Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20221206143242-2.png||height="602" width="551"]]
3
4
5
6
7
8
9
10
11
12 **Table of Contents:**
13
14 {{toc/}}
15
16
17
18
19
20
21
22
23
24 = 1. Introduction =
25
26 == 1.1 What is LHT65N-E5 Temperature,Humidity&Illuminance Sensor ==
27
28
29 (((
30 The Dragino (% style="color:blue" %)**LHT65N-E5 Temperature, Humidity & Illuminance sensor**(%%) is a Long Range LoRaWAN Sensor.It includes a (% style="color:blue" %)**built-in Temperature & Humidity sensor**(%%) and has an (% style="color:blue" %)**external Illuminance **(%%)** (% style="color:blue" %)sensor(%%).**
31
32 The LHT65N-E5 allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
33
34 LHT65N-E5 has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) which can be used for more than 10 years*.
35
36 LHT65N-E5 is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
37
38 (% style="color:blue" %)*(%%)** **The actual battery life depends on how often to send data, please see battery analyzer chapter.
39 )))
40
41 (% style="display:none" %) (%%)
42
43 == 1.2 Features ==
44
45
46 * LoRaWAN v1.0.3 Class A protocol
47 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
48 * AT Commands to change parameters
49 * Remote configure parameters via LoRaWAN Downlink
50 * Firmware upgradeable via program port
51 * Built-in 2400mAh battery for up to 10 years of use.
52 * Built-in Temperature & Humidity sensor
53 * External Illuminance Sensor
54 * Tri-color LED to indicate working status
55 * Datalog feature to save sensor data when no LoRaWAN network
56
57 (% style="display:none" %)
58
59
60
61 == 1.3 Specification ==
62
63
64 (% style="color:#037691" %)**Built-in Temperature Sensor:**
65
66 * Resolution: 0.01 °C
67 * Accuracy Tolerance : Typ ±0.3 °C
68 * Long Term Drift: < 0.02 °C/yr
69 * Operating Range: -40 ~~ 85 °C
70
71 (% style="color:#037691" %)**Built-in Humidity Sensor:**
72
73 * Resolution: 0.04 %RH
74 * Accuracy Tolerance : Typ ±3 %RH
75 * Long Term Drift: < 0.25 RH/yr
76 * Operating Range: 0 ~~ 96 %RH
77
78 (% style="color:#037691" %)**External IIIuminace Sensor:**
79
80 * Base on BH1750 Illumination Sensor
81 * Cable Length : 50cm
82 * Resolution: 1 lx
83 * Range: 0-65535 lx
84 * Operating Range: -40 °C ~~ 85 °C
85
86 = 2. Connect LHT65N-E5 to IoT Server =
87
88 == 2.1 How does LHT65N-E5 work? ==
89
90
91 (((
92 LHT65N-E5 is configured as LoRaWAN OTAA Class A sensor by default. Each LHT65N-E5 is shipped with a worldwide unique set of OTAA keys. To use LHT65N-E5 in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N-E5.
93 )))
94
95 (((
96 If LHT65N-E5 is within the coverage of this LoRaWAN network. LHT65N-E5 can join the LoRaWAN network automatically. After successfully joining, LHT65N-E5 will start to measure environment temperature, humidity & illumination, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes.
97 )))
98
99
100 == 2.2 How to Activate LHT65N-E5? ==
101
102
103 (((
104 The LHT65N-E5 has two working modes:
105 )))
106
107 * (((
108 (% style="color:blue" %)**Deep Sleep Mode**(%%): LHT65N-E5 doesn't have any LoRaWAN activation. This mode is used for storage and shipping to save battery life.
109 )))
110 * (((
111 (% style="color:blue" %)**Working Mode**(%%):  In this mode, LHT65N-E5 works as LoRaWAN Sensor mode to Join LoRaWAN network and send out the sensor data to the server. Between each sampling/tx/rx periodically, LHT65N-E5 will be in STOP mode (IDLE mode), in STOP mode, LHT65N-E5 has the same power consumption as Deep Sleep mode. 
112 )))
113
114 (((
115 The LHT65N-E5 is set in deep sleep mode by default; The ACT button on the front is to switch to different modes:
116 )))
117
118
119 [[image:image-20220515123819-1.png||_mstalt="430742" height="379" width="317"]]
120
121
122 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
123 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
124 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Test uplink status|(% style="background-color:#f2f2f2; width:225px" %)(((
125 If LHT65N-E5 is already Joined to rhe LoRaWAN network, LHT65N-E5 will send an uplink packet, if LHT65N-E5 has external sensor connected,(% style="color:blue" %)**Blue led** (%%)will blink once. If LHT65N-E5 has not external sensor, (% style="color:red" %)**Red led**(%%) will blink once.
126 )))
127 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
128 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, LHT65N-E5 will enter working mode and start to JOIN LoRaWAN network.
129 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after join in network.
130 )))
131 |(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means LHT65N-E5 is in Deep Sleep Mode.
132
133 == 2.3 Example to join LoRaWAN network ==
134
135
136 (% class="wikigeneratedid" %)
137 This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
138
139 (% class="wikigeneratedid" %)
140 [[image:image-20221224101636-1.png||height="435" width="715"]]
141
142
143 (((
144 Assume the LPS8v2 is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network||_mstvisible="2"]], So it provides network coverage for LHT65N-E5. Next we need to add the LHT65N-E5 device in TTN V3:
145 )))
146
147
148 === 2.3.1 Step 1: Create Device n TTN ===
149
150
151 (((
152 Create a device in TTN V3 with the OTAA keys from LHT65N-E5.
153 )))
154
155 (((
156 Each LHT65N-E5 is shipped with a sticker with its device EUI, APP Key and APP EUI as below:
157 )))
158
159 [[image:image-20230426083358-1.png]]
160
161 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screenshot:
162
163 Add APP EUI in the application.
164
165
166 [[image:image-20220522232916-3.png||_mstalt="430495"]]
167
168
169 [[image:image-20220522232932-4.png||_mstalt="430157"]]
170
171
172 [[image:image-20220522232954-5.png||_mstalt="431847"]]
173
174
175
176 (% style="color:red" %)**Note: LHT65N-E5 use same payload decoder as LHT65.**
177
178
179 [[image:image-20220522233026-6.png||_mstalt="429403"]]
180
181
182 Input APP EUI,  APP KEY and DEV EUI:
183
184
185 [[image:image-20220522233118-7.png||_mstalt="430430"]]
186
187
188 === 2.3.2 Step 2: Activate LHT65N-E5 by pressing the ACT button for more than 5 seconds. ===
189
190
191 (((
192 Use ACT button to activate LHT65N-E5 and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
193 )))
194
195 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
196
197
198 == 2.4 Uplink Payload   ( Fport~=2) ==
199
200
201 (((
202 The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and (% style="color:#4f81bd" %)**every 20 minutes**(%%) send one uplink by default.
203 )))
204
205 (((
206 After each uplink, the (% style="color:blue" %)**BLUE LED**(%%) will blink once.
207 )))
208
209 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:390px" %)
210 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
211 **Size(bytes)**
212 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)(((
213 **2**
214 )))|=(% style="width: 100px;background-color:#4F81BD;color:white" %)(((
215 **2**
216 )))|=(% style="width: 100px;background-color:#4F81BD;color:white" %)(((
217 **2**
218 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
219 **1**
220 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
221 **4**
222 )))
223 |(% style="width:97px" %)(((
224 Value
225 )))|(% style="width:39px" %)(((
226 [[BAT>>||anchor="H2.4.2BAT-BatteryInfo"]]
227 )))|(% style="width:100px" %)(((
228 (((
229 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
230 )))
231 )))|(% style="width:77px" %)(((
232 (((
233 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
234 )))
235 )))|(% style="width:47px" %)(((
236 Ext #
237 )))|(% style="width:51px" %)(((
238 [[Ext value>>||anchor="H2.4.5Extvalue"]]
239 )))
240
241 * The First 6 bytes: has fix meanings for every LHT65N-E5.
242 * The 7th byte (EXT #): defines the external sensor model. It can be 0x05 or 0x09 for LHT65N-E5
243 * The 8^^th^^ ~~ 9^^th^^ byte: Illuminance. Range: 0-65535 lx.
244 * The 10th ~~ 11th byte: Reserve, always 0xFFFF
245
246 === 2.4.1 Decoder in TTN V3 ===
247
248
249 When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N-E5 decoder in TTNv3 for friendly reading.
250
251 Below is the position to put the decoder and LHT65N-E5 decoder can be download from here: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
252
253
254 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
255
256
257 === 2.4.2 BAT-Battery Info ===
258
259
260 These two bytes of BAT include the battery state and the actually voltage
261
262 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:477px" %)
263 |=(% style="width: 69px; background-color:#4F81BD;color:white" %)(((
264 **Bit(bit)**
265 )))|=(% style="width: 253px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 155px;background-color:#4F81BD;color:white" %)[13:0]
266 |(% style="width:66px" %)(((
267 Value
268 )))|(% style="width:250px" %)(((
269 BAT Status
270 00(b): Ultra Low ( BAT <= 2.50v)
271 01(b): Low (2.50v <=BAT <= 2.55v)
272 10(b): OK (2.55v <= BAT <=2.65v)
273 11(b): Good (BAT >= 2.65v)
274 )))|(% style="width:152px" %)Actually BAT voltage
275
276 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
277
278
279 Check the battery voltage for LHT65N-E5.
280
281 * BAT status=(0Xcba4>>14)&0xFF=11(B),very good
282 * Battery Voltage =0xCBF6&0x3FFF=0x0BA4=2980mV
283
284 === 2.4.3 Built-in Temperature ===
285
286
287 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
288
289 * Temperature:  0x0ABB/100=27.47℃
290
291 [[image:image-20220522235639-3.png||_mstalt="432120"]]
292
293 * Temperature:  (0xF5C6-65536)/100=-26.18℃
294
295 === 2.4.4 Built-in Humidity ===
296
297
298 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
299
300 * Humidity:    0x025C/10=60.4%
301
302 === 2.4.5 Ext value ===
303
304 ==== 2.4.5.1 Ext~=0x05, Illuminance Sensor ====
305
306
307 [[image:image-20221224161634-2.png||height="138" width="851"]]
308
309
310 * Illumination=0x005E=94 lux
311
312 The last 2 bytes of data are meaningless
313
314 [[image:image-20221224161725-3.png]]
315
316 * When the sensor is not connected or not connected properly, will show "NULL"
317
318 The last 2 bytes of data are meaningless
319
320
321
322 ==== 2.4.5.2 Ext~=0x85, E5 sensor with Unix Timestamp ====
323
324
325 (((
326 Timestamp mode is designed for LHT65N-E5 with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
327 )))
328
329 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
330 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
331 **Size(bytes)**
332 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
333 **2**
334 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
335 **2**
336 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
337 **2**
338 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
339 **1**
340 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
341 **4**
342 )))
343 |(% style="width:110px" %)(((
344 Value
345 )))|(% style="width:71px" %)(((
346 External temperature
347 )))|(% style="width:99px" %)(((
348 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
349 )))|(% style="width:132px" %)(((
350 BAT Status &
351 Illumination
352 )))|(% style="width:54px" %)(((
353 Status & Ext
354 )))|(% style="width:64px" %)(((
355 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
356 )))
357
358 * **Battery status & Built-in Humidity**
359
360 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
361 |=(% style="width: 69px;background-color:#4F81BD;color:white" %)Bit(bit)|=(% style="width: 258px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 134px;background-color:#4F81BD;color:white" %)[13:0]
362 |(% style="width:66px" %)(((
363 Value
364 )))|(% style="width:250px" %)(((
365 BAT Status
366 00(b): Ultra Low ( BAT <= 2.50v)
367 01(b): Low (2.50v <=BAT <= 2.55v)
368 10(b): OK (2.55v <= BAT <=2.65v)
369 11(b): Good (BAT >= 2.65v)
370 )))|(% style="width:152px" %)Illumination
371
372 * **Status & Ext Byte**
373
374 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
375 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
376 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
377
378 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
379 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N-E5 will set this bit to 0 until got the time stamp from the application server.
380 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N-E5 will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
381
382 == 2.5 Show data on Datacake ==
383
384
385 (((
386 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
387 )))
388
389 (((
390
391 )))
392
393 (((
394 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
395 )))
396
397 (((
398 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
399 )))
400
401
402
403 (((
404 Add Datacake:
405 )))
406
407
408 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
409
410
411
412 Select default key as Access Key:
413
414
415 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
416
417
418 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
419
420
421 [[image:image-20221224161935-5.png||height="523" width="409"]]
422
423
424 [[image:image-20221224161957-6.png||height="306" width="852"]]
425
426
427 == 2.6 Datalog Feature ==
428
429
430 (((
431 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N-E5 will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N-E5.
432 )))
433
434
435 === 2.6.1 Ways to get datalog via LoRaWAN ===
436
437
438 There are two methods:
439
440 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
441
442
443 (% style="color:blue" %)**Method 2: **(%%)Set PNACKMD=1, LHT65N-E5 will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N-E5 will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
444
445
446 (% style="color:red" %)**Note for method 2:**
447
448 * a) LHT65N-E5 will do an ACK check for data records sending to make sure every data arrive server.
449 * b) LHT65N-E5 will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N-E5 won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N-E5 gets a ACK, LHT65N-E5 will consider there is a network connection and resend all NONE-ACK Message.
450
451 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
452
453
454 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
455
456
457 === 2.6.2 Unix TimeStamp ===
458
459
460 LHT65N-E5 uses Unix TimeStamp format based on
461
462
463 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
464
465
466
467 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
468
469 Below is the converter example
470
471 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
472
473
474 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
475
476
477 === 2.6.3 Set Device Time ===
478
479
480 (((
481 (% style="color:blue" %)**There are two ways to set device's time:**
482 )))
483
484 (((
485 **1.  Through LoRaWAN MAC Command (Default settings)**
486 )))
487
488 (((
489 User need to set SYNCMOD=1 to enable sync time via MAC command.
490 )))
491
492 (((
493 Once LHT65N-E5 Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N-E5. If LHT65N-E5 fails to get the time from the server, LHT65N-E5 will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
494 )))
495
496 (((
497 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
498 )))
499
500
501 (((
502 **2. Manually Set Time**
503 )))
504
505 (((
506 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
507 )))
508
509
510 === 2.6.4 Poll sensor value ===
511
512
513 User can poll sensor value based on timestamps from the server. Below is the downlink command.
514
515 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:428px" %)
516 |(% style="background-color:#4f81bd; color:white; width:59px" %)**1byte**|(% style="background-color:#4f81bd; color:white; width:128px" %)**4bytes**|(% style="background-color:#4f81bd; color:white; width:124px" %)**4bytes**|(% style="background-color:#4f81bd; color:white; width:117px" %)**1byte**
517 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
518
519 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
520
521 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
522
523 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00’s data
524
525 Uplink Internal =5s, means LHT65N-E5 will send one packet every 5s. range 5~~255s.
526
527
528 === 2.6.5 Datalog Uplink payload ===
529
530
531 The Datalog poll reply uplink will use below payload format.
532
533 **Retrieval data payload:**
534
535 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
536 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
537 **Size(bytes)**
538 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**4**
539 |(% style="width:97px" %)Value|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.5Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
540
541 **Poll message flag & Ext:**
542
543 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
544 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
545 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
546
547 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]] feature)
548
549 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
550
551 * Poll Message Flag is set to 1.
552
553 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
554
555 For example, in US915 band, the max payload for different DR is:
556
557 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
558
559 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
560
561 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
562
563 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
564
565 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
566
567
568 **Example:**
569
570 If LHT65N-E5 has below data inside Flash:
571
572 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
573 |=(% style="width: 88px; background-color:#4F81BD;color:white" %)Flash Add|=(% style="width: 132px; background-color:#4F81BD;color:white" %)**Unix Time**|=(% style="width: 40px; background-color:#4F81BD;color:white" %)**Ext**|=(% style="width: 105px; background-color:#4F81BD;color:white" %)**BAT voltage**|=(% style="width: 145px; background-color:#4F81BD;color:white" %)**Value**
574 |(% style="width:89px" %)80196E0|(% style="width:133px" %)21/1/19 04:27:03|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=22.00 sht hum=32.6 ds temp=327.67
575 |(% style="width:89px" %)80196F0|(% style="width:133px" %)21/1/19 04:28:57|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.90 sht hum=33.1 ds temp=327.67
576 |(% style="width:89px" %)8019600|(% style="width:133px" %)21/1/19 04:30:30|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.81 sht hum=33.4 ds temp=327.67
577 |(% style="width:89px" %)8019610|(% style="width:133px" %)21/1/19 04:40:30|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.65 sht hum=33.7 ds temp=327.67
578 |(% style="width:89px" %)8019620|(% style="width:133px" %)21/1/19 04:50:30|(% style="width:42px" %)1|(% style="width:103px" %)3147|(% style="width:131px" %)sht temp=21.55 sht hum=34.1 ds temp=327.67
579 |(% style="width:89px" %)8019630|(% style="width:133px" %)21/1/19 04:00:30|(% style="width:42px" %)1|(% style="width:103px" %)3149|(% style="width:131px" %)sht temp=21.50 sht hum=34.1 ds temp=327.67
580 |(% style="width:89px" %)8019640|(% style="width:133px" %)21/1/19 04:10:30|(% style="width:42px" %)1|(% style="width:103px" %)3149|(% style="width:131px" %)sht temp=21.43 sht hum=34.6 ds temp=327.67
581 |(% style="width:89px" %)8019650|(% style="width:133px" %)21/1/19 04:20:30|(% style="width:42px" %)1|(% style="width:103px" %)3151|(% style="width:131px" %)sht temp=21.35 sht hum=34.9 ds temp=327.67
582
583 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
584
585 Where : Start time: 60065F97 = time 21/1/19 04:27:03
586
587 Stop time: 60066DA7= time 21/1/19 05:27:03
588
589
590 **LHT65N-E5 will uplink this payload.**
591
592 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
593
594
595 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
596
597 Where the first 11 bytes is for the first entry:
598
599 7FFF089801464160065F97
600
601 Ext sensor data=0x7FFF/100=327.67
602
603 Temp=0x088E/100=22.00
604
605 Hum=0x014B/10=32.6
606
607 poll message flag & Ext=0x41,means reply data,Ext=1
608
609 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
610
611
612 == 2.7 Alarm Mode ==
613
614 (((
615
616
617 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
618 )))
619
620 (((
621 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
622
623
624 )))
625
626 === 2.7.1 ALARM MODE ===
627
628
629 (% class="box infomessage" %)
630 (((
631 (((
632 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
633 )))
634
635 (((
636 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
637 )))
638
639 (((
640 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
641 )))
642
643 (((
644 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
645 )))
646
647 (((
648 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
649 )))
650 )))
651
652 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
653
654 Total bytes: 8 bytes
655
656 **Example:**AA0100010001003C
657
658 WMOD=01
659
660 CITEMP=0001
661
662 TEMPlow=0001
663
664 TEMPhigh=003C
665
666
667 == 2.8 LED Indicator ==
668
669
670 The LHT65 has a triple color LED which for easy showing different stage .
671
672 While user press ACT button, the LED will work as per LED status with ACT button.
673
674 In a normal working state:
675
676 * For each uplink, the BLUE LED or RED LED will blink once.
677 BLUE LED when external sensor is connected.
678 * RED LED when external sensor is not connected
679 * For each success downlink, the PURPLE LED will blink once
680
681 == 2.9 installation ==
682
683
684 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
685
686
687 = 3. Sensors and Accessories =
688
689 == 3.1 E2 Extension Cable ==
690
691
692 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
693
694
695 **1m long breakout cable for LHT65N-E5. Features:**
696
697 * (((
698 Use for AT Command
699 )))
700 * (((
701 Update firmware for LHT65N-E5
702 )))
703 * (((
704 Exposed All pins from the LHT65N-E5 Type-C connector.
705
706
707
708 )))
709
710 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
711
712
713 = 4. Configure LHT65N-E5 via AT command or LoRaWAN downlink =
714
715
716 (((
717 Use can configure LHT65N-E5 via AT Command or LoRaWAN Downlink.
718 )))
719
720 * (((
721 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
722 )))
723
724 * (((
725 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
726 )))
727
728 (((
729 There are two kinds of commands to configure LHT65N-E5, they are:
730 )))
731
732 * (((
733 (% style="color:#4f81bd" %)**General Commands**.
734 )))
735
736 (((
737 These commands are to configure:
738 )))
739
740 1. (((
741 General system settings like: uplink interval.
742 )))
743 1. (((
744 LoRaWAN protocol & radio-related commands.
745 )))
746
747 (((
748 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
749 )))
750
751 * (((
752 (% style="color:#4f81bd" %)**Commands special design for LHT65N-E5**
753 )))
754
755 (((
756 These commands are only valid for LHT65N-E5, as below:
757 )))
758
759
760 == 4.1 Set Transmit Interval Time ==
761
762
763 Feature: Change LoRaWAN End Node Transmit Interval.
764
765 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
766
767 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:501px" %)
768 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:166px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:180px" %)**Response**
769 |(% style="width:155px" %)AT+TDC?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)30000 OK the interval is 30000ms = 30s
770 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)OK Set transmit interval to 60000ms = 60 seconds
771
772 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
773
774 Format: Command Code (0x01) followed by 3 bytes time value.
775
776 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
777
778 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
779
780 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
781
782 == 4.2 Currently only supports E5 ==
783
784
785 Feature: Set device password, max 9 digits
786
787 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
788
789 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:468px" %)
790 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:153px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:160px" %)**Response**
791 |(% style="width:155px" %)AT+EXT=?|(% style="width:151px" %)Get or Set external sensor model|(% style="width:158px" %)(((
792 5
793
794 OK
795 )))
796 |(% style="width:155px" %)AT+EXT=5|(% colspan="2" rowspan="1" style="width:309px" %)Set external sensor mode to 5
797
798 (% style="color:#4f81bd" %)**Downlink Command:0xA2**
799
800
801 Total bytes: 2 bytes
802
803 **Example:**
804
805 * 0xA205: Set external sensor type to E5
806
807 == 4.3 Set to sleep mode ==
808
809
810 Feature: Set device to sleep mode
811
812 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
813 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
814
815 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
816
817 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:513px" %)
818 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:140px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:218px" %)**Response**
819 |(% style="width:155px" %)AT+SLEEP|(% style="width:139px" %)Set to sleep mode|(% style="width:213px" %)(((
820 Clear all stored sensor data…
821
822 OK
823 )))
824
825 (% style="color:#4f81bd" %)**Downlink Command:**
826
827 * There is no downlink command to set to Sleep mode.
828
829 == 4.4 Set system time ==
830
831
832 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
833
834 (% style="color:#4f81bd" %)**AT Command:**
835
836 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:506px" %)
837 |(% style="background-color:#4f81bd; color:white; width:188px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:318px" %)**Function**
838 |(% style="width:154px" %)AT+TIMESTAMP=1611104352|(% style="width:285px" %)(((
839 OK
840
841 Set System time to 2021-01-20 00:59:12
842 )))
843
844 (% style="color:#4f81bd" %)**Downlink Command:**
845
846 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
847
848
849 == 4.5 Set Time Sync Mode ==
850
851
852 (((
853 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
854 )))
855
856 (((
857 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
858 )))
859
860 (% style="color:#4f81bd" %)**AT Command:**
861
862 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:475px" %)
863 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:317px" %)**Function**
864 |(% style="width:156px" %)AT+SYNCMOD=1|(% style="width:315px" %)Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
865
866 (% style="color:#4f81bd" %)**Downlink Command:**
867
868 0x28 01  ~/~/  Same As AT+SYNCMOD=1
869 0x28 00  ~/~/  Same As AT+SYNCMOD=0
870
871
872 == 4.6 Set Time Sync Interval ==
873
874
875 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
876
877 (% style="color:#4f81bd" %)**AT Command:**
878
879 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:472px" %)
880 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:314px" %)**Function**
881 |(% style="width:156px" %)AT+SYNCTDC=0x0A |(% style="width:311px" %)Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
882
883 (% style="color:#4f81bd" %)**Downlink Command:**
884
885 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
886
887
888 == 4.7 Get data ==
889
890
891 Feature: Get the current sensor data.
892
893 (% style="color:#4f81bd" %)**AT Command:**
894
895 * **AT+GETSENSORVALUE=0**      ~/~/ The serial port gets the reading of the current sensor
896 * **AT+GETSENSORVALUE=1**      ~/~/ The serial port gets the current sensor reading and uploads it.
897
898 == 4.8 Print data entries base on page ==
899
900
901 Feature: Print the sector data from start page to stop page (max is 416 pages).
902
903 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
904
905 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
906 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
907 |(% style="width:156px" %)(((
908 AT+PDTA=13
909 Print page 1 to 3
910 )))|(% style="width:311px" %)(((
911 8019500 19/6/26 16:48 1 2992 sht temp=28.21 sht hum=71.5 ds temp=27.31
912 8019510 19/6/26 16:53 1 2994 sht temp=27.64 sht hum=69.3 ds temp=26.93
913 8019520 19/6/26 16:58 1 2996 sht temp=28.39 sht hum=72.0 ds temp=27.06
914 8019530 19/6/26 17:03 1 2996 sht temp=27.97 sht hum=70.4 ds temp=27.12
915 8019540 19/6/26 17:08 1 2996 sht temp=27.80 sht hum=72.9 ds temp=27.06
916 8019550 19/6/26 17:13 1 2998 sht temp=27.30 sht hum=72.4 ds temp=26.68
917 8019560 19/6/26 17:22 1 2992 sht temp=26.27 sht hum=62.3 ds temp=26.56
918 8019570
919 8019580
920 8019590
921 80195A0
922 80195B0
923 80195C0
924 80195D0
925 80195E0
926 80195F0
927
928 OK
929 )))
930
931 (% style="color:#4f81bd" %)**Downlink Command:**
932
933 No downlink commands for feature
934
935
936 == 4.9 Print last few data entries ==
937
938
939 Feature: Print the last few data entries
940
941 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
942
943 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
944 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
945 |(% style="width:156px" %)(((
946 AT+PLDTA=5
947 Print last 5 entries
948 )))|(% style="width:311px" %)(((
949 Stop Tx and RTP events when read sensor data
950 1 19/6/26 13:59 1 3005 sht temp=27.09 sht hum=79.5 ds temp=26.75
951 2 19/6/26 14:04 1 3007 sht temp=26.65 sht hum=74.8 ds temp=26.43
952 3 19/6/26 14:09 1 3007 sht temp=26.91 sht hum=77.9 ds temp=26.56
953 4 19/6/26 14:15 1 3007 sht temp=26.93 sht hum=76.7 ds temp=26.75
954 5 19/6/26 14:20 1 3007 sht temp=26.78 sht hum=76.6 ds temp=26.43
955 Start Tx and RTP events
956 OK
957 )))
958
959 (% style="color:#4f81bd" %)**Downlink Command:**
960
961 No downlink commands for feature
962
963
964 == 4.10 Clear Flash Record ==
965
966
967 Feature: Clear flash storage for data log feature.
968
969 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
970
971 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
972 |(% style="background-color:#4f81bd; color:white; width:157px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:137px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:209px" %)**Response**
973 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
974 Clear all stored sensor data…
975
976 OK
977 )))
978
979 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
980
981 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
982
983 == 4.11 Auto Send None-ACK messages ==
984
985
986 Feature: LHT65N-E5 will wait for ACK for each uplink, If LHT65N-E5 doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N-E5 keeps sending messages in normal periodically. Once LHT65N-E5 gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
987
988
989 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
990
991 The default factory setting is 0
992
993 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:367px" %)
994 |=(% style="width: 158px;background-color:#4f81bd; color:white" %)**Command Example**|=(% style="width: 122px;background-color:#4f81bd; color:white" %)**Function**|=(% style="width: 87px;background-color:#4f81bd; color:white" %)**Response**
995 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
996
997 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
998
999 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
1000
1001 = 5. Battery & How to replace =
1002
1003 == 5.1 Battery Type ==
1004
1005
1006 (((
1007 LHT65N-E5 is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
1008 )))
1009
1010 (((
1011 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1012
1013
1014 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
1015 )))
1016
1017 The minimum Working Voltage for the LHT65N-E5 is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
1018
1019
1020 == 5.2 Replace Battery ==
1021
1022
1023 LHT65N-E5 has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery (3.0v). Any brand should be ok.
1024
1025 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
1026
1027
1028 == 5.3 Battery Life Analyze ==
1029
1030
1031 (((
1032 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
1033 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
1034 )))
1035
1036
1037 (((
1038 A full detail test report for LHT65N-E5 on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
1039 )))
1040
1041
1042 = 6. FAQ =
1043
1044 == 6.1 How to use AT Command? ==
1045
1046
1047 Refer this link for [[UART Hardware Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/#H6.1HowtoconnecttoLHT65NUARTinterface3F]].
1048
1049
1050 (((
1051 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N-E5. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1052 )))
1053
1054 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1055
1056 AT Command List is as below:
1057
1058 AT+<CMD>? :  Help on <CMD>
1059
1060 AT+<CMD> :  Run <CMD>
1061
1062 AT+<CMD>=<value> :  Set the value
1063
1064 AT+<CMD>=? :  Get the value
1065
1066 AT+DEBUG:  Set more info output
1067
1068 ATZ:  Trig a reset of the MCU
1069
1070 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
1071
1072 AT+DEUI:  Get or Set the Device EUI
1073
1074 AT+DADDR:  Get or Set the Device Address
1075
1076 AT+APPKEY:  Get or Set the Application Key
1077
1078 AT+NWKSKEY:  Get or Set the Network Session Key
1079
1080 AT+APPSKEY:  Get or Set the Application Session Key
1081
1082 AT+APPEUI:  Get or Set the Application EUI
1083
1084 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1085
1086 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1087
1088 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
1089
1090 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1091
1092 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
1093
1094 AT+RX2FQ:  Get or Set the Rx2 window frequency
1095
1096 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1097
1098 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1099
1100 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1101
1102 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1103
1104 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1105
1106 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1107
1108 AT+NWKID:  Get or Set the Network ID
1109
1110 AT+FCU:  Get or Set the Frame Counter Uplink
1111
1112 AT+FCD:  Get or Set the Frame Counter Downlink
1113
1114 AT+CLASS:  Get or Set the Device Class
1115
1116 AT+JOIN:  Join network
1117
1118 AT+NJS:  Get the join status
1119
1120 AT+SENDB:  Send hexadecimal data along with the application port
1121
1122 AT+SEND:  Send text data along with the application port
1123
1124 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
1125
1126 AT+RECV:  Print last received data in raw format
1127
1128 AT+VER:  Get current image version and Frequency Band
1129
1130 AT+CFM:  Get or Set the confirmation mode (0-1)
1131
1132 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1133
1134 AT+SNR:  Get the SNR of the last received packet
1135
1136 AT+RSSI:  Get the RSSI of the last received packet
1137
1138 AT+TDC:  Get or set the application data transmission interval in ms
1139
1140 AT+PORT:  Get or set the application port
1141
1142 AT+DISAT:  Disable AT commands
1143
1144 AT+PWORD: Set password, max 9 digits
1145
1146 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
1147
1148 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
1149
1150 AT+PDTA:  Print the sector data from start page to stop page
1151
1152 AT+PLDTA:  Print the last few sets of data
1153
1154 AT+CLRDTA:  Clear the storage, record position back to 1st
1155
1156 AT+SLEEP:  Set sleep mode
1157
1158 AT+EXT:  Get or Set external sensor model
1159
1160 AT+BAT:  Get the current battery voltage in mV
1161
1162 AT+CFG:  Print all configurations
1163
1164 AT+WMOD:  Get or Set Work Mode
1165
1166 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
1167
1168 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
1169
1170 AT+SETCNT:  Set the count at present
1171
1172 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
1173
1174 AT+RPL:  Get or set response level
1175
1176 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
1177
1178 AT+LEAPSEC:  Get or Set Leap Second
1179
1180 AT+SYNCMOD:  Get or Set time synchronization method
1181
1182 AT+SYNCTDC:  Get or set time synchronization interval in day
1183
1184 AT+PID:  Get or set the PID
1185
1186
1187 == 6.2 Where to use AT commands and Downlink commands ==
1188
1189
1190 **AT commands:**
1191
1192 [[image:image-20220620153708-1.png||_mstalt="429806" height="603" width="723"]]
1193
1194
1195 **Downlink commands:**
1196
1197
1198
1199 (% style="color:blue" %)**TTN:**
1200
1201 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
1202
1203
1204
1205 (% style="color:blue" %)**Helium:**
1206
1207 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
1208
1209
1210
1211 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
1212
1213
1214 [[image:image-20220615094850-6.png||_mstalt="433082"]]
1215
1216
1217 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
1218
1219
1220
1221 (% style="color:blue" %)**Aws:**
1222
1223 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
1224
1225
1226 == 6.3 How to change the uplink interval? ==
1227
1228
1229 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
1230
1231
1232 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1233
1234
1235 == 6.4 How to upgrade firmware? ==
1236
1237
1238 Please check [[update instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/#H6.5Howtoupgradefirmware3F]].
1239
1240
1241 = 7. Order Info =
1242
1243
1244 Part Number: (% style="color:#4f81bd" %)** LHT65N-E5-XX**
1245
1246 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
1247
1248 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1249 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1250 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1251 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1252 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1253 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
1254 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1255 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1256
1257 = 8. Packing Info =
1258
1259
1260 **Package Includes**:
1261
1262 * LHT65N-E5 Temperature/Humidity/Illuminance Sensor x 1
1263
1264 = 9. Reference material =
1265
1266
1267 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
1268
1269 = 10. FCC Warning =
1270
1271
1272 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
1273
1274 (1) This device may not cause harmful interference;
1275
1276 (2) this device must accept any interference received, including interference that may cause undesired operation.
1277
1278
1279
1280
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0