524104033-15.png]]
2112
2113
2114 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2115
2116
2117 [[image:1653360054704-518.png||height="186" width="745"]]
2118
2119
2120 (((
2121 (((
2122 == 6.2 How to change the LoRa Frequency Bands/Region? ==
2123
2124
2125 )))
2126 )))
2127
2128 (((
2129 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2130 )))
2131
2132 (((
2133
2134
2135 == 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2136
2137
2138 )))
2139
2140 (((
2141 (((
2142 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2143 )))
2144 )))
2145
2146 (((
2147 (((
2148 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2149
2150
2151 )))
2152 )))
2153
2154 (((
2155 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2156
2157
2158 )))
2159
2160 (((
2161 [[image:1653360231087-571.png||height="401" width="727"]]
2162
2163
2164 )))
2165
2166 (((
2167 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2168 )))
2169
2170
2171
2172 (((
2173 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2174
2175
2176 )))
2177
2178 (((
2179 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2180 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2181 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2182 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2183 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2184 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2185 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2186 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2187 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2188 )))
2189
2190
2191 (((
2192 As shown in below:
2193 )))
2194
2195 [[image:1653360498588-932.png||height="485" width="726"]]
2196
2197
2198 == 6.4 How to change the uplink interval? ==
2199
2200
2201 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2202
2203
2204 == 6.5 Can I see counting event in Serial? ==
2205
2206
2207 (((
2208 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2209
2210
2211 == 6.6 Can i use point to point communication for LT-22222-L? ==
2212
2213
2214 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2215
2216
2217 )))
2218
2219 (((
2220 == 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2221
2222
2223 If the device is not shut down, but directly powered off.
2224
2225 It will default that this is a power-off state.
2226
2227 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2228
2229 After restart, the status before power failure will be read from flash.
2230
2231
2232 == 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2233
2234
2235 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2236
2237
2238 [[image:image-20221006170630-1.png||height="610" width="945"]]
2239
2240
2241 == 6.9 Can LT22222-L save RO state? ==
2242
2243
2244 Firmware version needs to be no less than 1.6.0.
2245
2246
2247 = 7. Trouble Shooting =
2248 )))
2249
2250 (((
2251 (((
2252 == 7.1 Downlink doesn't work, how to solve it? ==
2253
2254
2255 )))
2256 )))
2257
2258 (((
2259 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2260 )))
2261
2262 (((
2263
2264
2265 == 7.2 Have trouble to upload image. ==
2266
2267
2268 )))
2269
2270 (((
2271 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2272 )))
2273
2274 (((
2275
2276
2277 == 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2278
2279
2280 )))
2281
2282 (((
2283 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2284 )))
2285
2286
2287 = 8. Order Info =
2288
2289
2290 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2291
2292 (% style="color:#4f81bd" %)**XXX:**
2293
2294 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2295 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2296 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2297 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2298 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2299 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2300 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2301 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2302 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2303
2304
2305 = 9. Packing Info =
2306
2307
2308 **Package Includes**:
2309
2310 * LT-22222-L I/O Controller x 1
2311 * Stick Antenna for LoRa RF part x 1
2312 * Bracket for controller x1
2313 * Program cable x 1
2314
2315 **Dimension and weight**:
2316
2317 * Device Size: 13.5 x 7 x 3 cm
2318 * Device Weight: 105g
2319 * Package Size / pcs : 14.5 x 8 x 5 cm
2320 * Weight / pcs : 170g
2321
2322
2323 = 10. Support =
2324
2325
2326 * (((
2327 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2328 )))
2329 * (((
2330 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2331
2332
2333
2334 )))
2335
2336 = 11. Reference​​​​​ =
2337
2338
2339 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2340 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2341 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
2342
2343
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0