Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18 == 1.1 What is LT Series I/O Controller ==
19
20 (((
21
22
23 (((
24 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 )))
26 )))
27
28 (((
29 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
30 )))
31
32 (((
33 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 )))
35
36 (((
37 The use environment includes:
38 )))
39
40 (((
41 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 )))
43
44 (((
45 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
46
47
48 )))
49
50 (((
51 [[image:1653295757274-912.png]]
52
53
54 )))
55
56 == 1.2  Specifications ==
57
58 (((
59
60
61 (% style="color:#037691" %)**Hardware System:**
62 )))
63
64 * (((
65 STM32L072xxxx MCU
66 )))
67 * (((
68 SX1276/78 Wireless Chip 
69 )))
70 * (((
71 (((
72 Power Consumption:
73 )))
74
75 * (((
76 Idle: 4mA@12v
77 )))
78 * (((
79 20dB Transmit: 34mA@12v
80 )))
81 )))
82
83 (((
84
85
86 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 )))
88
89 * (((
90 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 )))
92 * (((
93 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 )))
95 * (((
96 2 x Relay Output (5A@250VAC / 30VDC)
97 )))
98 * (((
99 2 x 0~~20mA Analog Input (res:0.01mA)
100 )))
101 * (((
102 2 x 0~~30V Analog Input (res:0.01v)
103 )))
104 * (((
105 Power Input 7~~ 24V DC. 
106 )))
107
108 (((
109
110
111 (% style="color:#037691" %)**LoRa Spec:**
112 )))
113
114 * (((
115 (((
116 Frequency Range:
117 )))
118
119 * (((
120 Band 1 (HF): 862 ~~ 1020 Mhz
121 )))
122 * (((
123 Band 2 (LF): 410 ~~ 528 Mhz
124 )))
125 )))
126 * (((
127 168 dB maximum link budget.
128 )))
129 * (((
130 +20 dBm - 100 mW constant RF output vs.
131 )))
132 * (((
133 +14 dBm high efficiency PA.
134 )))
135 * (((
136 Programmable bit rate up to 300 kbps.
137 )))
138 * (((
139 High sensitivity: down to -148 dBm.
140 )))
141 * (((
142 Bullet-proof front end: IIP3 = -12.5 dBm.
143 )))
144 * (((
145 Excellent blocking immunity.
146 )))
147 * (((
148 Low RX current of 10.3 mA, 200 nA register retention.
149 )))
150 * (((
151 Fully integrated synthesizer with a resolution of 61 Hz.
152 )))
153 * (((
154 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 )))
156 * (((
157 Built-in bit synchronizer for clock recovery.
158 )))
159 * (((
160 Preamble detection.
161 )))
162 * (((
163 127 dB Dynamic Range RSSI.
164 )))
165 * (((
166 Automatic RF Sense and CAD with ultra-fast AFC.
167 )))
168 * (((
169 Packet engine up to 256 bytes with CRC.
170
171
172
173 )))
174
175 == 1.3 Features ==
176
177
178 * LoRaWAN Class A & Class C protocol
179
180 * Optional Customized LoRa Protocol
181
182 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
183
184 * AT Commands to change parameters
185
186 * Remote configure parameters via LoRa Downlink
187
188 * Firmware upgradable via program port
189
190 * Counting
191
192
193
194 == 1.4  Applications ==
195
196
197 * Smart Buildings & Home Automation
198
199 * Logistics and Supply Chain Management
200
201 * Smart Metering
202
203 * Smart Agriculture
204
205 * Smart Cities
206
207 * Smart Factory
208
209
210
211 == 1.5 Hardware Variants ==
212
213
214 (% border="1" style="background-color:#f2f2f2; width:500px" %)
215 |(% style="background-color:#d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:334px" %)**Description**
216 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
217 (% style="text-align:center" %)
218 [[image:image-20230424115112-1.png||height="106" width="58"]]
219 )))|(% style="width:334px" %)(((
220 * 2 x Digital Input (Bi-direction)
221 * 2 x Digital Output
222 * 2 x Relay Output (5A@250VAC / 30VDC)
223 * 2 x 0~~20mA Analog Input (res:0.01mA)
224 * 2 x 0~~30V Analog Input (res:0.01v)
225 * 1 x Counting Port
226 )))
227
228
229
230 = 2. Power ON Device =
231
232
233 (((
234 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
235 )))
236
237 (((
238 PWR will on when device is properly powered.
239
240
241 )))
242
243 [[image:1653297104069-180.png]]
244
245
246 = 3. Operation Mode =
247
248 == 3.1 How it works? ==
249
250
251 (((
252 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
253 )))
254
255 (((
256 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
257 )))
258
259
260 == 3.2 Example to join LoRaWAN network ==
261
262
263 (((
264 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
265
266
267 )))
268
269 [[image:image-20220523172350-1.png||height="266" width="864"]]
270
271
272 (((
273 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
274
275
276 )))
277
278 (((
279 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
280 )))
281
282 (((
283 Each LT is shipped with a sticker with the default device EUI as below:
284 )))
285
286 [[image:image-20230425173427-2.png||height="246" width="530"]]
287
288
289 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
290
291 **Add APP EUI in the application.**
292
293 [[image:1653297955910-247.png||height="321" width="716"]]
294
295
296 **Add APP KEY and DEV EUI**
297
298 [[image:1653298023685-319.png]]
299
300
301
302 (((
303 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
304
305
306 )))
307
308 [[image:1653298044601-602.png||height="405" width="709"]]
309
310
311 == 3.3 Uplink Payload ==
312
313
314 There are five working modes + one interrupt mode on LT for different type application:
315
316 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
317
318 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
319
320 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
321
322 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
323
324 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
325
326 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
327
328
329
330 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
331
332
333 (((
334 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
335
336 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
337 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
338 |Value|(((
339 AVI1 voltage
340 )))|(((
341 AVI2 voltage
342 )))|(((
343 ACI1 Current
344 )))|(((
345 ACI2 Current
346 )))|DIDORO*|(((
347 Reserve
348 )))|MOD
349 )))
350
351 (((
352 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
353
354 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
355 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
356 |RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
357 )))
358
359 * RO is for relay. ROx=1 : close,ROx=0 always open.
360 * DI is for digital input. DIx=1: high or float, DIx=0: low.
361 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
362
363 (% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
364
365 For example if payload is: [[image:image-20220523175847-2.png]]
366
367
368 **The value for the interface is:  **
369
370 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
371
372 AVI2 channel voltage is 0x04AC/1000=1.196V
373
374 ACI1 channel current is 0x1310/1000=4.880mA
375
376 ACI2 channel current is 0x1300/1000=4.864mA
377
378 The last byte 0xAA= 10101010(B) means
379
380 * [1] RO1 relay channel is close and the RO1 LED is ON.
381 * [0] RO2 relay channel is open and RO2 LED is OFF;
382
383 **LT22222-L:**
384
385 * [1] DI2 channel is high input and DI2 LED is ON;
386 * [0] DI1 channel is low input;
387
388 * [0] DO3 channel output state
389 ** DO3 is float in case no load between DO3 and V+.;
390 ** DO3 is high in case there is load between DO3 and V+.
391 ** DO3 LED is off in both case
392 * [1] DO2 channel output is low and DO2 LED is ON.
393 * [0] DO1 channel output state
394 ** DO1 is float in case no load between DO1 and V+.;
395 ** DO1 is high in case there is load between DO1 and V+.
396 ** DO1 LED is off in both case
397
398
399
400 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
401
402
403 (((
404 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
405 )))
406
407 (((
408 Total : 11 bytes payload
409
410 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
411 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
412 |Value|COUNT1|COUNT2 |DIDORO*|(((
413 Reserve
414 )))|MOD
415 )))
416
417 (((
418 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
419
420 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
421 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
422 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
423
424 RO is for relay. ROx=1 : close,ROx=0 always open.
425 )))
426
427 * FIRST: Indicate this is the first packet after join network.
428 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
429
430 (((
431 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
432 )))
433
434 (((
435
436
437 **To use counting mode, please run:**
438 )))
439
440 (% class="box infomessage" %)
441 (((
442 (((
443 (((
444 **AT+MOD=2**
445 )))
446
447 (((
448 **ATZ**
449 )))
450 )))
451 )))
452
453 (((
454
455
456 (% style="color:#4f81bd" %)**AT Commands for counting:**
457 )))
458
459 (((
460 **For LT22222-L:**
461
462 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
463
464 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
465
466 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
467
468 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
469
470 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
471
472 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
473 )))
474
475
476 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
477
478
479 **LT22222-L**: This mode the DI1 is used as a counting pin.
480
481 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
482 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
483 |Value|COUNT1|(((
484 ACI1 Current
485 )))|(((
486 ACI2 Current
487 )))|DIDORO*|Reserve|MOD
488
489 (((
490 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
491
492 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
493 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
494 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
495 )))
496
497 * RO is for relay. ROx=1 : close,ROx=0 always open.
498 * FIRST: Indicate this is the first packet after join network.
499 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
500
501 (((
502 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
503 )))
504
505
506 (((
507 **To use counting mode, please run:**
508 )))
509
510 (% class="box infomessage" %)
511 (((
512 (((
513 (((
514 **AT+MOD=3**
515 )))
516
517 (((
518 **ATZ**
519 )))
520 )))
521 )))
522
523 (((
524 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
525 )))
526
527
528 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
529
530
531 (((
532 **LT22222-L**: This mode the DI1 is used as a counting pin.
533 )))
534
535 (((
536 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
537
538 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
539 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
540 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
541 Reserve
542 )))|MOD
543 )))
544
545 (((
546 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
547
548 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
549 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
550 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
551 )))
552
553 * RO is for relay. ROx=1 : close,ROx=0 always open.
554 * FIRST: Indicate this is the first packet after join network.
555 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
556
557 (((
558 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
559 )))
560
561 (((
562
563
564 **To use this mode, please run:**
565 )))
566
567 (% class="box infomessage" %)
568 (((
569 (((
570 (((
571 **AT+MOD=4**
572 )))
573
574 (((
575 **ATZ**
576 )))
577 )))
578 )))
579
580
581 (((
582 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
583 )))
584
585 (((
586 **Plus below command for AVI1 Counting:**
587
588 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
589
590 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
591
592 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
593
594 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
595 )))
596
597
598 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
599
600
601 **LT22222-L**: This mode the DI1 is used as a counting pin.
602
603 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
604 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
605 |Value|(((
606 AVI1 voltage
607 )))|(((
608 AVI2 voltage
609 )))|(((
610 ACI1 Current
611 )))|COUNT1|DIDORO*|(((
612 Reserve
613 )))|MOD
614
615 (((
616 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
617
618 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
619 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
620 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
621 )))
622
623 * RO is for relay. ROx=1 : close,ROx=0 always open.
624 * FIRST: Indicate this is the first packet after join network.
625 * (((
626 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
627 )))
628
629 (((
630 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
631 )))
632
633 (((
634
635
636 **To use this mode, please run:**
637 )))
638
639 (% class="box infomessage" %)
640 (((
641 (((
642 (((
643 **AT+MOD=5**
644 )))
645
646 (((
647 **ATZ**
648 )))
649 )))
650 )))
651
652 (((
653 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
654 )))
655
656
657 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
658
659
660 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
661
662 For example, if user has configured below commands:
663
664 * **AT+MOD=1 ** **~-~->**  The normal working mode
665 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
666
667 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
668
669 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
670 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
671
672 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
673
674
675 (% style="color:#4f81bd" %)**Trigger base on voltage**:
676
677 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
678
679
680 **Example:**
681
682 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
683
684 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
685
686
687
688 (% style="color:#4f81bd" %)**Trigger base on current**:
689
690 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
691
692
693 **Example:**
694
695 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
696
697
698
699 (% style="color:#4f81bd" %)**Trigger base on DI status**:
700
701 DI status trigger Flag.
702
703 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
704
705
706 **Example:**
707
708 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
709
710
711 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
712
713 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
714
715 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
716
717 AA: Code for this downlink Command:
718
719 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
720
721 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
722
723 yy2 yy2: AC1 or AV1 high limit.
724
725 yy3 yy3: AC2 or AV2 low limit.
726
727 Yy4 yy4: AC2 or AV2 high limit.
728
729
730 **Example1**: AA 00 13 88 00 00 00 00 00 00
731
732 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
733
734
735 **Example2**: AA 02 01 00
736
737 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
738
739
740
741 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
742
743 MOD6 Payload : total 11 bytes payload
744
745 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
746 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**1**
747 |Value|(((
748 TRI_A FLAG
749 )))|(((
750 TRI_A Status
751 )))|(((
752 TRI_DI FLAG+STA
753 )))|Reserve|Enable/Disable MOD6|(((
754 MOD(6)
755 )))
756
757 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
758
759 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
760 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
761 |(((
762 AV1_LOW
763 )))|(((
764 AV1_HIGH
765 )))|(((
766 AV2_LOW
767 )))|(((
768 AV2_HIGH
769 )))|(((
770 AC1_LOW
771 )))|(((
772 AC1_HIGH
773 )))|(((
774 AC2_LOW
775 )))|(((
776 AC2_HIGH
777 )))
778
779 * Each bits shows if the corresponding trigger has been configured.
780
781 **Example:**
782
783 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
784
785
786 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
787
788 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
789 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
790 |(((
791 AV1_LOW
792 )))|(((
793 AV1_HIGH
794 )))|(((
795 AV2_LOW
796 )))|(((
797 AV2_HIGH
798 )))|(((
799 AC1_LOW
800 )))|(((
801 AC1_HIGH
802 )))|(((
803 AC2_LOW
804 )))|(((
805 AC2_HIGH
806 )))
807
808 * Each bits shows which status has been trigger on this uplink.
809
810 **Example:**
811
812 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
813
814
815 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
816
817 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
818 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
819 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
820
821 * Each bits shows which status has been trigger on this uplink.
822
823 **Example:**
824
825 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
826
827 00000101: Means both DI1 and DI2 trigger are enabled.
828
829
830 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
831
832 Downlink command to poll MOD6 status:
833
834 **AB 06**
835
836 When device got this command, it will send the MOD6 payload.
837
838
839 === 3.3.7 Payload Decoder ===
840
841 (((
842
843
844 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
845 )))
846
847
848 == 3.4 ​Configure LT via AT or Downlink ==
849
850
851 (((
852 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
853 )))
854
855 (((
856 (((
857 There are two kinds of Commands:
858 )))
859 )))
860
861 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
862
863 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
864
865
866
867 === 3.4.1 Common Commands ===
868
869
870 (((
871 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
872 )))
873
874
875 === 3.4.2 Sensor related commands ===
876
877 ==== 3.4.2.1 Set Transmit Interval ====
878
879
880 Set device uplink interval.
881
882 * (% style="color:#037691" %)**AT Command:**
883
884 (% style="color:blue" %)**AT+TDC=N **
885
886
887 **Example: **AT+TDC=30000. Means set interval to 30 seconds
888
889
890 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
891
892 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
893
894
895
896 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
897
898
899 Set work mode.
900
901 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
902
903 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
904
905 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
906
907 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
908
909
910
911 ==== 3.4.2.3 Poll an uplink ====
912
913
914 * (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
915
916
917 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
918
919 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
920
921 **Example**: 0x08FF, ask device to send an Uplink
922
923
924
925 ==== 3.4.2.4 Enable Trigger Mode ====
926
927
928 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
929
930 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
931
932 (% style="color:red" %)**1:** (%%)Enable Trigger Mode
933
934 (% style="color:red" %)**0: **(%%)Disable Trigger Mode
935
936
937 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
938
939 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
940
941
942
943 ==== 3.4.2.5 Poll trigger settings ====
944
945
946 Poll trigger settings
947
948 * (% style="color:#037691" %)**AT Command:**
949
950 There is no AT Command for this feature.
951
952 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
953
954 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
955
956
957
958 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
959
960
961 Enable Disable DI1/DI2/DI2 as trigger,
962
963 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
964
965 **Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
966
967
968 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
969
970 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
971
972
973
974 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
975
976
977 Set DI1 or DI3(for LT-33222-L) trigger.
978
979 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
980
981 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
982
983 (% style="color:red" %)**b :** (%%)delay timing.
984
985 **Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
986
987
988 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
989
990 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
991
992
993
994 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
995
996
997 Set DI2 trigger.
998
999 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
1000
1001 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
1002
1003 (% style="color:red" %)**b :** (%%)delay timing.
1004
1005 **Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
1006
1007
1008 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
1009
1010 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
1011
1012
1013
1014 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
1015
1016
1017 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1018
1019 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
1020
1021
1022 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
1023
1024 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1025
1026
1027
1028 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1029
1030
1031 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1032
1033 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
1034
1035
1036 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
1037
1038 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1039
1040
1041
1042 ==== 3.4.2.11 Trigger – Set minimum interval ====
1043
1044
1045 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
1046
1047 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
1048
1049
1050 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
1051
1052 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
1053
1054 (((
1055 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
1056 )))
1057
1058
1059
1060 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1061
1062
1063 * (% style="color:#037691" %)**AT Command**
1064
1065 There is no AT Command to control Digital Output
1066
1067
1068 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1069
1070 (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1071
1072 (((
1073 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1074 )))
1075
1076 (((
1077 01: Low,  00: High ,  11: No action
1078
1079 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
1080 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO3**
1081 |02  01  00  11|Low|High|No Action
1082 |02  00  11  01|High|No Action|Low
1083 |02  11  01  00|No Action|Low|High
1084 )))
1085
1086 (((
1087 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1088 )))
1089
1090 (((
1091 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1092 )))
1093
1094
1095
1096 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1097
1098
1099 * (% style="color:#037691" %)**AT Command**
1100
1101 There is no AT Command to control Digital Output
1102
1103
1104 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1105
1106 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1107
1108
1109 This is to control the digital output time of DO pin. Include four bytes:
1110
1111 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1112
1113 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1114
1115 01: DO pins will change back to original state after timeout.
1116
1117 00: DO pins will change to an inverter state after timeout 
1118
1119
1120 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1121
1122 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1123 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1124 |0x01|DO1 set to low
1125 |0x00|DO1 set to high
1126 |0x11|DO1 NO Action
1127
1128 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1129
1130 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1131 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1132 |0x01|DO2 set to low
1133 |0x00|DO2 set to high
1134 |0x11|DO2 NO Action
1135
1136 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1137
1138 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1139 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1140 |0x01|DO3 set to low
1141 |0x00|DO3 set to high
1142 |0x11|DO3 NO Action
1143
1144 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1145
1146
1147 (% style="color:red" %)**Note: **
1148
1149 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1150
1151 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1152
1153 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1154
1155
1156 **Example payload:**
1157
1158 **~1. A9 01 01 01 01 07 D0**
1159
1160 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1161
1162 **2. A9 01 00 01 11 07 D0**
1163
1164 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1165
1166 **3. A9 00 00 00 00 07 D0**
1167
1168 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1169
1170 **4. A9 00 11 01 00 07 D0**
1171
1172 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1173
1174
1175
1176 ==== 3.4.2. 14 Relay ~-~- Control Relay Output RO1/RO2 ====
1177
1178
1179 * (% style="color:#037691" %)**AT Command:**
1180
1181 There is no AT Command to control Relay Output
1182
1183
1184 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1185
1186 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1187
1188
1189 (((
1190 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1191 )))
1192
1193 (((
1194 01: Close ,  00: Open , 11: No action
1195
1196 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1197 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO2**
1198 |03  00  11|Open|No Action
1199 |03  01  11|Close|No Action
1200 |03  11  00|No Action|Open
1201 |03  11  01|No Action|Close
1202 |03  00  00|Open|Open
1203 |03  01  01|Close|Close
1204 |03  01  00|Close|Open
1205 |03  00  01|Open|Close
1206 )))
1207
1208 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1209
1210
1211
1212 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1213
1214
1215 * (% style="color:#037691" %)**AT Command:**
1216
1217 There is no AT Command to control Relay Output
1218
1219
1220 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1221
1222 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1223
1224
1225 This is to control the relay output time of relay. Include four bytes:
1226
1227 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1228
1229 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1230
1231 01: Relays will change back to original state after timeout.
1232
1233 00: Relays will change to an inverter state after timeout
1234
1235
1236 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1237
1238 [[image:image-20221008095908-1.png||height="364" width="564"]]
1239
1240
1241 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1242
1243
1244 (% style="color:red" %)**Note:**
1245
1246 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1247
1248 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1249
1250
1251 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1252
1253
1254 **Example payload:**
1255
1256 **~1. 05 01 11 07 D0**
1257
1258 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1259
1260 **2. 05 01 10 07 D0**
1261
1262 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1263
1264 **3. 05 00 01 07 D0**
1265
1266 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1267
1268 **4. 05 00 00 07 D0**
1269
1270 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1271
1272
1273
1274 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1275
1276
1277 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1278
1279 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1280
1281
1282 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1283
1284 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1285
1286
1287
1288 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1289
1290
1291 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1292
1293 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1294
1295 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1296
1297
1298 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1299
1300 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1301
1302
1303
1304 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1305
1306
1307 Clear counting for counting mode
1308
1309 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT  **(%%) ~/~/ clear all counting
1310
1311
1312 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1313
1314 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1315
1316
1317
1318 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1319
1320
1321 * (% style="color:#037691" %)**AT Command:**
1322
1323 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1324
1325
1326 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1327
1328 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1329
1330 (((
1331 range: aa bb cc:0 to 16777215,  (unit:second)
1332 )))
1333
1334
1335
1336 ==== 3.4.2.20 Reset save RO DO state ====
1337
1338
1339 * (% style="color:#037691" %)**AT Command:**
1340
1341 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1342
1343 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1344
1345
1346 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1347
1348 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1349
1350
1351
1352 ==== 3.4.2.21 Encrypted payload ====
1353
1354
1355 * (% style="color:#037691" %)**AT Command:**
1356
1357 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1358
1359 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1360
1361
1362
1363 ==== 3.4.2.22 Get sensor value ====
1364
1365
1366 * (% style="color:#037691" %)**AT Command:**
1367
1368 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1369
1370 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1371
1372
1373
1374 ==== 3.4.2.23 Resets the downlink packet count ====
1375
1376
1377 * (% style="color:#037691" %)**AT Command:**
1378
1379 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1380
1381 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1382
1383
1384
1385 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1386
1387
1388 * (% style="color:#037691" %)**AT Command:**
1389
1390 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1391
1392 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1393
1394
1395 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1396
1397 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1398
1399
1400
1401 ==== 3.4.2.25 Copy downlink to uplink ====
1402
1403
1404 * (% style="color:#037691" %)**AT Command**(%%)**:**
1405
1406 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1407
1408 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1409
1410
1411 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1412
1413 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1414
1415
1416
1417 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1418
1419 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1420
1421
1422
1423 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1424
1425
1426 * (((
1427 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1428
1429 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1430
1431
1432 )))
1433
1434 **Example:**
1435
1436 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1437
1438
1439 == 3.5 Integrate with Mydevice ==
1440
1441
1442 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1443
1444 (((
1445 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1446 )))
1447
1448 (((
1449 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1450
1451
1452 )))
1453
1454 [[image:image-20220719105525-1.png||height="377" width="677"]]
1455
1456
1457
1458 [[image:image-20220719110247-2.png||height="388" width="683"]]
1459
1460
1461 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1462
1463 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1464
1465 Search under The things network
1466
1467 [[image:1653356838789-523.png||height="337" width="740"]]
1468
1469
1470
1471 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1472
1473 [[image:image-20220524094909-1.png||height="335" width="729"]]
1474
1475
1476 [[image:image-20220524094909-2.png||height="337" width="729"]]
1477
1478
1479 [[image:image-20220524094909-3.png||height="338" width="727"]]
1480
1481
1482 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1483
1484
1485 [[image:image-20220524094909-5.png||height="341" width="734"]]
1486
1487
1488 == 3.6 Interface Detail ==
1489
1490 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1491
1492
1493 Support NPN Type sensor
1494
1495 [[image:1653356991268-289.png]]
1496
1497
1498 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1499
1500
1501 (((
1502 The DI port of LT-22222-L can support NPN or PNP output sensor.
1503 )))
1504
1505 (((
1506 (((
1507 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1508
1509
1510 )))
1511 )))
1512
1513 [[image:1653357170703-587.png]]
1514
1515 (((
1516 (((
1517 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1518 )))
1519 )))
1520
1521 (((
1522
1523 )))
1524
1525 (((
1526 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1527 )))
1528
1529 (((
1530 This type of sensor will output a low signal GND when active.
1531 )))
1532
1533 * (((
1534 Connect sensor's output to DI1-
1535 )))
1536 * (((
1537 Connect sensor's VCC to DI1+.
1538 )))
1539
1540 (((
1541 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1542 )))
1543
1544 (((
1545 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1546 )))
1547
1548 (((
1549 If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1550 )))
1551
1552 (((
1553
1554 )))
1555
1556 (((
1557 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1558 )))
1559
1560 (((
1561 This type of sensor will output a high signal (example 24v) when active.
1562 )))
1563
1564 * (((
1565 Connect sensor's output to DI1+
1566 )))
1567 * (((
1568 Connect sensor's GND DI1-.
1569 )))
1570
1571 (((
1572 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1573 )))
1574
1575 (((
1576 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1577 )))
1578
1579 (((
1580 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1581 )))
1582
1583 (((
1584
1585 )))
1586
1587 (((
1588 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1589 )))
1590
1591 (((
1592 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1593 )))
1594
1595 * (((
1596 Connect sensor's output to DI1+ with a serial 50K resistor
1597 )))
1598 * (((
1599 Connect sensor's GND DI1-.
1600 )))
1601
1602 (((
1603 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1604 )))
1605
1606 (((
1607 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1608 )))
1609
1610 (((
1611 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1612 )))
1613
1614
1615 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1616
1617
1618 (% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1619
1620 (% style="color:red" %)**Note: DO pins go to float when device is power off.**
1621
1622 [[image:1653357531600-905.png]]
1623
1624
1625 === 3.6.4 Analog Input Interface ===
1626
1627
1628 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1629
1630
1631 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1632
1633 [[image:1653357592296-182.png]]
1634
1635 Example to connect a 4~~20mA sensor
1636
1637 We take the wind speed sensor as an example for reference only.
1638
1639
1640 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1641
1642 (% style="color:red" %)**Red:  12~~24v**
1643
1644 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1645
1646 **Black:  GND**
1647
1648 **Connection diagram:**
1649
1650 [[image:1653357640609-758.png]]
1651
1652 [[image:1653357648330-671.png||height="155" width="733"]]
1653
1654
1655 Example connected to a regulated power supply to measure voltage
1656
1657 [[image:image-20230608101532-1.png||height="606" width="447"]]
1658
1659 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
1660
1661 [[image:image-20230608101722-3.png||height="102" width="1139"]]
1662
1663
1664 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1665
1666 (% style="color:red" %)**Red:  12~~24v**
1667
1668 **Black:  GND**
1669
1670
1671 === 3.6.5 Relay Output ===
1672
1673
1674 (((
1675 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1676
1677 **Note**: RO pins go to Open(NO) when device is power off.
1678 )))
1679
1680 [[image:image-20220524100215-9.png]]
1681
1682
1683 [[image:image-20220524100215-10.png||height="382" width="723"]]
1684
1685
1686 == 3.7 LEDs Indicators ==
1687
1688
1689 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
1690 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**LEDs**|(% style="background-color:#d9e2f3; color:#0070c0; width:470px" %)**Feature**
1691 |**PWR**|Always on if there is power
1692 |**SYS**|(((
1693 After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message.
1694 )))
1695 |**TX**|(((
1696 (((
1697 Device boot: TX blinks 5 times.
1698 )))
1699
1700 (((
1701 Successful join network: TX ON for 5 seconds.
1702 )))
1703
1704 (((
1705 Transmit a LoRa packet: TX blinks once
1706 )))
1707 )))
1708 |**RX**|RX blinks once when receive a packet.
1709 |**DO1**|
1710 |**DO2**|
1711 |**DO3**|
1712 |**DI2**|(((
1713 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1714 )))
1715 |**DI2**|(((
1716 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1717 )))
1718 |**DI2**|(((
1719 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1720 )))
1721 |**RO1**|
1722 |**RO2**|
1723
1724
1725
1726 = 4. Use AT Command =
1727
1728 == 4.1 Access AT Command ==
1729
1730
1731 (((
1732 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1733 )))
1734
1735 (((
1736
1737 )))
1738
1739 [[image:1653358238933-385.png]]
1740
1741
1742 (((
1743 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1744 )))
1745
1746 [[image:1653358355238-883.png]]
1747
1748
1749 (((
1750 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1751 )))
1752
1753 (((
1754 AT+<CMD>?        : Help on <CMD>
1755 )))
1756
1757 (((
1758 AT+<CMD>         : Run <CMD>
1759 )))
1760
1761 (((
1762 AT+<CMD>=<value> : Set the value
1763 )))
1764
1765 (((
1766 AT+<CMD>=?       :  Get the value
1767 )))
1768
1769 (((
1770 ATZ: Trig a reset of the MCU
1771 )))
1772
1773 (((
1774 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1775 )))
1776
1777 (((
1778 AT+DEUI: Get or Set the Device EUI
1779 )))
1780
1781 (((
1782 AT+DADDR: Get or Set the Device Address
1783 )))
1784
1785 (((
1786 AT+APPKEY: Get or Set the Application Key
1787 )))
1788
1789 (((
1790 AT+NWKSKEY: Get or Set the Network Session Key
1791 )))
1792
1793 (((
1794 AT+APPSKEY:  Get or Set the Application Session Key
1795 )))
1796
1797 (((
1798 AT+APPEUI:  Get or Set the Application EUI
1799 )))
1800
1801 (((
1802 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1803 )))
1804
1805 (((
1806 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1807 )))
1808
1809 (((
1810 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1811 )))
1812
1813 (((
1814 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1815 )))
1816
1817 (((
1818 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1819 )))
1820
1821 (((
1822 AT+RX2FQ: Get or Set the Rx2 window frequency
1823 )))
1824
1825 (((
1826 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1827 )))
1828
1829 (((
1830 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1831 )))
1832
1833 (((
1834 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1835 )))
1836
1837 (((
1838 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1839 )))
1840
1841 (((
1842 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1843 )))
1844
1845 (((
1846 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1847 )))
1848
1849 (((
1850 AT+NWKID: Get or Set the Network ID
1851 )))
1852
1853 (((
1854 AT+FCU: Get or Set the Frame Counter Uplink
1855 )))
1856
1857 (((
1858 AT+FCD: Get or Set the Frame Counter Downlink
1859 )))
1860
1861 (((
1862 AT+CLASS: Get or Set the Device Class
1863 )))
1864
1865 (((
1866 AT+JOIN: Join network
1867 )))
1868
1869 (((
1870 AT+NJS: Get OTAA Join Status
1871 )))
1872
1873 (((
1874 AT+SENDB: Send hexadecimal data along with the application port
1875 )))
1876
1877 (((
1878 AT+SEND: Send text data along with the application port
1879 )))
1880
1881 (((
1882 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1883 )))
1884
1885 (((
1886 AT+RECV: Print last received data in raw format
1887 )))
1888
1889 (((
1890 AT+VER:  Get current image version and Frequency Band
1891 )))
1892
1893 (((
1894 AT+CFM: Get or Set the confirmation mode (0-1)
1895 )))
1896
1897 (((
1898 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1899 )))
1900
1901 (((
1902 AT+SNR: Get the SNR of the last received packet
1903 )))
1904
1905 (((
1906 AT+RSSI: Get the RSSI of the last received packet
1907 )))
1908
1909 (((
1910 AT+TDC: Get or set the application data transmission interval in ms
1911 )))
1912
1913 (((
1914 AT+PORT: Get or set the application port
1915 )))
1916
1917 (((
1918 AT+DISAT: Disable AT commands
1919 )))
1920
1921 (((
1922 AT+PWORD: Set password, max 9 digits
1923 )))
1924
1925 (((
1926 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1927 )))
1928
1929 (((
1930 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1931 )))
1932
1933 (((
1934 AT+CFG: Print all settings
1935 )))
1936
1937
1938 == 4.2 Common AT Command Sequence ==
1939
1940 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1941
1942 (((
1943
1944
1945 (((
1946 (% style="color:blue" %)**If device has not joined network yet:**
1947 )))
1948 )))
1949
1950 (((
1951 (% style="background-color:#dcdcdc" %)**123456**
1952 )))
1953
1954 (((
1955 (% style="background-color:#dcdcdc" %)**AT+FDR**
1956 )))
1957
1958 (((
1959 (% style="background-color:#dcdcdc" %)**123456**
1960 )))
1961
1962 (((
1963 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1964 )))
1965
1966 (((
1967 (% style="background-color:#dcdcdc" %)**ATZ**
1968 )))
1969
1970
1971 (((
1972 (% style="color:blue" %)**If device already joined network:**
1973 )))
1974
1975 (((
1976 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1977 )))
1978
1979 (((
1980 (% style="background-color:#dcdcdc" %)**ATZ**
1981 )))
1982
1983
1984 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1985
1986 (((
1987
1988
1989 (((
1990 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1991 )))
1992 )))
1993
1994 (((
1995 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1996 )))
1997
1998 (((
1999 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
2000 )))
2001
2002 (((
2003 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
2004 )))
2005
2006 (((
2007 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
2008 )))
2009
2010 (((
2011 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
2012 )))
2013
2014 (((
2015 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
2016 )))
2017
2018 (((
2019 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
2020 )))
2021
2022 (((
2023 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
2024 )))
2025
2026 (((
2027 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
2028 )))
2029
2030 (((
2031 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
2032 )))
2033
2034 (((
2035 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
2036 )))
2037
2038 (((
2039 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
2040
2041
2042 )))
2043
2044 (((
2045 (% style="color:red" %)**Note:**
2046 )))
2047
2048 (((
2049 **~1. Make sure the device is set to ABP mode in the IoT Server.**
2050
2051 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
2052
2053 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
2054 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2055
2056 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
2057
2058
2059 )))
2060
2061 (((
2062 [[image:1653359097980-169.png||height="188" width="729"]]
2063 )))
2064
2065 (((
2066
2067 )))
2068
2069 === 4.2.3 Change to Class A ===
2070
2071
2072 (((
2073 (% style="color:blue" %)**If sensor JOINED:**
2074
2075 (% style="background-color:#dcdcdc" %)**AT+CLASS=A
2076 ATZ**
2077 )))
2078
2079
2080 = 5. Case Study =
2081
2082 == 5.1 Counting how many objects pass in Flow Line ==
2083
2084
2085 Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
2086
2087
2088 = 6. FAQ =
2089
2090 == 6.1 How to upgrade the image? ==
2091
2092
2093 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2094
2095 * Support new features
2096 * For bug fix
2097 * Change LoRaWAN bands.
2098
2099 Below shows the hardware connection for how to upload an image to the LT:
2100
2101 [[image:1653359603330-121.png]]
2102
2103
2104 (((
2105 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2106 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
2107 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2108
2109
2110 (((
2111 (% style="color:blue" %)**For LT-22222-L**(%%):
2112 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2113 )))
2114
2115
2116 )))
2117
2118 [[image:image-20220524103407-12.png]]
2119
2120
2121 [[image:image-20220524103429-13.png]]
2122
2123
2124 [[image:image-20220524104033-15.png]]
2125
2126
2127 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2128
2129
2130 [[image:1653360054704-518.png||height="186" width="745"]]
2131
2132
2133 (((
2134 (((
2135 == 6.2 How to change the LoRa Frequency Bands/Region? ==
2136
2137
2138 )))
2139 )))
2140
2141 (((
2142 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2143 )))
2144
2145 (((
2146
2147
2148 == 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2149
2150
2151 )))
2152
2153 (((
2154 (((
2155 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2156 )))
2157 )))
2158
2159 (((
2160 (((
2161 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2162
2163
2164 )))
2165 )))
2166
2167 (((
2168 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2169
2170
2171 )))
2172
2173 (((
2174 [[image:1653360231087-571.png||height="401" width="727"]]
2175
2176
2177 )))
2178
2179 (((
2180 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2181 )))
2182
2183
2184
2185 (((
2186 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2187
2188
2189 )))
2190
2191 (((
2192 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2193 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2194 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2195 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2196 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2197 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2198 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2199 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2200 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2201 )))
2202
2203
2204 (((
2205 As shown in below:
2206 )))
2207
2208 [[image:1653360498588-932.png||height="485" width="726"]]
2209
2210
2211 == 6.4 How to change the uplink interval? ==
2212
2213
2214 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2215
2216
2217 == 6.5 Can I see counting event in Serial? ==
2218
2219
2220 (((
2221 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2222
2223
2224 == 6.6 Can i use point to point communication for LT-22222-L? ==
2225
2226
2227 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2228
2229
2230 )))
2231
2232 (((
2233 == 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2234
2235
2236 If the device is not shut down, but directly powered off.
2237
2238 It will default that this is a power-off state.
2239
2240 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2241
2242 After restart, the status before power failure will be read from flash.
2243
2244
2245 == 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2246
2247
2248 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2249
2250
2251 [[image:image-20221006170630-1.png||height="610" width="945"]]
2252
2253
2254 == 6.9 Can LT22222-L save RO state? ==
2255
2256
2257 Firmware version needs to be no less than 1.6.0.
2258
2259
2260 = 7. Trouble Shooting =
2261 )))
2262
2263 (((
2264 (((
2265 == 7.1 Downlink doesn't work, how to solve it? ==
2266
2267
2268 )))
2269 )))
2270
2271 (((
2272 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2273 )))
2274
2275 (((
2276
2277
2278 == 7.2 Have trouble to upload image. ==
2279
2280
2281 )))
2282
2283 (((
2284 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2285 )))
2286
2287 (((
2288
2289
2290 == 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2291
2292
2293 )))
2294
2295 (((
2296 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2297 )))
2298
2299
2300 = 8. Order Info =
2301
2302
2303 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2304
2305 (% style="color:#4f81bd" %)**XXX:**
2306
2307 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2308 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2309 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2310 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2311 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2312 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2313 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2314 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2315 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2316
2317
2318
2319 = 9. Packing Info =
2320
2321
2322 **Package Includes**:
2323
2324 * LT-22222-L I/O Controller x 1
2325 * Stick Antenna for LoRa RF part x 1
2326 * Bracket for controller x1
2327 * Program cable x 1
2328
2329 **Dimension and weight**:
2330
2331 * Device Size: 13.5 x 7 x 3 cm
2332 * Device Weight: 105g
2333 * Package Size / pcs : 14.5 x 8 x 5 cm
2334 * Weight / pcs : 170g
2335
2336
2337
2338 = 10. Support =
2339
2340
2341 * (((
2342 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2343 )))
2344 * (((
2345 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2346
2347
2348
2349 )))
2350
2351 = 11. Reference​​​​​ =
2352
2353
2354 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2355 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2356 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
2357
2358
2359
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0