Show last authors
1
2
3 (% style="text-align:center" %)
4 [[image:image-20221028115319-1.jpeg||height="574" width="574"]]
5
6
7
8
9
10
11
12
13 **Table of Contents:**
14
15 {{toc/}}
16
17
18
19 = 1.  Introduction =
20
21 == 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
22
23
24 (((
25 The Dragino LLDS40 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable of measuring the distance to objects as close as 0m to 40m. The LiDAR probe uses laser induction technology for distance measurement.
26 )))
27
28 (((
29 The LLDS40 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
30 )))
31
32 (((
33 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
34 )))
35
36 (((
37 The LoRa wireless technology used in LLDS40 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
38 )))
39
40 (((
41 LLDS40 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
42 )))
43
44 (((
45 Each LLDS40 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
46 )))
47
48
49 [[image:image-20221103084955-1.png||height="337" width="738"]]
50
51
52 == ​1.2  Features ==
53
54
55 * LoRaWAN 1.0.3 Class A
56 * Ultra-low power consumption
57 * Laser technology for distance detection
58 * Measure Distance: 0.1m ~~ 40m @ 90% Reflectivity
59 * Monitor Battery Level
60 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
61 * AT Commands to change parameters
62 * Uplink on periodically
63 * Downlink to change configure
64 * 8500mAh Battery for long-term use
65
66 == 1.3  Probe Specification ==
67
68
69 * Storage temperature: -30℃~~80℃
70 * Operating temperature: -20℃~~60℃
71 * Measure Distance:
72 ** 0.1m ~~ 40m @ 90% Reflectivity
73 ** 0.1m ~~ 13.5m @ 10% Reflectivity
74 * Distance resolution: 1cm
75 * Ambient light immunity: 100klux
76 * Enclosure rating : IP65
77 * Light source : VCSEL
78 * Central wavelength : 850nm
79 * FOV : 3°
80 * Material of enclosure : ABS+PC
81 * Wire length : 75cm
82
83 == 1.4  Probe Dimension ==
84
85
86 [[image:1666948963951-832.png]]
87
88
89 == 1.5 ​ Applications ==
90
91
92 * Horizontal distance measurement
93 * Oil Tank
94 * Object proximity and presence detection
95 * Intelligent trash can management system
96 * Robot obstacle avoidance
97 * Automatic control
98 * Sewer
99
100 == 1.6  Pin mapping and power on ==
101
102
103 [[image:1654827332142-133.png]]
104
105
106 = 2.  Configure LLDS40 to connect to LoRaWAN network =
107
108 == 2.1  How it works ==
109
110
111 (((
112 The LLDS40 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS40. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
113 )))
114
115 (((
116 In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS40.
117 )))
118
119
120 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
121
122
123 (((
124 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
125 )))
126
127 (((
128 [[image:image-20221028172204-2.png||height="335" width="811"]]
129 )))
130
131 (((
132 The LG308 is already set to connect to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
133 )))
134
135 (((
136
137
138 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LLDS40.
139 )))
140
141 (((
142 Each LLDS40 is shipped with a sticker with the default device EUI as below:
143 )))
144
145 [[image:image-20230426085425-1.png||height="237" width="510"]]
146
147
148 You can enter this key in the LoRaWAN Server portal. Below is TTN screenshot:
149
150
151 **Register the device**
152
153
154 [[image:1654592600093-601.png]]
155
156
157
158 **Add APP EUI and DEV EUI**
159
160 [[image:1654592619856-881.png]]
161
162
163
164 **Add APP EUI in the application**
165
166 [[image:1654592632656-512.png]]
167
168
169
170 **Add APP KEY**
171
172 [[image:1654592653453-934.png]]
173
174
175 (% style="color:blue" %)**Step 2**(%%): Power on LLDS40
176
177 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
178
179 [[image:image-20220607170442-2.png]]
180
181
182 (((
183 (% style="color:blue" %)**Step 3**(%%)**:** The LLDS40 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
184
185
186 )))
187
188 [[image:1666949054603-397.png]]
189
190
191 == 2.3  ​Uplink Payload ==
192
193
194 (((
195 LLDS40 will uplink payload via LoRaWAN with below payload format: 
196 )))
197
198 (((
199 Uplink payload includes in total 11 bytes.
200 )))
201
202 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
203 |=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)(((
204 **Size(bytes)**
205 )))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)2|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**
206 |(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
207 [[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
208 )))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
209 [[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
210 )))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
211 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
212 )))
213
214 [[image:1666949060416-681.png]]
215
216
217 === 2.3.1  Battery Info ===
218
219
220 Check the battery voltage for LLDS40.
221
222 Ex1: 0x0B45 = 2885mV
223
224 Ex2: 0x0B49 = 2889mV
225
226
227 === 2.3.2  DS18B20 Temperature sensor ===
228
229
230 This is optional, user can connect external DS18B20 sensor to the (% style="color:blue" %)**+3.3v, 1-wire and GND**(%%) pin . and this field will report the temperature.
231
232 **Example**:
233
234 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
235
236 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
237
238
239 === 2.3.3  Distance ===
240
241
242 Indicates the distance value measured by the LLDS40. The default unit is cm and the range is 0-4000.
243
244 **Example**:
245
246 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
247
248
249 === 2.3.4  Distance signal strength ===
250
251
252 Refers to the signal strength, the default output value will be between 0-65535. When the ranging gear is fixed, the farther the ranging, the lower the signal strength.
253
254 In actual use, when the signal strength value Strength≤60, the measured value of Dist is considered unreliable, and the default output is 4500. When the signal strength is greater than 60 and the actual distance is and the actual distance is 45~~60m, the output value of Dist is 4500. When the signal strength is greater than 60 and the actual distance is more than 60m, there will be over-period data appearing as 0 or other abnormal values.
255
256
257 **Example**:
258
259 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
260
261 Customers can judge whether they need to adjust the environment based on the signal strength.
262
263
264 **1) When the sensor detects valid data:**
265
266
267 [[image:image-20221028172727-3.png||height="231" width="1178"]]
268
269
270
271 **2) When the sensor detects invalid data:**
272
273
274 [[image:image-20221028172727-4.png||height="232" width="1183"]]
275
276
277
278 **3) When the sensor is not connected:**
279
280
281 [[image:image-20221028172727-5.png||height="220" width="1181"]]
282
283
284 === 2.3.5  Interrupt Pin ===
285
286
287 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
288
289 (% style="color:red" %)**Note:**(%%) The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
290
291 **Example:**
292
293 0x00: Normal uplink packet.
294
295 0x01: Interrupt Uplink Packet.
296
297
298 === 2.3.6  LiDAR temp ===
299
300
301 Characterize the internal temperature value of the sensor.
302
303 **Example: **
304 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
305 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
306
307
308 === 2.3.7  Message Type ===
309
310
311 (((
312 For a normal uplink payload, the message type is always 0x01.
313 )))
314
315 (((
316 Valid Message Type:
317 )))
318
319
320 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:499px" %)
321 |=(% style="width: 160px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
322 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
323 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
324
325 === 2.3.8  Decode payload in The Things Network ===
326
327
328 While using TTN network, you can add the payload format to decode the payload.
329
330
331 [[image:1654592762713-715.png]]
332
333
334 (((
335 The payload decoder function for TTN is here:
336 )))
337
338 (((
339 LLDS40 TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LLDS40>>https://github.com/dragino/dragino-end-node-decoder/tree/main/LLDS40]]
340 )))
341
342
343 == 2.4  Uplink Interval ==
344
345
346 The LLDS40 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
347
348
349 == 2.5  ​Show Data in DataCake IoT Server ==
350
351
352 (((
353 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
354 )))
355
356 (((
357
358 )))
359
360 (((
361 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
362 )))
363
364 (((
365 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
366 )))
367
368
369 [[image:1654592790040-760.png]]
370
371
372 [[image:1654592800389-571.png]]
373
374
375 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
376
377 (% style="color:blue" %)**Step 4**(%%)**: Create LLDS40 product.**
378
379 [[image:1654832691989-514.png]]
380
381
382 [[image:1654592833877-762.png]]
383
384
385 [[image:1654832740634-933.png]]
386
387
388
389 (((
390 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
391 )))
392
393 (((
394
395 )))
396
397 [[image:1654833065139-942.png]]
398
399
400
401 [[image:1654833092678-390.png]]
402
403
404
405 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
406
407 [[image:1654833163048-332.png]]
408
409
410 == 2.6  Frequency Plans ==
411
412
413 (((
414 The LLDS40 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
415 )))
416
417
418 === 2.6.1  EU863-870 (EU868) ===
419
420
421 (((
422 (% style="color:blue" %)**Uplink:**
423 )))
424
425 (((
426 868.1 - SF7BW125 to SF12BW125
427 )))
428
429 (((
430 868.3 - SF7BW125 to SF12BW125 and SF7BW250
431 )))
432
433 (((
434 868.5 - SF7BW125 to SF12BW125
435 )))
436
437 (((
438 867.1 - SF7BW125 to SF12BW125
439 )))
440
441 (((
442 867.3 - SF7BW125 to SF12BW125
443 )))
444
445 (((
446 867.5 - SF7BW125 to SF12BW125
447 )))
448
449 (((
450 867.7 - SF7BW125 to SF12BW125
451 )))
452
453 (((
454 867.9 - SF7BW125 to SF12BW125
455 )))
456
457 (((
458 868.8 - FSK
459 )))
460
461 (((
462
463 )))
464
465 (((
466 (% style="color:blue" %)**Downlink:**
467 )))
468
469 (((
470 Uplink channels 1-9 (RX1)
471 )))
472
473 (((
474 869.525 - SF9BW125 (RX2 downlink only)
475 )))
476
477
478 === 2.6.2  US902-928(US915) ===
479
480
481 (((
482 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
483 )))
484
485 (((
486 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
487 )))
488
489 (((
490 After Join success, the end node will switch to the correct sub band by:
491 )))
492
493 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
494 * Use the Join successful sub-band if the server doesn't include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
495
496 === 2.6.3  CN470-510 (CN470) ===
497
498
499 (((
500 Used in China, Default use CHE=1
501 )))
502
503 (((
504 (% style="color:blue" %)**Uplink:**
505 )))
506
507 (((
508 486.3 - SF7BW125 to SF12BW125
509 )))
510
511 (((
512 486.5 - SF7BW125 to SF12BW125
513 )))
514
515 (((
516 486.7 - SF7BW125 to SF12BW125
517 )))
518
519 (((
520 486.9 - SF7BW125 to SF12BW125
521 )))
522
523 (((
524 487.1 - SF7BW125 to SF12BW125
525 )))
526
527 (((
528 487.3 - SF7BW125 to SF12BW125
529 )))
530
531 (((
532 487.5 - SF7BW125 to SF12BW125
533 )))
534
535 (((
536 487.7 - SF7BW125 to SF12BW125
537 )))
538
539 (((
540
541 )))
542
543 (((
544 (% style="color:blue" %)**Downlink:**
545 )))
546
547 (((
548 506.7 - SF7BW125 to SF12BW125
549 )))
550
551 (((
552 506.9 - SF7BW125 to SF12BW125
553 )))
554
555 (((
556 507.1 - SF7BW125 to SF12BW125
557 )))
558
559 (((
560 507.3 - SF7BW125 to SF12BW125
561 )))
562
563 (((
564 507.5 - SF7BW125 to SF12BW125
565 )))
566
567 (((
568 507.7 - SF7BW125 to SF12BW125
569 )))
570
571 (((
572 507.9 - SF7BW125 to SF12BW125
573 )))
574
575 (((
576 508.1 - SF7BW125 to SF12BW125
577 )))
578
579 (((
580 505.3 - SF12BW125 (RX2 downlink only)
581 )))
582
583
584 === 2.6.4  AU915-928(AU915) ===
585
586
587 (((
588 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
589 )))
590
591 (((
592 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
593 )))
594
595 (((
596
597 )))
598
599 (((
600 After Join success, the end node will switch to the correct sub band by:
601 )))
602
603 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
604 * Use the Join successful sub-band if the server doesn't include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
605
606 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
607
608
609 (((
610 (% style="color:blue" %)**Default Uplink channel:**
611 )))
612
613 (((
614 923.2 - SF7BW125 to SF10BW125
615 )))
616
617 (((
618 923.4 - SF7BW125 to SF10BW125
619 )))
620
621 (((
622
623 )))
624
625 (((
626 (% style="color:blue" %)**Additional Uplink Channel**:
627 )))
628
629 (((
630 (OTAA mode, channel added by JoinAccept message)
631 )))
632
633 (((
634
635 )))
636
637 (((
638 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
639 )))
640
641 (((
642 922.2 - SF7BW125 to SF10BW125
643 )))
644
645 (((
646 922.4 - SF7BW125 to SF10BW125
647 )))
648
649 (((
650 922.6 - SF7BW125 to SF10BW125
651 )))
652
653 (((
654 922.8 - SF7BW125 to SF10BW125
655 )))
656
657 (((
658 923.0 - SF7BW125 to SF10BW125
659 )))
660
661 (((
662 922.0 - SF7BW125 to SF10BW125
663 )))
664
665 (((
666
667 )))
668
669 (((
670 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
671 )))
672
673 (((
674 923.6 - SF7BW125 to SF10BW125
675 )))
676
677 (((
678 923.8 - SF7BW125 to SF10BW125
679 )))
680
681 (((
682 924.0 - SF7BW125 to SF10BW125
683 )))
684
685 (((
686 924.2 - SF7BW125 to SF10BW125
687 )))
688
689 (((
690 924.4 - SF7BW125 to SF10BW125
691 )))
692
693 (((
694 924.6 - SF7BW125 to SF10BW125
695 )))
696
697 (((
698
699 )))
700
701 (((
702 (% style="color:blue" %)**Downlink:**
703 )))
704
705 (((
706 Uplink channels 1-8 (RX1)
707 )))
708
709 (((
710 923.2 - SF10BW125 (RX2)
711 )))
712
713
714 === 2.6.6  KR920-923 (KR920) ===
715
716
717 (((
718 (% style="color:blue" %)**Default channel:**
719 )))
720
721 (((
722 922.1 - SF7BW125 to SF12BW125
723 )))
724
725 (((
726 922.3 - SF7BW125 to SF12BW125
727 )))
728
729 (((
730 922.5 - SF7BW125 to SF12BW125
731 )))
732
733 (((
734
735 )))
736
737 (((
738 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
739 )))
740
741 (((
742 922.1 - SF7BW125 to SF12BW125
743 )))
744
745 (((
746 922.3 - SF7BW125 to SF12BW125
747 )))
748
749 (((
750 922.5 - SF7BW125 to SF12BW125
751 )))
752
753 (((
754 922.7 - SF7BW125 to SF12BW125
755 )))
756
757 (((
758 922.9 - SF7BW125 to SF12BW125
759 )))
760
761 (((
762 923.1 - SF7BW125 to SF12BW125
763 )))
764
765 (((
766 923.3 - SF7BW125 to SF12BW125
767 )))
768
769 (((
770
771 )))
772
773 (((
774 (% style="color:blue" %)**Downlink:**
775 )))
776
777 (((
778 Uplink channels 1-7(RX1)
779 )))
780
781 (((
782 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
783 )))
784
785
786 === 2.6.7  IN865-867 (IN865) ===
787
788
789 (((
790 (% style="color:blue" %)**Uplink:**
791 )))
792
793 (((
794 865.0625 - SF7BW125 to SF12BW125
795 )))
796
797 (((
798 865.4025 - SF7BW125 to SF12BW125
799 )))
800
801 (((
802 865.9850 - SF7BW125 to SF12BW125
803 )))
804
805 (((
806
807 )))
808
809 (((
810 (% style="color:blue" %)**Downlink:**
811 )))
812
813 (((
814 Uplink channels 1-3 (RX1)
815 )))
816
817 (((
818 866.550 - SF10BW125 (RX2)
819 )))
820
821
822 == 2.7  LED Indicator ==
823
824
825 The LLDS40 has an internal LED which is to show the status of different state.
826
827 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
828 * Blink once when device transmits a packet.
829
830 == 2.8  ​Firmware Change Log ==
831
832
833 **Firmware download link:  **[[https:~~/~~/www.dropbox.com/sh/zjrobt4eb6tju89/AADPX7jC7mLN2dlvV-Miz3nFa?dl=0>>https://www.dropbox.com/sh/zjrobt4eb6tju89/AADPX7jC7mLN2dlvV-Miz3nFa?dl=0]]
834
835 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
836
837
838 = 3.  LiDAR ToF Measurement =
839
840 == 3.1 Principle of Distance Measurement ==
841
842
843 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
844
845 [[image:1654831757579-263.png||height="298" width="648"]]
846
847
848 == 3.2 Distance Measurement Characteristics ==
849
850
851 The detection angle of the LLDS40 is 3 degrees, and the size of the light spot at different distances is the side length of the detection range. The size of the light spot at different distances is the side length of the detection range. The side length of the detection range (the shape is square), as shown.
852
853
854 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
855 |(% style="width:240px" %)**Distance(m)**|(% style="width:26px" %)1|(% style="width:35px" %)2|(% style="width:36px" %)3|(% style="width:32px" %)5|(% style="width:33px" %)7|(% style="width:34px" %)10|(% style="width:43px" %)20|(% style="width:41px" %)30|(% style="width:41px" %)40
856 |(% style="width:240px" %)**Detection range side length (cm)**|(% style="width:26px" %)5|(% style="width:35px" %)10|(% style="width:36px" %)16|(% style="width:32px" %)26|(% style="width:33px" %)37|(% style="width:34px" %)52|(% style="width:43px" %)105|(% style="width:41px" %)156|(% style="width:41px" %)208
857
858 Note that generally, the side length of the detected target object should be greater than the side length of the detection range of the LLDS40; when the detected object is smaller than the detection range side length; when the detected object is smaller than the detection range side length, the effective range of the radar will be reduced.
859
860
861 == 3.3 Notice of usage: ==
862
863
864 Possible invalid /wrong reading for LiDAR ToF tech:
865
866 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
867 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
868 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
869 * The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
870
871 == 3.4  Reflectivity of different objects: ==
872
873
874 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:379px" %)
875 |=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 230px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
876 |(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
877 |(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
878 |(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
879 |(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
880 |(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
881 |(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
882 |(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
883 |(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
884 |(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
885 |(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
886 |(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
887 |(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
888 |(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
889 |(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
890 |(% style="width:53px" %)15|(% style="width:229px" %)(((
891 Unpolished white metal surface
892 )))|(% style="width:93px" %)130%
893 |(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
894 |(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
895 |(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
896
897 = 4.  Configure LLDS40 via AT Command or LoRaWAN Downlink =
898
899
900 Use can configure LLDS40 via AT Command or LoRaWAN Downlink.
901
902 * (((
903 (((
904 AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
905 )))
906 )))
907 * (((
908 (((
909 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
910 )))
911 )))
912
913 (((
914 (((
915
916 )))
917
918 (((
919 There are two kinds of commands to configure LLDS40, they are:
920 )))
921 )))
922
923 * (((
924 (((
925 (% style="color:#4f81bd" %)** General Commands**.
926 )))
927 )))
928
929 (((
930 (((
931 These commands are to configure:
932 )))
933 )))
934
935 * (((
936 (((
937 General system settings like: uplink interval.
938 )))
939 )))
940 * (((
941 (((
942 LoRaWAN protocol & radio related command.
943 )))
944 )))
945
946 (((
947 (((
948 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
949 )))
950 )))
951
952 (((
953 (((
954
955 )))
956 )))
957
958 * (((
959 (((
960 (% style="color:#4f81bd" %)** Commands special design for LLDS40**
961 )))
962 )))
963
964 (((
965 (((
966 These commands only valid for LLDS40, as below:
967 )))
968 )))
969
970
971 == 4.1  Set Transmit Interval Time ==
972
973
974 Feature: Change LoRaWAN End Node Transmit Interval.
975
976 (% style="color:#037691" %)**AT Command: AT+TDC**
977
978 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
979 |=(% style="width: 160px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 140px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 210px;background-color:#4F81BD;color:white" %)**Response**
980 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
981 30000
982 OK
983 the interval is 30000ms = 30s
984 )))
985 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
986 OK
987 Set transmit interval to 60000ms = 60 seconds
988 )))
989
990 (((
991 (% style="color:#037691" %)**Downlink Command: 0x01**
992 )))
993
994 (((
995 Format: Command Code (0x01) followed by 3 bytes time value.
996 )))
997
998 (((
999 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1000 )))
1001
1002 * (((
1003 Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1004 )))
1005 * (((
1006 Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1007
1008
1009
1010 )))
1011
1012 == 4.2  Set Interrupt Mode ==
1013
1014
1015 Feature, Set Interrupt mode for GPIO_EXIT.
1016
1017 (% style="color:#037691" %)**AT Command: AT+INTMOD**
1018
1019 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1020 |=(% style="width: 154px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 160px;background-color:#4F81BD;color:white" %)**Response**
1021 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1022 0
1023 OK
1024 the mode is 0 =No Interruption
1025 )))
1026 |(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
1027 Set Transmit Interval
1028 0. (Disable Interrupt),
1029 ~1. (Trigger by rising and falling edge)
1030 2. (Trigger by falling edge)
1031 3. (Trigger by rising edge)
1032 )))|(% style="width:157px" %)OK
1033
1034 (((
1035 (% style="color:#037691" %)**Downlink Command: 0x06**
1036 )))
1037
1038 (((
1039 Format: Command Code (0x06) followed by 3 bytes.
1040 )))
1041
1042 (((
1043 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1044 )))
1045
1046 * (((
1047 Example 1: Downlink Payload: 06000000  ~/~/ Turn off interrupt mode
1048 )))
1049 * (((
1050 Example 2: Downlink Payload: 06000003  ~/~/ Set the interrupt mode to rising edge trigger
1051
1052
1053
1054 )))
1055
1056 == 4.3  Get Firmware Version Info ==
1057
1058
1059 Feature: use downlink to get firmware version.
1060
1061 (% style="color:#037691" %)**Downlink Command: 0x26**
1062
1063 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:492px" %)
1064 |(% style="background-color:#4f81bd; color:white; width:191px" %)**Downlink Control Type**|(% style="background-color:#4f81bd; color:white; width:57px" %)**FPort**|(% style="background-color:#4f81bd; color:white; width:91px" %)**Type Code**|(% style="background-color:#4f81bd; color:white; width:153px" %)**Downlink payload size(bytes)**
1065 |(% style="width:191px" %)Get Firmware Version Info|(% style="width:57px" %)Any|(% style="width:91px" %)26|(% style="width:151px" %)2
1066
1067 * Reply to the confirmation package: 26 01
1068 * Reply to non-confirmed packet: 26 00
1069
1070 Device will send an uplink after got this downlink command. With below payload:
1071
1072 Configures info payload:
1073
1074 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1075 |=(% style="background-color:#4F81BD;color:white" %)(((
1076 **Size(bytes)**
1077 )))|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**5**|=(% style="background-color:#4F81BD;color:white" %)**1**
1078 |Value|Software Type|(((
1079 Frequency
1080 Band
1081 )))|Sub-band|(((
1082 Firmware
1083 Version
1084 )))|Sensor Type|Reserve|(((
1085 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
1086 Always 0x02
1087 )))
1088
1089 (% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS40
1090
1091 (% style="color:#037691" %)**Frequency Band**:
1092
1093 *0x01: EU868
1094
1095 *0x02: US915
1096
1097 *0x03: IN865
1098
1099 *0x04: AU915
1100
1101 *0x05: KZ865
1102
1103 *0x06: RU864
1104
1105 *0x07: AS923
1106
1107 *0x08: AS923-1
1108
1109 *0x09: AS923-2
1110
1111 *0xa0: AS923-3
1112
1113
1114 (% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08
1115
1116 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
1117
1118 (% style="color:#037691" %)**Sensor Type**:
1119
1120 0x01: LSE01
1121
1122 0x02: LDDS75
1123
1124 0x03: LDDS20
1125
1126 0x04: LLMS01
1127
1128 0x05: LSPH01
1129
1130 0x06: LSNPK01
1131
1132 0x07: LLDS40
1133
1134
1135 = 5. Battery & Power Consumption =
1136
1137
1138 LLDS40 uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1139
1140 [[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1141
1142
1143 = 6.  Use AT Command =
1144
1145 == 6.1  Access AT Commands ==
1146
1147
1148 LLDS40 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS40 for using AT command, as below.
1149
1150
1151 [[image:1654593668970-604.png]]
1152
1153
1154 **Connection:**
1155
1156 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1157
1158 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1159
1160 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1161
1162
1163 (((
1164 (((
1165 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS40.
1166 )))
1167
1168 (((
1169 LLDS40 will output system info once power on as below:
1170 )))
1171 )))
1172
1173
1174 [[image:1654593712276-618.png]]
1175
1176 Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS40viaATCommandorLoRaWANDownlink"]].
1177
1178
1179 = 7.  FAQ =
1180
1181 == 7.1  How to change the LoRa Frequency Bands/Region ==
1182
1183
1184 You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1185 When downloading the images, choose the required image file for download. ​
1186
1187
1188 = 8.  Trouble Shooting =
1189
1190 == 8.1  AT Commands input doesn't work ==
1191
1192
1193 (((
1194 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1195 )))
1196
1197
1198 == 8.2  Significant error between the output distance value of LiDAR and the actual distance ==
1199
1200
1201 (((
1202 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1203 )))
1204
1205 (((
1206 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1207 )))
1208
1209 (((
1210
1211 )))
1212
1213 (((
1214 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1215 )))
1216
1217 (((
1218 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1219 )))
1220
1221
1222 == 5.3 Possible reasons why the device is unresponsive: ==
1223
1224
1225 ​1. Check whether the battery voltage is lower than 2.8V
1226 2. Check whether the jumper of the device is correctly connected
1227
1228 [[image:image-20240330180031-2.png]]
1229 3. Check whether the switch here of the device is at the ISP(The switch can operate normally only when it is in RUN)
1230
1231
1232 [[image:image-20240330180000-1.png]]
1233
1234 = 9.  Order Info =
1235
1236
1237 Part Number: (% style="color:blue" %)**LLDS40-XX**
1238
1239 (% style="color:blue" %)**XX**(%%): The default frequency band
1240
1241 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1242 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1243 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1244 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1245 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1246 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1247 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1248 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1249
1250 = 10. ​ Packing Info =
1251
1252
1253 **Package Includes**:
1254
1255 * LLDS40 LoRaWAN LiDAR Distance Sensor x 1
1256
1257 **Dimension and weight**:
1258
1259 * Device Size: cm
1260 * Device Weight: g
1261 * Package Size / pcs : cm
1262 * Weight / pcs : g
1263
1264 = 11.  ​Support =
1265
1266
1267 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1268 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
1269
1270
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0