Show last authors
1 (% style="text-align:center" %)
2 [[image:1654597102465-112.png]]
3
4
5
6
7
8
9
10
11
12
13
14 = 1. Introduction =
15
16 == 1.1 ​What is LoRaWAN Soil pH Sensor ==
17
18 (((
19 (((
20 The Dragino LLMS01 is a (% style="color:#4f81bd" %)**LoRaWAN Leaf Moisture Sensor**(%%) for IoT of Agriculture. It is designed to measure the leaf moisture and temperature, so to send to the platform to analyze the leaf status such as : watering, moisturizing, dew, frozen. The probe is IP67 waterproof.
21 )))
22
23 (((
24 LLMS01 detects leaf’s(% style="color:#4f81bd" %)** moisture and temperature **(%%)use FDR method, it senses the dielectric constant cause by liquid over the leaf surface, and cover the value to leaf moisture. The probe is design in a leaf shape to best simulate the real leaf characterizes. The probe has as density as 15 leaf vein lines per centimeter which make it can senses small drop and more accuracy.
25 )))
26
27 (((
28 The LoRa wireless technology used in LLMS01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 )))
30
31 (((
32 LLMS01 is powered by (% style="color:#4f81bd" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
33 )))
34
35 (((
36 Each LLMS01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 )))
38 )))
39
40
41 [[image:1654597284339-263.png]]
42
43
44
45 == ​1.2 Features ==
46
47 * LoRaWAN 1.0.3 Class A
48 * Ultra-low power consumption
49 * Monitor Leaf moisture
50 * Monitor Leaf temperature
51 * Monitor Battery Level
52 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
53 * AT Commands to change parameters
54 * Uplink on periodically
55 * Downlink to change configure
56 * IP66 Waterproof Enclosure
57 * IP67 rate for the Sensor Probe
58 * 8500mAh Battery for long term use
59
60 == 1.3 Probe Specification ==
61
62
63 (% style="color:#4f81bd" %)**Leaf Moisture: percentage of water drop over total leaf surface**
64
65 * Range 0-100%
66 * Resolution: 0.1%
67 * Accuracy: ±3%(0-50%);±6%(>50%)
68 * IP67 Protection
69 * Length: 3.5 meters
70
71 (% style="color:#4f81bd" %)**Leaf Temperature:**
72
73 * Range -50℃~80℃
74 * Resolution: 0.1℃
75 * Accuracy: <±0.5℃(-10℃~70℃),<±1.0℃ (others)
76 * IP67 Protection
77 * Length: 3.5 meters
78
79 == 1.4 ​Applications ==
80
81 * Smart Agriculture
82
83 == 1.5 Pin mapping and power on ==
84
85 [[image:1654597566554-371.png]]
86
87
88
89 = 2. Configure LLMS01 to connect to LoRaWAN network =
90
91 == 2.1 How it works ==
92
93 (((
94 The LLMS01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLMS01. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
95 )))
96
97 (((
98 In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>path:#H5.UseATCommand]]to set the keys in the LLMS01.
99 )))
100
101
102 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
103
104 (((
105 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
106 )))
107
108 (((
109 [[image:1654597672224-371.png]]
110
111
112 )))
113
114 (((
115 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
116
117
118 )))
119
120 (((
121 (% style="color:blue" %)**Step 1**(%%)**: Create a device in TTN with the OTAA keys from LSPH01.**
122 )))
123
124 (((
125 Each LLMS01 is shipped with a sticker with the default device EUI as below:
126 )))
127
128 [[image:image-20220607170145-1.jpeg]]
129
130
131
132 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
133
134
135 **Register the device**
136
137
138 [[image:1654592600093-601.png]]
139
140
141
142 **Add APP EUI and DEV EUI**
143
144 [[image:1654592619856-881.png]]
145
146
147
148 **Add APP EUI in the application**
149
150 [[image:1654592632656-512.png]]
151
152
153
154 **Add APP KEY**
155
156 [[image:1654592653453-934.png]]
157
158
159 (% style="color:blue" %)**Step 2**(%%): **Power on LLMS01**
160
161
162 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
163
164 [[image:1654649435394-787.png]]
165
166
167 (((
168 (% style="color:blue" %)**Step 3**(%%)**: The LLMS01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.**
169 )))
170
171 [[image:1654649500522-138.png]]
172
173
174
175 == 2.3 ​Uplink Payload ==
176
177 (((
178 LSPH01 will uplink payload via LoRaWAN with below payload format: 
179 )))
180
181 (((
182 Uplink payload includes in total 11 bytes.
183 )))
184
185 (((
186 Normal uplink payload:
187 )))
188
189 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
190 |(((
191 **Size**
192
193 **(bytes)**
194 )))|**2**|**2**|**2**|**2**|**1**|**1**|**1**
195 |**Value**|[[BAT>>path:#H2.3.1BatteryInfo]]|(((
196 [[Temperature>>path:#H2.3.2DS18B20Temperaturesensor]]
197
198 [[(Optional)>>path:#H2.3.2DS18B20Temperaturesensor]]
199 )))|[[ Leaf Moisture>>path:#H2.3.3SoilpH]] |[[Leaf Temperature>>path:#H2.3.4SoilTemperature]]|(((
200 [[Digital Interrupt (Optional)>>path:#H2.3.5InterruptPin]]
201 )))|Reserve|(((
202 [[Message Type>>path:#H2.3.6MessageType]]
203 )))
204
205 [[image:1654649531303-864.png]]
206
207
208
209 === 2.3.1 Battery Info ===
210
211
212 Check the battery voltage for LLMS01.
213
214 Ex1: 0x0B45 = 2885mV
215
216 Ex2: 0x0B49 = 2889mV
217
218
219
220 === 2.3.2 DS18B20 Temperature sensor ===
221
222 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
223
224
225 **Example**:
226
227 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
228
229 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
230
231
232
233 === 2.3.3 Leaf Moisture ===
234
235 Range: 0 ~~ 100%
236
237 **Example:**
238
239 (% style="color:#037691" %)**0x0015(H) = 21(D) = 21%**
240
241
242
243 === 2.3.4 Leaf Temperature ===
244
245 Get Leaf Temperature 
246
247
248 **Example**:
249
250 If payload is: **0105H**:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
251
252 If payload is: **FF3FH** :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
253
254
255
256 === 2.3.5 Interrupt Pin ===
257
258 This data field shows if this packet is generated by interrupt or not. [[Click here>>path:#H3.2SetInterruptMode]] for the hardware and software set up.
259
260
261 **Example:**
262
263 0x00: Normal uplink packet.
264
265 0x01: Interrupt Uplink Packet.
266
267
268
269 === 2.3.6 Message Type ===
270
271 (((
272 For a normal uplink payload, the message type is always 0x01.
273 )))
274
275 (((
276 Valid Message Type:
277 )))
278
279
280 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
281 |=**Message Type Code**|=**Description**|=**Payload**
282 |0x01|Normal Uplink|[[Normal Uplink Payload>>path:#H2.3200BUplinkPayload]]
283 |0x02|Reply configures info|[[Configure Info Payload>>path:#H3.4GetFirmwareVersionInfo]]
284
285
286 === 2.3.7 Decode payload in The Things Network ===
287
288 While using TTN network, you can add the payload format to decode the payload.
289
290
291 [[image:1654592762713-715.png]]
292
293 (((
294 The payload decoder function for TTN is here:
295
296 LLMS01 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLMS01/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSNPK01/Decoder/]]
297 )))
298
299
300
301 == 2.4 Uplink Interval ==
302
303 The LSPH01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>path:/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval]]
304
305
306
307 == 2.5 ​Show Data in DataCake IoT Server ==
308
309 (((
310 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
311 )))
312
313 (((
314
315 )))
316
317 (((
318 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
319 )))
320
321 (((
322 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
323 )))
324
325
326 [[image:1654592790040-760.png]]
327
328
329 [[image:1654592800389-571.png]]
330
331
332 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
333
334 (% style="color:blue" %)**Step 4**(%%)**: Create LSPH01 product.**
335
336 [[image:1654592819047-535.png]]
337
338
339
340 [[image:1654592833877-762.png]]
341
342
343 [[image:1654592856403-259.png]]
344
345
346 (((
347 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
348 )))
349
350 (((
351 Download Datacake decoder from: [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/LSPH01/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSNPK01/Decoder/]]
352 )))
353
354
355 [[image:1654592878525-845.png]]
356
357 [[image:1654592892967-474.png]]
358
359
360 [[image:1654592905354-123.png]]
361
362
363 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
364
365
366 [[image:1654592917530-261.png]]
367
368
369
370 == 2.6 Installation and Maintain ==
371
372 === 2.6.1 Before measurement ===
373
374 (((
375 (((
376 If the LSPH01 has more than 7 days not use or just clean the pH probe. User should put the probe inside pure water for more than 24 hours for activation. If no put in water, user need to put inside soil for more than 24 hours to ensure the measurement accuracy. 
377 )))
378 )))
379
380
381
382 === 2.6.2 Measurement ===
383
384
385 (((
386 (% style="color:#4f81bd" %)**Measurement the soil surface:**
387 )))
388
389 (((
390 [[image:1654592946732-634.png]]
391 )))
392
393 (((
394 Choose the proper measuring position. Split the surface soil according to the measured deep.
395 )))
396
397 (((
398 Put pure water, or rainwater to make the soil of measurement point to moist mud. Remove rocks or hard things.
399 )))
400
401 (((
402 Slowly insert the probe to the measure point. Don’t use large force which will break the probe. Make sure not shake when inserting.
403 )))
404
405 (((
406 Put soil over the probe after insert. And start to measure.
407 )))
408
409 (((
410
411 )))
412
413 (((
414 (% style="color:#4f81bd" %)**Measurement inside soil:**
415 )))
416
417 (((
418 Dig a hole with diameter > 20CM.
419 )))
420
421 (((
422 Insert the probe inside, method like measure the surface.
423 )))
424
425
426
427 === 2.6.3 Maintain Probe ===
428
429 1. (((
430 pH probe electrode is fragile and no strong. User must avoid strong force or hitting it.
431 )))
432 1. (((
433 After long time use (3~~ 6  months). The probe electrode needs to be clean; user can use high grade sandpaper to polish it or put in 5% hydrochloric acid for several minutes. After the metal probe looks like new, user can use pure water to wash it.
434 )))
435 1. (((
436 Probe reference electrode is also no strong, need to avoid strong force or hitting.
437 )))
438 1. (((
439 User should keep reference electrode wet while not use.
440 )))
441 1. (((
442 Avoid the probes to touch oily matter. Which will cause issue in accuracy.
443 )))
444 1. (((
445 The probe is IP68 can be put in water.
446
447
448
449 )))
450
451 == 2.7 Calibration ==
452
453 (((
454 User can do calibration for the probe. It is limited to use below pH buffer solution to calibrate: 4.00, 6.86, 9.18. When calibration, user need to clean the electrode and put the probe in the pH buffer solution to wait the value stable ( a new clean electrode might need max 24 hours to be stable).
455 )))
456
457 (((
458 After stable, user can use below command to calibrate.
459 )))
460
461 [[image:image-20220607171149-4.png]]
462
463
464 (% style="color:#037691" %)**Calibration Payload**
465
466 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
467 |(((
468 **Size**
469
470 **(bytes)**
471 )))|**1**|**1**|**1**|**7**|**1**
472 |**Value**|(((
473 PH4
474
475 Calibrate value
476 )))|PH6.86 Calibrate value|(((
477 PH9.18
478
479 Calibrate value
480 )))|Reserve|(((
481 [[Message Type>>path:#H2.3.6MessageType]]
482
483 Always 0x03
484 )))
485
486 User can also send 0x14 downlink command to poll the current calibration payload.
487
488 [[image:image-20220607171416-7.jpeg]]
489
490
491 * Reply to the confirmation package: 14 01
492 * Reply to non-confirmed packet: 14 00
493
494 == 2.8 Frequency Plans ==
495
496 (((
497 The LSPH01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
498 )))
499
500
501 === 2.8.1 EU863-870 (EU868) ===
502
503 (((
504 (% style="color:blue" %)**Uplink:**
505 )))
506
507 (((
508 868.1 - SF7BW125 to SF12BW125
509 )))
510
511 (((
512 868.3 - SF7BW125 to SF12BW125 and SF7BW250
513 )))
514
515 (((
516 868.5 - SF7BW125 to SF12BW125
517 )))
518
519 (((
520 867.1 - SF7BW125 to SF12BW125
521 )))
522
523 (((
524 867.3 - SF7BW125 to SF12BW125
525 )))
526
527 (((
528 867.5 - SF7BW125 to SF12BW125
529 )))
530
531 (((
532 867.7 - SF7BW125 to SF12BW125
533 )))
534
535 (((
536 867.9 - SF7BW125 to SF12BW125
537 )))
538
539 (((
540 868.8 - FSK
541 )))
542
543 (((
544
545 )))
546
547 (((
548 (% style="color:blue" %)**Downlink:**
549 )))
550
551 (((
552 Uplink channels 1-9 (RX1)
553 )))
554
555 (((
556 869.525 - SF9BW125 (RX2 downlink only)
557 )))
558
559
560
561 === 2.8.2 US902-928(US915) ===
562
563 (((
564 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
565 )))
566
567 (((
568 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
569 )))
570
571 (((
572 After Join success, the end node will switch to the correct sub band by:
573 )))
574
575 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
576 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
577
578 === 2.8.3 CN470-510 (CN470) ===
579
580 (((
581 Used in China, Default use CHE=1
582 )))
583
584 (((
585 (% style="color:blue" %)**Uplink:**
586 )))
587
588 (((
589 486.3 - SF7BW125 to SF12BW125
590 )))
591
592 (((
593 486.5 - SF7BW125 to SF12BW125
594 )))
595
596 (((
597 486.7 - SF7BW125 to SF12BW125
598 )))
599
600 (((
601 486.9 - SF7BW125 to SF12BW125
602 )))
603
604 (((
605 487.1 - SF7BW125 to SF12BW125
606 )))
607
608 (((
609 487.3 - SF7BW125 to SF12BW125
610 )))
611
612 (((
613 487.5 - SF7BW125 to SF12BW125
614 )))
615
616 (((
617 487.7 - SF7BW125 to SF12BW125
618 )))
619
620 (((
621
622 )))
623
624 (((
625 (% style="color:blue" %)**Downlink:**
626 )))
627
628 (((
629 506.7 - SF7BW125 to SF12BW125
630 )))
631
632 (((
633 506.9 - SF7BW125 to SF12BW125
634 )))
635
636 (((
637 507.1 - SF7BW125 to SF12BW125
638 )))
639
640 (((
641 507.3 - SF7BW125 to SF12BW125
642 )))
643
644 (((
645 507.5 - SF7BW125 to SF12BW125
646 )))
647
648 (((
649 507.7 - SF7BW125 to SF12BW125
650 )))
651
652 (((
653 507.9 - SF7BW125 to SF12BW125
654 )))
655
656 (((
657 508.1 - SF7BW125 to SF12BW125
658 )))
659
660 (((
661 505.3 - SF12BW125 (RX2 downlink only)
662 )))
663
664
665
666 === 2.8.4 AU915-928(AU915) ===
667
668 (((
669 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
670 )))
671
672 (((
673 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
674 )))
675
676 (((
677
678 )))
679
680 (((
681 After Join success, the end node will switch to the correct sub band by:
682 )))
683
684 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
685 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
686
687 === 2.8.5 AS920-923 & AS923-925 (AS923) ===
688
689 (((
690 (% style="color:blue" %)**Default Uplink channel:**
691 )))
692
693 (((
694 923.2 - SF7BW125 to SF10BW125
695 )))
696
697 (((
698 923.4 - SF7BW125 to SF10BW125
699 )))
700
701 (((
702
703 )))
704
705 (((
706 (% style="color:blue" %)**Additional Uplink Channel**:
707 )))
708
709 (((
710 (OTAA mode, channel added by JoinAccept message)
711 )))
712
713 (((
714
715 )))
716
717 (((
718 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
719 )))
720
721 (((
722 922.2 - SF7BW125 to SF10BW125
723 )))
724
725 (((
726 922.4 - SF7BW125 to SF10BW125
727 )))
728
729 (((
730 922.6 - SF7BW125 to SF10BW125
731 )))
732
733 (((
734 922.8 - SF7BW125 to SF10BW125
735 )))
736
737 (((
738 923.0 - SF7BW125 to SF10BW125
739 )))
740
741 (((
742 922.0 - SF7BW125 to SF10BW125
743 )))
744
745 (((
746
747 )))
748
749 (((
750 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
751 )))
752
753 (((
754 923.6 - SF7BW125 to SF10BW125
755 )))
756
757 (((
758 923.8 - SF7BW125 to SF10BW125
759 )))
760
761 (((
762 924.0 - SF7BW125 to SF10BW125
763 )))
764
765 (((
766 924.2 - SF7BW125 to SF10BW125
767 )))
768
769 (((
770 924.4 - SF7BW125 to SF10BW125
771 )))
772
773 (((
774 924.6 - SF7BW125 to SF10BW125
775 )))
776
777 (((
778
779 )))
780
781 (((
782 (% style="color:blue" %)**Downlink:**
783 )))
784
785 (((
786 Uplink channels 1-8 (RX1)
787 )))
788
789 (((
790 923.2 - SF10BW125 (RX2)
791 )))
792
793
794
795 === 2.8.6 KR920-923 (KR920) ===
796
797 (((
798 (% style="color:blue" %)**Default channel:**
799 )))
800
801 (((
802 922.1 - SF7BW125 to SF12BW125
803 )))
804
805 (((
806 922.3 - SF7BW125 to SF12BW125
807 )))
808
809 (((
810 922.5 - SF7BW125 to SF12BW125
811 )))
812
813 (((
814
815 )))
816
817 (((
818 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
819 )))
820
821 (((
822 922.1 - SF7BW125 to SF12BW125
823 )))
824
825 (((
826 922.3 - SF7BW125 to SF12BW125
827 )))
828
829 (((
830 922.5 - SF7BW125 to SF12BW125
831 )))
832
833 (((
834 922.7 - SF7BW125 to SF12BW125
835 )))
836
837 (((
838 922.9 - SF7BW125 to SF12BW125
839 )))
840
841 (((
842 923.1 - SF7BW125 to SF12BW125
843 )))
844
845 (((
846 923.3 - SF7BW125 to SF12BW125
847 )))
848
849 (((
850
851 )))
852
853 (((
854 (% style="color:blue" %)**Downlink:**
855 )))
856
857 (((
858 Uplink channels 1-7(RX1)
859 )))
860
861 (((
862 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
863 )))
864
865
866
867 === 2.8.7 IN865-867 (IN865) ===
868
869 (((
870 (% style="color:blue" %)**Uplink:**
871 )))
872
873 (((
874 865.0625 - SF7BW125 to SF12BW125
875 )))
876
877 (((
878 865.4025 - SF7BW125 to SF12BW125
879 )))
880
881 (((
882 865.9850 - SF7BW125 to SF12BW125
883 )))
884
885 (((
886
887 )))
888
889 (((
890 (% style="color:blue" %)**Downlink:**
891 )))
892
893 (((
894 Uplink channels 1-3 (RX1)
895 )))
896
897 (((
898 866.550 - SF10BW125 (RX2)
899 )))
900
901
902
903 == 2.9 LED Indicator ==
904
905 The LSPH01 has an internal LED which is to show the status of different state.
906
907 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
908 * Blink once when device transmit a packet.
909
910 == 2.10 ​Firmware Change Log ==
911
912
913 **Firmware download link:**
914
915 [[http:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/LSPH01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
916
917
918 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>path:/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/]]
919
920
921
922 = 3. Configure LSPH01 via AT Command or LoRaWAN Downlink =
923
924 (((
925 Use can configure LSPH01 via AT Command or LoRaWAN Downlink.
926 )))
927
928 * (((
929 AT Command Connection: See [[FAQ>>path:#H6.FAQ]].
930 )))
931 * (((
932 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>path:/xwiki/bin/view/Main/]]
933 )))
934
935 (((
936 There are two kinds of commands to configure LSPH01, they are:
937 )))
938
939 * (((
940 (% style="color:#4f81bd" %)** General Commands**.
941 )))
942
943 (((
944 These commands are to configure:
945 )))
946
947 * (((
948 General system settings like: uplink interval.
949 )))
950 * (((
951 LoRaWAN protocol & radio related command.
952 )))
953
954 (((
955 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:[[End Device AT Commands and Downlink Command>>path:/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
956 )))
957
958 (((
959
960 )))
961
962 * (((
963 (% style="color:#4f81bd" %)** Commands special design for LSPH01**
964 )))
965
966 (((
967 These commands only valid for LSPH01, as below:
968 )))
969
970
971
972 == 3.1 Set Transmit Interval Time ==
973
974 Feature: Change LoRaWAN End Node Transmit Interval.
975
976 (% style="color:#037691" %)**AT Command: AT+TDC**
977
978 [[image:image-20220607171554-8.png]]
979
980
981
982 (((
983 (% style="color:#037691" %)**Downlink Command: 0x01**
984 )))
985
986 (((
987 Format: Command Code (0x01) followed by 3 bytes time value.
988 )))
989
990 (((
991 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
992 )))
993
994 * (((
995 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
996 )))
997 * (((
998 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
999
1000
1001
1002 )))
1003
1004 == 3.2 Set Interrupt Mode ==
1005
1006 Feature, Set Interrupt mode for GPIO_EXIT.
1007
1008 (% style="color:#037691" %)**AT Command: AT+INTMOD**
1009
1010 [[image:image-20220607171716-9.png]]
1011
1012
1013 (((
1014 (% style="color:#037691" %)**Downlink Command: 0x06**
1015 )))
1016
1017 (((
1018 Format: Command Code (0x06) followed by 3 bytes.
1019 )))
1020
1021 (((
1022 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1023 )))
1024
1025 * (((
1026 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1027 )))
1028 * (((
1029 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1030 )))
1031
1032 (((
1033
1034 )))
1035
1036
1037
1038 == 3.3 Calibrate Sensor ==
1039
1040 Detail See [[Calibration Guide>>path:#H2.7Calibration]] for the user of 0x13 and 0x14 downlink commands
1041
1042
1043
1044 == 3.4 Get Firmware Version Info ==
1045
1046 Feature: use downlink to get firmware version.
1047
1048 (% style="color:#037691" %)**Downlink Command: 0x26**
1049
1050 [[image:image-20220607171917-10.png]]
1051
1052 * Reply to the confirmation package: 26 01
1053 * Reply to non-confirmed packet: 26 00
1054
1055 Device will send an uplink after got this downlink command. With below payload:
1056
1057 Configures info payload:
1058
1059 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1060 |=(((
1061 **Size(bytes)**
1062 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1063 |**Value**|Software Type|(((
1064 Frequency
1065
1066 Band
1067 )))|Sub-band|(((
1068 Firmware
1069
1070 Version
1071 )))|Sensor Type|Reserve|(((
1072 [[Message Type>>path:#H2.3.6MessageType]]
1073 Always 0x02
1074 )))
1075
1076 **Software Type**: Always 0x03 for LSPH01
1077
1078
1079 **Frequency Band**:
1080
1081 *0x01: EU868
1082
1083 *0x02: US915
1084
1085 *0x03: IN865
1086
1087 *0x04: AU915
1088
1089 *0x05: KZ865
1090
1091 *0x06: RU864
1092
1093 *0x07: AS923
1094
1095 *0x08: AS923-1
1096
1097 *0x09: AS923-2
1098
1099 *0xa0: AS923-3
1100
1101
1102 **Sub-Band**: value 0x00 ~~ 0x08
1103
1104
1105 **Firmware Version**: 0x0100, Means: v1.0.0 version
1106
1107
1108 **Sensor Type**:
1109
1110 0x01: LSE01
1111
1112 0x02: LDDS75
1113
1114 0x03: LDDS20
1115
1116 0x04: LLMS01
1117
1118 0x05: LSPH01
1119
1120 0x06: LSNPK01
1121
1122 0x07: LDDS12
1123
1124
1125
1126 = 4. Battery & How to replace =
1127
1128 == 4.1 Battery Type ==
1129
1130 (((
1131 LSPH01 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1132 )))
1133
1134 (((
1135 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1136 )))
1137
1138 [[image:1654593587246-335.png]]
1139
1140
1141 Minimum Working Voltage for the LSPH01:
1142
1143 LSPH01:  2.45v ~~ 3.6v
1144
1145
1146
1147 == 4.2 Replace Battery ==
1148
1149 (((
1150 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1151 )))
1152
1153 (((
1154 And make sure the positive and negative pins match.
1155 )))
1156
1157
1158
1159 == 4.3 Power Consumption Analyze ==
1160
1161 (((
1162 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1163 )))
1164
1165 (((
1166 Instruction to use as below:
1167 )))
1168
1169
1170 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1171
1172 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1173
1174
1175 **Step 2**: Open it and choose
1176
1177 * Product Model
1178 * Uplink Interval
1179 * Working Mode
1180
1181 And the Life expectation in difference case will be shown on the right.
1182
1183 [[image:1654593605679-189.png]]
1184
1185
1186 The battery related documents as below:
1187
1188 * (((
1189 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1190 )))
1191 * (((
1192 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1193 )))
1194 * (((
1195 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1196 )))
1197
1198 [[image:image-20220607172042-11.png]]
1199
1200
1201
1202 === 4.3.1 ​Battery Note ===
1203
1204 (((
1205 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1206 )))
1207
1208
1209
1210 === ​4.3.2 Replace the battery ===
1211
1212 (((
1213 You can change the battery in the LSPH01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1214 )))
1215
1216 (((
1217 The default battery pack of LSPH01 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1218 )))
1219
1220
1221
1222 = 5. Use AT Command =
1223
1224 == 5.1 Access AT Commands ==
1225
1226 LSPH01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSPH01 for using AT command, as below.
1227
1228 [[image:1654593668970-604.png]]
1229
1230 **Connection:**
1231
1232 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1233
1234 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1235
1236 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1237
1238
1239 (((
1240 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSPH01. LSPH01 will output system info once power on as below:
1241 )))
1242
1243
1244 [[image:1654593712276-618.png]]
1245
1246 Valid AT Command please check [[Configure Device>>path:#H3.ConfigureLSPH01viaATCommandorLoRaWANDownlink]].
1247
1248
1249 = 6. FAQ =
1250
1251 == 6.1 How to change the LoRa Frequency Bands/Region ==
1252
1253 You can follow the instructions for [[how to upgrade image>>path:#H2.10200BFirmwareChangeLog]].
1254 When downloading the images, choose the required image file for download. ​
1255
1256
1257 = 7. Trouble Shooting =
1258
1259 == 7.1 AT Commands input doesn’t work ==
1260
1261 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1262
1263
1264 = 8. Order Info =
1265
1266 Part Number: (% style="color:blue" %)**LSPH01-XX**
1267
1268
1269 (% style="color:blue" %)**XX**(%%): The default frequency band
1270
1271 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1272 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1273 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1274 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1275 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1276 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1277 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1278 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1279
1280 = 9. ​Packing Info =
1281
1282
1283 **Package Includes**:
1284
1285 * LSPH01 LoRaWAN Soil Ph Sensor x 1
1286
1287 **Dimension and weight**:
1288
1289 * Device Size: cm
1290 * Device Weight: g
1291 * Package Size / pcs : cm
1292 * Weight / pcs : g
1293
1294 = 10. ​Support =
1295
1296 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1297 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
1298
1299
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0