Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230717152014-10.png||height="575" width="339"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14 = 1. Introduction =
15
16 == 1.1 What is LHT65N LoRaWAN (% style="display:none" %) (%%)Temperature & Humidity Sensor ==
17
18
19 (((
20 The Dragino LHT65N (% style="display:none" %) (%%)Temperature & Humidity sensor is a Long Range LoRaWAN Sensor. It includes a (% style="color:#4f81bd" %)**built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% style="color:#4f81bd" %)**Temperature Sensor.**
21 )))
22
23 (((
24 The LHT65N allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
25 )))
26
27 (((
28 LHT65N has a built-in 2400mAh non-chargeable battery which can be used for up to 10 years*.
29 )))
30
31 (((
32 LHT65N is full compatible with LoRaWAN v1.0.3 Class A protocol, it can work with a standard LoRaWAN gateway.
33 )))
34
35 (((
36 LHT65N supports (% style="color:#4f81bd" %)**Datalog Feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
37 )))
38
39 (((
40 *The actual battery life depends on how often to send data, please see the battery analyzer chapter.
41 )))
42
43
44 == 1.2 Features ==
45
46
47 * LoRaWAN v1.0.3 Class A protocol
48 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
49 * AT Commands to change parameters
50 * Remote configure parameters via LoRaWAN Downlink
51 * Firmware upgradeable via program port
52 * Built-in 2400mAh battery for up to 10 years of use.
53 * Built-in Temperature & Humidity sensor
54 * Optional External Sensors
55 * Tri-color LED to indicate working status
56 * Datalog feature (Max 3328 records)
57
58 == 1.3 Specification ==
59
60
61 (% style="color:#037691" %)**Built-in Temperature Sensor:**
62
63 * Resolution: 0.01 °C
64 * Accuracy Tolerance : Typ ±0.3 °C
65 * Long Term Drift: < 0.02 °C/yr
66 * Operating Range: -40 ~~ 85 °C
67
68 (% style="color:#037691" %)**Built-in Humidity Sensor:**
69
70 * Resolution: 0.04 %RH
71 * Accuracy Tolerance : Typ ±3 %RH
72 * Long Term Drift: < 0.02 °C/yr
73 * Operating Range: 0 ~~ 96 %RH
74
75 (% style="color:#037691" %)**External Temperature Sensor:**
76
77 * Resolution: 0.0625 °C
78 * ±0.5°C accuracy from -10°C to +85°C
79 * ±2°C accuracy from -55°C to +125°C
80 * Operating Range: -55 °C ~~ 125 °C
81
82 = 2. Connect LHT65N to IoT Server =
83
84 == 2.1 How does LHT65N work? ==
85
86
87 (((
88 LHT65N is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N is shipped with a worldwide unique set of OTAA keys. To use LHT65N in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N.
89 )))
90
91 (((
92 If LHT65N is under the coverage of this LoRaWAN network. LHT65N can join the LoRaWAN network automatically. After successfully joining, LHT65N will start to measure environment temperature and humidity, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes.
93 )))
94
95
96 == 2.2 How to Activate LHT65N? ==
97
98
99 (((
100 The LHT65N has two working modes:
101 )))
102
103 * (((
104 (% style="color:blue" %)**Deep Sleep Mode**(%%): LHT65N doesn't have any LoRaWAN activation. This mode is used for storage and shipping to save battery life.
105 )))
106 * (((
107 (% style="color:blue" %)**Working Mode**(%%):  In this mode, LHT65N works as LoRaWAN Sensor mode to Join LoRaWAN network and send out the sensor data to the server. Between each sampling/tx/rx periodically, LHT65N will be in STOP mode (IDLE mode), in STOP mode, LHT65N has the same power consumption as Deep Sleep mode. 
108 )))
109
110 (((
111 The LHT65N is set in deep sleep mode by default; The ACT button on the front is to switch to different modes:
112 )))
113
114
115 [[image:image-20230717144740-2.png||height="391" width="267"]]
116
117 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
118 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
119 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Test uplink status|(% style="background-color:#f2f2f2; width:225px" %)(((
120 If LHT65N is already Joined to rhe LoRaWAN network, LHT65N will send an uplink packet, if LHT65N has external sensor connected,(% style="color:blue" %)**Blue led** (%%)will blink once. If LHT65N has not external sensor, (% style="color:red" %)**Red led**(%%) will blink once.
121 )))
122 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
123 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, LHT65N will enter working mode and start to JOIN LoRaWAN network.
124 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after join in network.
125 )))
126 |(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means LHT65N is in Deep Sleep Mode.
127
128 == 2.3 Example to join LoRaWAN network ==
129
130
131 (% class="wikigeneratedid" %)
132 This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
133
134
135 (% class="wikigeneratedid" %)
136 [[image:image-20220522232442-1.png||_mstalt="427830" height="387" width="648"]]
137
138
139 (((
140 Assume the LPS8N is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network||_mstvisible="2"]], So it provides network coverage for LHT65N. Next we need to add the LHT65N device in TTN V3:
141 )))
142
143
144 === 2.3.1 Step 1: Create Device n TTN ===
145
146
147 (((
148 Create a device in TTN V3 with the OTAA keys from LHT65N.
149 )))
150
151 (((
152 Each LHT65N is shipped with a sticker with its device EUI, APP Key and APP EUI as below:
153 )))
154
155 [[image:image-20230426083319-1.png||height="258" width="556"]]
156
157 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screenshot:
158
159 Add APP EUI in the application.
160
161
162 [[image:image-20220522232916-3.png||_mstalt="430495"]]
163
164
165 [[image:image-20220522232932-4.png||_mstalt="430157"]]
166
167
168 [[image:image-20220522232954-5.png||_mstalt="431847"]]
169
170
171
172 (% style="color:red" %)**Note: LHT65N use same payload as LHT65.**
173
174
175 [[image:image-20220522233026-6.png||_mstalt="429403"]]
176
177
178 Input APP EUI,  APP KEY and DEV EUI:
179
180
181 [[image:image-20220522233118-7.png||_mstalt="430430"]]
182
183
184 === 2.3.2 Step 2: Activate LHT65N by pressing the ACT button for more than 5 seconds. ===
185
186
187 (((
188 Use ACT button to activate LHT65N and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
189 )))
190
191 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
192
193
194 == 2.4 Uplink Payload (Fport~=2) ==
195
196
197 (((
198 The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and (% style="color:#4f81bd" %)**every 20 minutes**(%%) send one uplink by default.
199 )))
200
201 (((
202 After each uplink, the (% style="color:blue" %)**BLUE LED**(%%) will blink once.
203 )))
204
205 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:390px" %)
206 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)(((
207 **Size(bytes)**
208 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)(((
209 **2**
210 )))|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)(((
211 **2**
212 )))|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)(((
213 **2**
214 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
215 **1**
216 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
217 **4**
218 )))
219 |(% style="width:97px" %)(((
220 **Value**
221 )))|(% style="width:39px" %)(((
222 [[BAT>>||anchor="H2.4.2BAT-BatteryInfo"]]
223 )))|(% style="width:100px" %)(((
224 (((
225 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
226 )))
227 )))|(% style="width:77px" %)(((
228 (((
229 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
230 )))
231 )))|(% style="width:47px" %)(((
232 [[Ext>>||anchor="H2.4.5Ext23"]] #
233 )))|(% style="width:51px" %)(((
234 [[Ext value>>||anchor="H2.4.6Extvalue"]]
235 )))
236
237 * The First 6 bytes: has fix meanings for every LHT65N.
238
239 * The 7th byte (EXT #): defines the external sensor model.
240
241 * The 8^^th^^ ~~ 11^^th^^ byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won't be these four bytes.)
242
243 === 2.4.1 Decoder in TTN V3 ===
244
245
246 When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N decoder in TTNv3 for friendly reading.
247
248 Below is the position to put the decoder and LHT65N decoder can be download from here: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
249
250
251 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
252
253
254 === 2.4.2 BAT-Battery Info ===
255
256
257 These two bytes of BAT include the battery state and the actually voltage.
258
259 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:477px" %)
260 |=(% style="width: 69px; background-color:#D9E2F3;color:#0070C0" %)(((
261 **Bit(bit)**
262 )))|=(% style="width: 253px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)[13:0]
263 |(% style="width:66px" %)(((
264 **Value**
265 )))|(% style="width:250px" %)(((
266 BAT Status
267 00(b): Ultra Low ( BAT <= 2.50v)
268 01(b): Low (2.50v <=BAT <= 2.55v)
269 10(b): OK (2.55v <= BAT <=2.65v)
270 11(b): Good (BAT >= 2.65v)
271 )))|(% style="width:152px" %)Actually BAT voltage
272
273 **(b)stands for binary**
274
275
276 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
277
278
279 Check the battery voltage for LHT65N.
280
281 * BAT status=(0Xcba4>>14)&0xFF=11 (BIN) ,very good
282
283 * Battery Voltage =0xCBA4&0x3FFF=0x0BA4=2980mV
284
285 === 2.4.3 Built-in Temperature ===
286
287
288 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
289
290 * Temperature:  0x0ABB/100=27.47℃
291
292 [[image:image-20220522235639-3.png||_mstalt="432120"]]
293
294 * Temperature:  (0xF5C6-65536)/100=-26.18℃
295
296 (% style="display:none" %)
297
298 === 2.4.4 Built-in Humidity ===
299
300
301 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
302
303 * Humidity:    0x025C/10=60.4%
304
305 (% style="display:none" %)
306
307 === 2.4.5 Ext # ===
308
309
310 Bytes for External Sensor:
311
312 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:425px" %)
313 |=(% style="width: 102px; background-color:#D9E2F3;color:#0070C0" %)**EXT # **Value|=(% style="width: 323px;background-color:#D9E2F3;color:#0070C0" %)External Sensor Type
314 |(% style="width:102px" %)0x01|(% style="width:319px" %)Sensor E3, Temperature Sensor
315 |(% style="width:102px" %)0x09|(% style="width:319px" %)Sensor E3, Temperature Sensor, Datalog Mod
316 |(% style="width:102px" %)0x01|(% style="width:319px" %)Sensor E3, Temperature Sensor
317 |(% style="width:102px" %)0x09|(% style="width:319px" %)Sensor E3, Temperature Sensor, Datalog Mod
318 |(% style="width:102px" %)0x01|(% style="width:319px" %)Sensor E3, Temperature Sensor
319 |(% style="width:102px" %)0x09|(% style="width:319px" %)Sensor E3, Temperature Sensor, Datalog Mod
320 |(% style="width:102px" %)0x01|(% style="width:319px" %)Sensor E3, Temperature Sensor
321 |(% style="width:102px" %)0x09|(% style="width:319px" %)Sensor E3, Temperature Sensor, Datalog Mod
322
323 === 2.4.6 Ext value ===
324
325 ==== 2.4.6.1 Ext~=1, E3 Temperature Sensor ====
326
327
328 [[image:image-20220522235639-5.png||_mstalt="432848"]]
329
330
331 * DS18B20 temp=0x0ADD/100=27.81℃
332
333 The last 2 bytes of data are meaningless
334
335
336
337 [[image:image-20220522235639-6.png||_mstalt="433212"]]
338
339
340 * External temperature= (0xF54F-65536)/100=-27.37℃
341
342 F54F :  (F54F & 8000 == 1) , temp = (F54F - 65536)/100 = 27.37℃
343
344 (0105 & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
345
346 The last 2 bytes of data are meaningless
347
348 If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃
349
350
351
352 ==== 2.4.6.2 Ext~=9, E3 sensor with Unix Timestamp ====
353
354
355 (((
356 Timestamp mode is designed for LHT65N with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
357 )))
358
359 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
360 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
361 **Size(bytes)**
362 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
363 **2**
364 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
365 **2**
366 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
367 **2**
368 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
369 **1**
370 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
371 **4**
372 )))
373 |(% style="width:110px" %)(((
374 **Value**
375 )))|(% style="width:71px" %)(((
376 External temperature
377 )))|(% style="width:99px" %)(((
378 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
379 )))|(% style="width:132px" %)(((
380 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
381 )))|(% style="width:54px" %)(((
382 Status & Ext
383 )))|(% style="width:64px" %)(((
384 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
385 )))
386
387 * **Battery status & Built-in Humidity**
388
389 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
390 |=(% style="width: 69px;background-color:#D9E2F3;color:#0070C0" %)Bit(bit)|=(% style="width: 258px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)[11:0]
391 |(% style="width:67px" %)**Value**|(% style="width:256px" %)(((
392 BAT Status
393 00(b): Ultra Low ( BAT <= 2.50v)
394 01(b): Low  (2.50v <=BAT <= 2.55v)
395 10(b): OK   (2.55v <= BAT <=2.65v)
396 11(b): Good   (BAT >= 2.65v)
397 )))|(% style="width:132px" %)(((
398 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
399 )))
400
401 * **Status & Ext Byte**
402
403 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
404 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Bits**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**7**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**5**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**[3:0]**
405 |(% style="width:96px" %)**Status&Ext**|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
406
407 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
408 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
409 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
410
411 ==== 2.4.6.3 Ext~=6, ADC Sensor(use with E2 Cable) ====
412
413
414 In this mode, user can connect external ADC sensor to check ADC value. The 3V3_OUT can
415
416 be used to power the external ADC sensor; user can control the power on time for this
417
418 (% style="color:blue" %)**sensor by setting:**
419
420 **AT+EXT=6,timeout**  (% style="color:red" %)**Time to power this sensor, from 0 ~~ 65535ms**
421
422 **For example:**
423
424 AT+EXT=6,1000 will power this sensor for 1000ms before sampling the ADC value.
425
426
427 Or use **downlink command A2** to set the same.
428
429 The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
430
431 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
432
433 [[image:image-20220628150112-1.png||_mstalt="427414" height="241" width="285"]]
434
435
436 When ADC_IN1 pin is connected to GND or suspended, ADC value is 0
437
438 [[image:image-20220628150714-4.png||_mstalt="431054"]]
439
440
441 When the voltage collected by ADC_IN1 is less than the minimum range, the minimum range will be used as the output; Similarly, when the collected voltage is greater than the maximum range, the maximum range will be used as the output.
442
443
444 1) The minimum range is about 0.1V. Each chip has internal calibration, so this value is close to 0.1V
445
446 [[image:image-20220628151005-5.png||_mstalt="429546"]]
447
448
449 2) The maximum range is about 1.1V. Each chip has internal calibration, so this value is close to 1.1v
450
451 [[image:image-20220628151056-6.png||_mstalt="431873"]]
452
453
454 3) Within range
455
456 [[image:image-20220628151143-7.png||_mstalt="431210"]]
457
458
459
460 ==== 2.4.6.4 Ext~=2 TMP117 Sensor((% style="display:none" %) (%%)Since Firmware v1.3)(% style="display:none" %) (%%) ====
461
462 [[image:image-20230717151328-8.png]]
463
464 (% style="display:none" %) (%%)
465
466
467
468 (% style="color:blue" %)**Ext=2,Temperature Sensor(TMP117):**
469
470 [[image:image-20220906102307-7.png||_mstalt="430443"]]
471
472
473 (% style="color:blue" %)**Interrupt Mode and Counting Mode:**(% style="color:blue; display:none" %)** **
474
475 The external cable NE2 can be use for MOD4 and MOD8
476
477
478
479 ==== 2.4.6.5 Ext~=11 SHT31 Sensor ((% style="display:none" %) (%%)Since Firmware v1.4.1) ====
480
481
482
483 [[image:image-20230717151245-7.png]]
484
485 (% style="color:blue" %)**Ext=11,Temperature & Humidity Sensor(SHT31):**
486
487 [[image:SHT31.png]]
488
489
490
491 ==== 2.4.6.6 Ext~=4 Interrupt Mode(Since Firmware v1.3) ====
492
493
494 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will send an uplink when there is a trigger.**
495
496
497 (% style="color:blue" %)**Interrupt Mode can be used to connect to external interrupt sensors such as:**
498
499 (% style="color:#037691" %)**Case 1: Door Sensor.** (%%)3.3v Out for such sensor is just to detect Open/Close.
500
501 In Open State, the power consumption is the same as if there is no probe
502
503 In Close state, the power consumption will be 3uA higher than normal.
504
505 [[image:image-20220906100852-1.png||_mstalt="429156" height="205" width="377"]]
506
507
508 Ext=4,Interrupt Sensor:
509
510 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:504px" %)
511 |(% style="width:101px" %)(((
512 **AT+EXT=4,1**
513 )))|(% style="width:395px" %)(((
514 **Sent uplink packet in both rising and falling interrupt**
515 )))
516 |(% style="width:101px" %)(((
517 **AT+EXT=4,2**
518 )))|(% style="width:395px" %)(((
519 **Sent uplink packet only in falling interrupt**
520 )))
521 |(% style="width:101px" %)(((
522 **AT+EXT=4,3**
523 )))|(% style="width:395px" %)(((
524 **Sent uplink packet only in rising interrupt**
525 )))
526
527 Trigger by falling edge:
528
529 [[image:image-20220906101145-2.png||_mstalt="428324"]]
530
531
532 Trigger by raising edge:
533
534 [[image:image-20220906101145-3.png||_mstalt="428688"]]
535
536
537
538 ==== 2.4.6.7 Ext~=8 Counting Mode(Since Firmware v1.3) ====
539
540
541 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will count for every interrupt and uplink periodically.**
542
543
544 (% style="color:blue" %)**Case 1**(%%):  Low power consumption Flow Sensor, such flow sensor has pulse output and the power consumption in uA level and can be powered by LHT65N.
545
546 [[image:image-20220906101320-4.png||_mstalt="427336" height="366" width="698"]]
547
548
549 (% style="color:blue" %)**Case 2**(%%):  Normal Flow Sensor: Such flow sensor has higher power consumption and is not suitable to be powered by LHT65N. It is powered by external power and output <3.3v pulse
550
551 [[image:image-20220906101320-5.png||_mstalt="427700" height="353" width="696"]]
552
553
554 Ext=8, Counting Sensor ( 4 bytes):
555
556 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:330px" %)
557 |(% style="width:131px" %)(((
558 **AT+EXT=8,0**
559 )))|(% style="width:195px" %)(((
560 **Count at falling interrupt**
561 )))
562 |(% style="width:131px" %)(((
563 **AT+EXT=8,1**
564 )))|(% style="width:195px" %)(((
565 **Count at rising interrupt**
566 )))
567 |(% style="width:131px" %)(((
568 **AT+SETCNT=60**
569 )))|(% style="width:195px" %)(((
570 **Sent current count to 60**
571 )))
572
573 [[image:image-20220906101320-6.png||_mstalt="428064"]]
574
575
576 (% style="color:blue" %)**A2 downlink Command:**
577
578 A2 02:  Same as AT+EXT=2 (AT+EXT= second byte)
579
580 A2 06 01 F4:  Same as AT+EXT=6,500 (AT+EXT= second byte, third and fourth bytes)
581
582 A2 04 02:  Same as AT+EXT=4,2 (AT+EXT= second byte, third byte)
583
584 A2 08 01 00:  Same as AT+EXT=8,0 (AT+EXT= second byte, fourth byte)
585
586 A2 08 02 00 00 00 3C:  Same as AT+ SETCNT=60  (AT+ SETCNT = 4th byte and 5th byte and 6th byte and 7th byte)
587
588
589 ==== 2.4.6.8 Ext~=10, E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2) ====
590
591
592 (((
593 Timestamp mode is designed for LHT65N with E2 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
594 )))
595
596 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
597 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
598 **Size(bytes)**
599 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
600 **2**
601 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
602 **2**
603 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
604 **2**
605 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
606 **1**
607 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
608 **4**
609 )))
610 |(% style="width:110px" %)(((
611 **Value**
612 )))|(% style="width:71px" %)(((
613 External temperature
614 )))|(% style="width:99px" %)(((
615 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
616 )))|(% style="width:132px" %)(((
617 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
618 )))|(% style="width:54px" %)(((
619 Status & Ext
620 )))|(% style="width:64px" %)(((
621 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
622 )))
623
624 * **Battery status & Built-in Humidity**
625
626 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
627 |=(% style="width: 69px;background-color:#D9E2F3;color:#0070C0" %)Bit(bit)|=(% style="width: 258px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)[11:0]
628 |(% style="width:67px" %)**Value**|(% style="width:256px" %)(((
629 BAT Status
630 00(b): Ultra Low ( BAT <= 2.50v)
631 01(b): Low  (2.50v <=BAT <= 2.55v)
632 10(b): OK   (2.55v <= BAT <=2.65v)
633 11(b): Good   (BAT >= 2.65v)
634 )))|(% style="width:132px" %)(((
635 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
636 )))
637
638 * **Status & Ext Byte**
639
640 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
641 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Bits**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**7**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**5**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**[3:0]**
642 |(% style="width:96px" %)**Status&Ext**|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
643
644 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
645 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok, 0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
646 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
647
648 == 2.5 Show data on Datacake ==
649
650
651 (((
652 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
653 )))
654
655
656 (((
657 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
658 )))
659
660 (((
661 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
662 )))
663
664
665 (((
666 Add Datacake:
667 )))
668
669
670 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
671
672
673
674 Select default key as Access Key:
675
676
677 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
678
679
680 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
681
682
683 [[image:image-20220523000825-9.png||_mstalt="430612" height="366" width="392"]]
684
685
686 [[image:image-20220523000825-10.png||_mstalt="450619" height="413" width="728"]]
687
688
689 == 2.6 Datalog Feature ==
690
691
692 (((
693 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N.
694 )))
695
696
697 === 2.6.1 Ways to get datalog via LoRaWAN ===
698
699
700 There are two methods:
701
702 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
703
704
705 (% style="color:blue" %)**Method 2: **(%%)Set [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]], LHT65N will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
706
707
708 (% style="color:red" %)**Note for method 2:**
709
710 * a) LHT65N will do an ACK check for data records sending to make sure every data arrive server.
711 * b) LHT65N will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N gets a ACK, LHT65N will consider there is a network connection and resend all NONE-ACK Message.
712
713 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
714
715
716 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
717
718
719 === 2.6.2 Unix TimeStamp ===
720
721
722 LHT65N uses Unix TimeStamp format based on
723
724
725 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
726
727
728
729 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
730
731 Below is the converter example
732
733 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
734
735
736 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
737
738
739 === 2.6.3 Set Device Time ===
740
741
742 (((
743 (% style="color:blue" %)**There are two ways to set device's time:**
744 )))
745
746 (((
747 **1.  Through LoRaWAN MAC Command (Default settings)**
748 )))
749
750 (((
751 User need to set SYNCMOD=1 to enable sync time via MAC command.
752 )))
753
754 (((
755 Once LHT65N Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N. If LHT65N fails to get the time from the server, LHT65N will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
756 )))
757
758 (((
759 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
760 )))
761
762
763 (((
764 **2. Manually Set Time**
765 )))
766
767 (((
768 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
769 )))
770
771
772 === 2.6.4 Poll sensor value ===
773
774
775 User can poll sensor value based on timestamps from the server. Below is the downlink command.
776
777 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:428px" %)
778 |(% style="background-color:#d9e2f3; color:#0070c0; width:58px" %)**1byte**|(% style="background-color:#d9e2f3; color:#0070c0; width:128px" %)**4bytes**|(% style="background-color:#d9e2f3; color:#0070c0; width:123px" %)**4bytes**|(% style="background-color:#d9e2f3; color:#0070c0; width:116px" %)**1byte**
779 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
780
781 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
782
783 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
784
785 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
786
787 Uplink Internal =5s, means LHT65N will send one packet every 5s. range 5~~255s.
788
789
790 === 2.6.5 Datalog Uplink payload ===
791
792
793 The Datalog poll reply uplink will use below payload format.
794
795 **Retrieval data payload:**
796
797 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
798 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)(((
799 **Size(bytes)**
800 )))|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**4**
801 |(% style="width:97px" %)**Value**|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.6Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
802
803 **Poll message flag & Ext:**
804
805 [[image:image-20221006192726-1.png||_mstalt="430508" height="112" width="754"]]
806
807 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]] feature)
808
809 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
810
811 * Poll Message Flag is set to 1.
812
813 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
814
815 For example, in US915 band, the max payload for different DR is:
816
817 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
818
819 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
820
821 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
822
823 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
824
825 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
826
827
828 **Example:**
829
830 If LHT65N has below data inside Flash:
831
832 [[image:image-20230426171833-4.png]]
833
834
835 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
836
837 Where : Start time: 60065F97 = time 21/1/19 04:27:03
838
839 Stop time: 60066DA7= time 21/1/19 05:27:03
840
841
842 **LHT65N will uplink this payload.**
843
844 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
845
846
847 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
848
849 Where the first 11 bytes is for the first entry:
850
851 7FFF089801464160065F97
852
853 Ext sensor data=0x7FFF/100=327.67
854
855 Temp=0x088E/100=22.00
856
857 Hum=0x014B/10=32.6
858
859 poll message flag & Ext=0x41,means reply data,Ext=1
860
861 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
862
863
864 == 2.7 Alarm Mode & Feature "Multi sampling, one uplink" ==
865
866
867 (((
868 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
869 )))
870
871 (((
872 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
873
874
875 === 2.7.1 ALARM MODE ( Since v1.3.1 firmware) ===
876
877
878 **Internal GXHT30 temperature alarm(Acquisition time: fixed at one minute)**
879
880 (((
881 (% class="box infomessage" %)
882 (((
883 **AT+WMOD=3**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
884
885 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
886
887 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
888
889 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
890
891 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
892
893 **AT+LEDALARM=1** :       Enable LED visual Alarm.
894 )))
895 )))
896
897 (% style="color:#4f81bd" %)**Downlink Command:**
898
899 AT+WMOD=1:  A501  , AT+WMOD=0 :  A600
900
901 AT+CITEMP=1 : A60001
902
903 AT+ARTEMP=1,60  :  A70001003C
904
905 AT+ARTEMP=-16,60 :  A7FFF0003C
906
907 AT+LEDALARM=1  :  3601
908
909
910 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
911
912 Total bytes: 8 bytes
913
914 **Example: **AA0100010001003C
915
916 WMOD=01
917
918 CITEMP=0001
919
920 TEMPlow=0001
921
922 TEMPhigh=003C
923
924
925 **DS18B20 and TMP117 Threshold Alarm**
926
927 **~ AT+WMOD=1,60,-10,20**
928
929 (% style="color:#4f81bd" %)**Downlink Command:**
930
931 **Example: **A5013CFC180014
932
933 MOD=01
934
935 CITEMP=3C(S)
936
937 TEMPlow=FC18
938
939 TEMPhigh=0014
940
941
942 **Fluctuation alarm for DS18B20 and TMP117(Acquisition time: minimum 1s)**
943
944 **AT+WMOD=2,60,5** 
945
946 (% style="color:#4f81bd" %)**Downlink Command:**
947
948 **Example: **A5023C05
949
950 MOD=02
951
952 CITEMP=3C(S)
953
954 temperature fluctuation=05
955
956
957 **Sampling multiple times and uplink together**
958
959 **AT+WMOD=3,1,60,20,-16,32,1**   
960
961 Explain:
962
963 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3**
964 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
965 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.
966 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
967 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
968 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
969
970 (% style="color:#4f81bd" %)**Downlink Command:**
971
972 **Example: **A50301003C14FFF0002001
973
974 MOD=03
975
976 TEMP=DS18B20
977
978 CITEMP=003C(S)
979
980 Total number of acquisitions=14
981
982 TEMPlow=FFF0
983
984 TEMPhigh=0020
985
986 ARTEMP=01
987
988
989 **Uplink payload( Fport=3)**
990
991 **Example: CBEA**01**0992**//0A41//**09C4**
992
993 BatV=CBEA
994
995 TEMP=DS18B20
996
997 Temp1=0992  ~/~/ 24.50℃
998
999 Temp2=0A41  ~/~/ 26.25℃
1000
1001 Temp3=09C4  ~/~/ 25.00℃
1002
1003 (% style="color:red" %)**Note: This uplink will automatically select the appropriate DR according to the data length**
1004
1005 (% style="color:red" %)** In this mode, the temperature resolution of ds18b20 is 0.25℃ to save power consumption**
1006 )))
1007
1008
1009 === 2.7.2 ALARM MODE ( Before v1.3.1 firmware) ===
1010
1011
1012 (% class="box infomessage" %)
1013 (((
1014 (((
1015 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
1016 )))
1017
1018 (((
1019 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
1020 )))
1021
1022 (((
1023 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
1024 )))
1025
1026 (((
1027 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
1028 )))
1029
1030 (((
1031 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
1032 )))
1033 )))
1034
1035 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
1036
1037 Total bytes: 8 bytes
1038
1039 **Example:**AA0100010001003C
1040
1041 WMOD=01
1042
1043 CITEMP=0001
1044
1045 TEMPlow=0001
1046
1047 TEMPhigh=003C
1048
1049
1050 == 2.8 LED Indicator ==
1051
1052
1053 The LHT65 has a triple color LED which for easy showing different stage .
1054
1055 While user press ACT button, the LED will work as per LED status with ACT button.
1056
1057 In a normal working state:
1058
1059 * For each uplink, the BLUE LED or RED LED will blink once.
1060 BLUE LED when external sensor is connected.
1061 * RED LED when external sensor is not connected
1062 * For each success downlink, the PURPLE LED will blink once
1063
1064 == 2.9 installation ==
1065
1066
1067 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
1068
1069
1070 = 3. Sensors and Accessories =
1071
1072 == 3.1 E2 Extension Cable ==
1073
1074
1075 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
1076
1077
1078 **1m long breakout cable for LHT65N. Features:**
1079
1080 * (((
1081 Use for AT Command, works for both LHT52/LHT65N
1082 )))
1083 * (((
1084 Update firmware for LHT65N, works for both LHT52/LHT65N
1085 )))
1086 * (((
1087 Supports ADC mode to monitor external ADC
1088 )))
1089 * (((
1090 Supports Interrupt mode
1091 )))
1092 * (((
1093 Exposed All pins from the LHT65N Type-C connector.
1094
1095
1096
1097 )))
1098
1099 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
1100
1101
1102 == 3.2 E3 Temperature Probe ==
1103
1104
1105 [[image:image-20220515080154-4.png||_mstalt="434681" alt="photo-20220515080154-4.png" height="182" width="161"]] [[image:image-20220515080330-5.png||_mstalt="428792" height="201" width="195"]]
1106
1107
1108 Temperature sensor with 2 meters cable long
1109
1110 * Resolution: 0.0625 °C
1111 * ±0.5°C accuracy from -10°C to +85°C
1112 * ±2°C accuracy from -55°C to +125°C
1113 * Operating Range: -40 ~~ 125 °C
1114 * Working voltage 2.35v ~~ 5v
1115
1116 == 3.3 E31F Temperature Probe ==
1117
1118
1119 [[image:65N-E31F-1.jpg||height="169" width="170"]] [[image:image-20230717151424-9.png||height="221" width="204"]](% style="display:none" %)
1120
1121
1122 Temperature sensor with 1 meters cable long
1123
1124
1125 **Built-in Temperature Sensor:**
1126
1127 * Resolution: 0.01 °C
1128 * Accuracy Tolerance : Typ ±0.3 °C
1129 * Long Term Drift: < 0.02 °C/yr
1130 * Operating Range: -40 ~~ 80 °C
1131
1132 **Built-in Humidity Sensor:**
1133
1134 * Resolution: 0.04 % RH
1135 * Accuracy Tolerance : Typ ±3 % RH
1136 * Long Term Drift: < 0.02 °C/yr
1137 * Operating Range: 0 ~~ 96 % RH
1138
1139 **External Temperature Sensor :**
1140
1141 * Resolution: 0.01 °C
1142 * Accuracy Tolerance : Typical ±0.3 °C
1143 * Long Term Drift: < 0.02 °C/yr
1144 * Operating Range: -40 ~~ 125 °C
1145
1146 **External Humidity Sensor :**
1147
1148 * Resolution: 0.04 % RH
1149 * Accuracy Tolerance : Typ ±3 % RH
1150 * Long Term Drift: < 0.02 °C/yr
1151 * Operating Range: 0 ~~ 96 % RH
1152
1153 = 4. Configure LHT65N via AT command or LoRaWAN downlink =
1154
1155
1156 (((
1157 Use can configure LHT65N via AT Command or LoRaWAN Downlink.
1158 )))
1159
1160 * (((
1161 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
1162 )))
1163
1164 * (((
1165 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
1166 )))
1167
1168 (((
1169 There are two kinds of commands to configure LHT65N, they are:
1170 )))
1171
1172 * (((
1173 (% style="color:#4f81bd" %)**General Commands**.
1174 )))
1175
1176 (((
1177 These commands are to configure:
1178 )))
1179
1180 1. (((
1181 General system settings like: uplink interval.
1182 )))
1183 1. (((
1184 LoRaWAN protocol & radio-related commands.
1185 )))
1186
1187 (((
1188 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1189 )))
1190
1191 * (((
1192 (% style="color:#4f81bd" %)**Commands special design for LHT65N**
1193 )))
1194
1195 (((
1196 These commands are only valid for LHT65N, as below:
1197 )))
1198
1199
1200 == 4.1 Set Transmit Interval Time ==
1201
1202
1203 Feature: Change LoRaWAN End Node Transmit Interval.
1204
1205
1206 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
1207
1208 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:501px" %)
1209 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:166px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:180px" %)**Response**
1210 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)30000 OK the interval is 30000ms = 30s
1211 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)OK Set transmit interval to 60000ms = 60 seconds
1212
1213 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
1214
1215 Format: Command Code (0x01) followed by 3 bytes time value.
1216
1217 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1218
1219 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1220
1221 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1222
1223 == 4.2 Set External Sensor Mode ==
1224
1225
1226 Feature: Change External Sensor Mode.
1227
1228 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
1229
1230 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:468px" %)
1231 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:153px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:160px" %)**Response**
1232 |(% style="width:155px" %)AT+EXT=?|(% style="width:151px" %)Get current external sensor mode|(% style="width:158px" %)1 OK External Sensor mode =1
1233 |(% style="width:155px" %)AT+EXT=1|(% colspan="2" rowspan="1" style="width:309px" %)Set external sensor mode to 1
1234 |(% style="width:155px" %)AT+EXT=9|(% colspan="2" rowspan="1" style="width:309px" %)Set to external DS18B20 with timestamp
1235
1236 (% style="color:#4f81bd" %)**Downlink Command: 0xA2**
1237
1238 Total bytes: 2 ~~ 5 bytes
1239
1240 **Example:**
1241
1242 * 0xA201: Set external sensor type to E1
1243
1244 * 0xA209: Same as AT+EXT=9
1245
1246 * 0xA20702003c: Same as AT+SETCNT=60
1247
1248 == 4.3 Enable/Disable uplink Temperature probe ID ==
1249
1250
1251 (((
1252 Feature: If PID is enabled, device will send the temperature probe ID on:
1253 )))
1254
1255 * (((
1256 First Packet after OTAA Join
1257 )))
1258 * (((
1259 Every 24 hours since the first packet.
1260 )))
1261
1262 (((
1263 PID is default set to disable (0)
1264
1265
1266 )))
1267
1268 (% style="color:#4f81bd" %)**AT Command:**
1269
1270 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:381px" %)
1271 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:138px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:88px" %)**Response**
1272 |(% style="width:155px" %)AT+PID=1|(% style="width:136px" %)Enable PID uplink|(% style="width:86px" %)OK
1273
1274 (% style="color:#4f81bd" %)**Downlink Command:**
1275
1276 * **0xA800**  **~-~->** AT+PID=0
1277 * **0xA801**     **~-~->** AT+PID=1
1278
1279 == 4.4 Set Password ==
1280
1281
1282 Feature: Set device password, max 9 digits
1283
1284 (% style="color:#4f81bd" %)**AT Command: AT+PWORD**
1285
1286 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:372px" %)
1287 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:128px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**Response**
1288 |(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
1289 123456
1290
1291 OK
1292 )))
1293 |(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
1294
1295 (% style="color:#4f81bd" %)**Downlink Command:**
1296
1297 No downlink command for this feature.
1298
1299
1300 == 4.5 Quit AT Command ==
1301
1302
1303 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
1304
1305 (% style="color:#4f81bd" %)**AT Command: AT+DISAT**
1306
1307 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
1308 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:191px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:86px" %)**Response**
1309 |(% style="width:155px" %)AT+DISAT|(% style="width:191px" %)Quit AT Commands mode|(% style="width:86px" %)OK
1310
1311 (% style="color:#4f81bd" %)**Downlink Command:**
1312
1313 No downlink command for this feature.
1314
1315
1316 == 4.6 Set to sleep mode ==
1317
1318
1319 Feature: Set device to sleep mode
1320
1321 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
1322 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
1323
1324 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
1325
1326 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:513px" %)
1327 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:218px" %)**Response**
1328 |(% style="width:155px" %)AT+SLEEP|(% style="width:139px" %)Set to sleep mode|(% style="width:213px" %)(((
1329 Clear all stored sensor data…
1330
1331 OK
1332 )))
1333
1334 (% style="color:#4f81bd" %)**Downlink Command:**
1335
1336 * There is no downlink command to set to Sleep mode.
1337
1338 == 4.7 Set system time ==
1339
1340
1341 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
1342
1343 (% style="color:#4f81bd" %)**AT Command:**
1344
1345 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:506px" %)
1346 |(% style="background-color:#d9e2f3; color:#0070c0; width:188px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:318px" %)**Function**
1347 |(% style="width:154px" %)AT+TIMESTAMP=1611104352|(% style="width:285px" %)(((
1348 OK
1349
1350 Set System time to 2021-01-20 00:59:12
1351 )))
1352
1353 (% style="color:#4f81bd" %)**Downlink Command:**
1354
1355 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
1356
1357
1358 == 4.8 Set Time Sync Mode ==
1359
1360
1361 (((
1362 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
1363 )))
1364
1365 (((
1366 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
1367 )))
1368
1369 (% style="color:#4f81bd" %)**AT Command:**
1370
1371 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:475px" %)
1372 |(% style="background-color:#d9e2f3; color:#0070c0; width:156px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:315px" %)**Function**
1373 |(% style="width:156px" %)AT+SYNCMOD=1|(% style="width:315px" %)Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
1374
1375 (% style="color:#4f81bd" %)**Downlink Command:**
1376
1377 0x28 01  ~/~/  Same As AT+SYNCMOD=1
1378 0x28 00  ~/~/  Same As AT+SYNCMOD=0
1379
1380
1381 == 4.9 Set Time Sync Interval ==
1382
1383
1384 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
1385
1386 (% style="color:#4f81bd" %)**AT Command:**
1387
1388 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:472px" %)
1389 |(% style="background-color:#d9e2f3; color:#0070c0; width:158px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:314px" %)**Function**
1390 |(% style="width:156px" %)AT+SYNCTDC=0x0A |(% style="width:311px" %)Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
1391
1392 (% style="color:#4f81bd" %)**Downlink Command:**
1393
1394 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
1395
1396
1397 == 4.10 Print data entries base on page. ==
1398
1399
1400 Feature: Print the sector data from start page to stop page (max is 416 pages).
1401
1402 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1403
1404 [[image:image-20230426164330-2.png]]
1405
1406 (% style="color:#4f81bd" %)**Downlink Command:**
1407
1408 No downlink commands for feature
1409
1410
1411 == 4.11 Print last few data entries. ==
1412
1413
1414 Feature: Print the last few data entries
1415
1416 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1417
1418 [[image:image-20230426164932-3.png]]
1419
1420 (% style="color:#4f81bd" %)**Downlink Command:**
1421
1422 No downlink commands for feature
1423
1424
1425 == 4.12 Clear Flash Record ==
1426
1427
1428 Feature: Clear flash storage for data log feature.
1429
1430 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1431
1432 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:503px" %)
1433 |(% style="background-color:#d9e2f3; color:#0070c0; width:157px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:137px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:209px" %)**Response**
1434 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1435 Clear all stored sensor data…
1436
1437 OK
1438 )))
1439
1440 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1441
1442 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1443
1444 == 4.13 Auto Send None-ACK messages ==
1445
1446
1447 Feature: LHT65N will wait for ACK for each uplink, If LHT65N doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N keeps sending messages in normal periodically. Once LHT65N gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
1448
1449 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
1450
1451 The default factory setting is 0
1452
1453 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:367px" %)
1454 |=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 87px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1455 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
1456
1457 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
1458
1459 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
1460
1461 == 4.14 Modified WMOD command for external sensor TMP117 or DS18B20 temperature alarm(Since firmware 1.3.0) ==
1462
1463
1464 Feature: Set internal and external temperature sensor alarms.
1465
1466 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
1467 |=(% style="width: 250px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1468 |(% style="width:268px" %)AT+WMOD=parameter1,parameter2,parameter3,parameter4|(% style="width:255px" %)Set internal and external temperature sensor alarms|(% style="width:181px" %)OK
1469
1470 (% style="color:#037691" %)**AT+WMOD=parameter1,parameter2,parameter3,parameter4**
1471
1472 (% style="color:#037691" %)**Parameter 1**(%%):  Alarm mode:
1473
1474 0): Cancel
1475
1476 1): Threshold alarm
1477
1478 2): Fluctuation alarm
1479
1480 3):Sampling multiple times and uplink together
1481
1482
1483 (% style="color:#037691" %)** Parameter 2**(%%):  Sampling time. Unit: seconds, up to 255 seconds.
1484
1485 (% style="color:red" %)**Note: When the collection time is less than 60 seconds and always exceeds the set alarm threshold, the sending interval will not be the collection time, but will be sent every 60 seconds.**
1486
1487
1488 (% style="color:#037691" %) **Parameter 3 and parameter 4:**
1489
1490 1):  If Alarm Mode is set to 1: Parameter 3 and parameter 4 are valid, as before, they represent low temperature and high temperature.
1491
1492 Such as AT+WMOD=1,60,45,105, it means high and low temperature alarm.
1493
1494
1495 2):  If Alarm Mode is set to 2: Parameter 3 is valid, which represents the difference between the currently collected temperature and the last uploaded temperature.
1496
1497 Such as AT+WMOD=2,10,2,it means that it is a fluctuation alarm.
1498
1499 If the difference between the current collected temperature and the last Uplin is ±2 degrees, the alarm will be issued.
1500
1501
1502 3): If Alarm Mode is set to 3:
1503
1504 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3**
1505 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1506 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.
1507 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1508 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1509 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1510
1511 (% style="color:#4f81bd" %)**Downlink Command: 0xA5**
1512
1513 0xA5 00 ~-~- AT+WMOD=0.
1514
1515 0xA5 01 0A 11 94 29 04 ~-~- AT+WMOD=1,10,45,105  (AT+WMOD = second byte, third byte, fourth and fifth bytes divided by 100, sixth and seventh bytes divided by 100 )
1516
1517 0XA5 01 0A F9 C0 29 04 ~-~-AT+WMOD=1,10,-16,105(Need to convert -16 to -1600 for calculation,-1600(DEC)=FFFFFFFFFFFFF9C0(HEX)  FFFFFFFFFFFFF9C0(HEX) +10000(HEX)=F9C0(HEX))
1518
1519 0xA5 02 0A 02 ~-~- AT+WMOD=2,10,2  (AT+WMOD = second byte, third byte, fourth byte)
1520
1521 0xA5 03 01 00 3C 14 FF F0 00 20 01~-~-AT+WMOD=3,1,60,20,-16,32,1
1522
1523 0xA5 FF ~-~- After the device receives it, upload the current alarm configuration (FPORT=8). Such as 01 0A 11 94 29 04 or 02 0A 02.
1524
1525
1526 = 5. Battery & How to replace =
1527
1528 == 5.1 Battery Type ==
1529
1530
1531 (((
1532 LHT65N is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
1533 )))
1534
1535 (((
1536 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1537
1538
1539 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
1540 )))
1541
1542 The minimum Working Voltage for the LHT65N is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
1543
1544
1545 == 5.2 Replace Battery ==
1546
1547
1548 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
1549
1550 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
1551
1552
1553 == 5.3 Battery Life Analyze ==
1554
1555
1556 (((
1557 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
1558 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
1559 )))
1560
1561
1562 (((
1563 A full detail test report for LHT65N on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
1564 )))
1565
1566
1567 = 6. FAQ =
1568
1569 == 6.1 How to use AT Command? ==
1570
1571
1572 LHT65N supports AT Command set.User can use a USB to TTL adapter plus the Program Cable to connect to LHT65 for using AT command, as below.
1573
1574 [[image:image-20220530085651-1.png||_mstalt="429949"]]
1575
1576
1577 **Connection:**
1578
1579 * (% style="background-color:yellow" %)**USB to TTL GND <~-~->GND**
1580 * (% style="background-color:yellow" %)**USB to TTL RXD <~-~-> D+**
1581 * (% style="background-color:yellow" %)**USB to TTL TXD <~-~-> A11**
1582
1583 (((
1584 (% _mstmutation="1" style="color:red" %)**(Note: This pin only corresponds to the lead-out board sold by dragino company. For the lead-out board purchased by yourself, please refer to the pin description in Chapter 6.6)**
1585
1586 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**) (%%)to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1587 )))
1588
1589
1590 Input password and ATZ to activate LHT65N,As shown below:
1591
1592 [[image:image-20220530095701-4.png||_mstalt="430014"]]
1593
1594
1595 AT Command List is as below:
1596
1597 AT+<CMD>? :  Help on <CMD>
1598
1599 AT+<CMD> :  Run <CMD>
1600
1601 AT+<CMD>=<value> :  Set the value
1602
1603 AT+<CMD>=? :  Get the value
1604
1605 AT+DEBUG:  Set more info output
1606
1607 ATZ:  Trig a reset of the MCU
1608
1609 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
1610
1611 AT+DEUI:  Get or Set the Device EUI
1612
1613 AT+DADDR:  Get or Set the Device Address
1614
1615 AT+APPKEY:  Get or Set the Application Key
1616
1617 AT+NWKSKEY:  Get or Set the Network Session Key
1618
1619 AT+APPSKEY:  Get or Set the Application Session Key
1620
1621 AT+APPEUI:  Get or Set the Application EUI
1622
1623 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1624
1625 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1626
1627 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
1628
1629 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1630
1631 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
1632
1633 AT+RX2FQ:  Get or Set the Rx2 window frequency
1634
1635 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1636
1637 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1638
1639 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1640
1641 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1642
1643 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1644
1645 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1646
1647 AT+NWKID:  Get or Set the Network ID
1648
1649 AT+FCU:  Get or Set the Frame Counter Uplink
1650
1651 AT+FCD:  Get or Set the Frame Counter Downlink
1652
1653 AT+CLASS:  Get or Set the Device Class
1654
1655 AT+JOIN:  Join network
1656
1657 AT+NJS:  Get the join status
1658
1659 AT+SENDB:  Send hexadecimal data along with the application port
1660
1661 AT+SEND:  Send text data along with the application port
1662
1663 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
1664
1665 AT+RECV:  Print last received data in raw format
1666
1667 AT+VER:  Get current image version and Frequency Band
1668
1669 AT+CFM:  Get or Set the confirmation mode (0-1)
1670
1671 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1672
1673 AT+SNR:  Get the SNR of the last received packet
1674
1675 AT+RSSI:  Get the RSSI of the last received packet
1676
1677 AT+TDC:  Get or set the application data transmission interval in ms
1678
1679 AT+PORT:  Get or set the application port
1680
1681 AT+DISAT:  Disable AT commands
1682
1683 AT+PWORD: Set password, max 9 digits
1684
1685 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
1686
1687 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
1688
1689 AT+PDTA:  Print the sector data from start page to stop page
1690
1691 AT+PLDTA:  Print the last few sets of data
1692
1693 AT+CLRDTA:  Clear the storage, record position back to 1st
1694
1695 AT+SLEEP:  Set sleep mode
1696
1697 AT+EXT:  Get or Set external sensor model
1698
1699 AT+BAT:  Get the current battery voltage in mV
1700
1701 AT+CFG:  Print all configurations
1702
1703 AT+WMOD:  Get or Set Work Mode
1704
1705 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
1706
1707 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
1708
1709 AT+SETCNT:  Set the count at present
1710
1711 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
1712
1713 AT+RPL:  Get or set response level
1714
1715 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
1716
1717 AT+LEAPSEC:  Get or Set Leap Second
1718
1719 AT+SYNCMOD:  Get or Set time synchronization method
1720
1721 AT+SYNCTDC:  Get or set time synchronization interval in day
1722
1723 AT+PID:  Get or set the PID
1724
1725
1726 == 6.2 Where to use AT commands and Downlink commands ==
1727
1728
1729 **AT commands: **
1730
1731 [[image:image-20220620153708-1.png||_mstalt="429806" height="603" width="723"]]
1732
1733
1734 **Downlink commands:**
1735
1736
1737 (% style="color:blue" %)**TTN:**
1738
1739 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
1740
1741
1742
1743 (% style="color:blue" %)**Helium: **
1744
1745 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
1746
1747
1748
1749 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
1750
1751
1752 [[image:image-20220615094850-6.png||_mstalt="433082"]]
1753
1754
1755 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
1756
1757
1758
1759 (% style="color:blue" %)**Aws:**
1760
1761 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
1762
1763
1764 == 6.3 How to change the uplink interval? ==
1765
1766
1767 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
1768
1769
1770 == 6.4 How to use TTL-USB to connect a PC to input AT commands? ==
1771
1772
1773 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1774
1775 [[image:1655802313617-381.png||_mstalt="293917"]]
1776
1777
1778 (((
1779 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1780 )))
1781
1782
1783 Input password and ATZ to activate LHT65N, As shown below:
1784
1785 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1786
1787
1788 == 6.5 How to use TTL-USB to connect PC to upgrade firmware? ==
1789
1790
1791 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1792
1793
1794 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AAAnJD_qGZ42bB52o4UmH9v9a/LHT65N%20Temperature%20%26%20Humidity%20Sensor/tool?dl=0&subfolder_nav_tracking=1]]  first.
1795
1796 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1797
1798
1799
1800 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): wiring method.(% style="display:none" %)
1801
1802 First connect the four lines;(% style="display:none" %)
1803
1804 [[image:image-20220621170938-1.png||_mstalt="431340" height="413" width="419"]],(% style="display:none" %)
1805
1806
1807 Then use DuPont cable to short circuit port3 and port1, and then release them, so that the device enters bootlaod mode.
1808
1809 [[image:image-20220621170938-2.png||_mstalt="431704"]]
1810
1811
1812
1813 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
1814
1815 [[image:image-20220615171334-6.png||_mstalt="431028"]]
1816
1817
1818 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
1819
1820
1821 When this interface appears, it indicates that the download has been completed.
1822
1823 [[image:image-20220620160723-8.png||_mstalt="430703"]]
1824
1825
1826 Finally, unplug the DuPont cable on port4, and then use the DuPont cable to short circuit port3 and port1 to reset the device.
1827
1828
1829 == 6.6 Using USB-TYPE-C to connect to the computer using the AT command ==
1830
1831
1832 [[image:image-20220623110706-1.png||_mstalt="427869"]]
1833
1834
1835 **UART Port of LHT65N:**
1836
1837 * (% class="mark" %)**PB0: RXD**
1838 * (% class="mark" %)**PB1: TXD**
1839 * (% class="mark" %)**GND**
1840
1841 [[image:image-20220623112117-4.png||_mstalt="428350" height="459" width="343"]]
1842
1843
1844 (((
1845 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1846 )))
1847
1848
1849 Input password and ATZ to activate LHT65N,As shown below:
1850
1851 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1852
1853
1854 == 6.7 How to use  USB-TYPE-C to connect PC to upgrade firmware? ==
1855
1856
1857 [[image:image-20220623110706-1.png||_mstalt="427869"]]
1858
1859
1860 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AAAnJD_qGZ42bB52o4UmH9v9a/LHT65N%20Temperature%20%26%20Humidity%20Sensor/tool?dl=0&subfolder_nav_tracking=1]]  first.
1861
1862 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1863
1864
1865
1866 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): wiring method.(% style="display:none" %)
1867
1868 First connect the four lines;
1869
1870 [[image:image-20220623113959-5.png||_mstalt="433485" height="528" width="397"]]
1871
1872 Connect A8 and GND with Dupont wire for a while and then separate, enter reset mode
1873
1874
1875
1876 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
1877
1878 [[image:image-20220615171334-6.png||_mstalt="431028"]]
1879
1880
1881 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
1882
1883
1884 When this interface appears, it indicates that the download has been completed.
1885
1886 [[image:image-20220620160723-8.png||_mstalt="430703"]]
1887
1888
1889 Finally,Disconnect 3.3v, Connect A8 and GND with Dupont wire for a while and then separate, exit reset mode
1890
1891
1892 == 6.8 Why can't I see the datalog information ==
1893
1894
1895 ~1. The time is not aligned, and the correct query command is not used.
1896
1897 2. Decoder error, did not parse the datalog data, the data was filtered.
1898
1899
1900 = 7. Order Info =
1901
1902
1903 Part Number: (% style="color:#4f81bd" %)** LHT65N-XX-YY**
1904
1905 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
1906
1907 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1908 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1909 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1910 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1911 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1912 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
1913 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1914 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1915
1916 (% style="color:#4f81bd" %)**YY**(%%): Sensor Accessories
1917
1918 * (% style="color:red" %)**E3**(%%): External Temperature Probe
1919
1920 = 8. Packing Info =
1921
1922
1923 **Package Includes**:
1924
1925 * LHT65N Temperature & Humidity Sensor x 1
1926 * Optional external sensor
1927
1928 = 9. Reference material =
1929
1930
1931 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
1932
1933 = 10. FCC Warning =
1934
1935
1936 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
1937
1938 (1) This device may not cause harmful interference;
1939
1940 (2) this device must accept any interference received, including interference that may cause undesired operation.
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0