Show last authors
1 (% style="display:none" %) (%%) (% style="display:none" %)
2
3 (% style="text-align:center" %)
4 [[image:image-20240108084517-3.png]]
5
6 (% style="display:none" %) (%%)
7
8
9
10
11
12
13
14
15
16 **Table of Contents :**
17
18 {{toc/}}
19
20
21
22
23
24
25 = 1. Introduction =
26
27 == 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
28
29
30 The Dragino LDS40-LB/LS is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable of measuring the distance to objects as close as 0m to 40m. The LiDAR probe uses laser induction technology for distance measurement.
31
32 The LDS40-LB/LS can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
33
34 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
35
36 The LoRa wireless technology used in LDS40-LB/LS allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
37
38 LDS40-LB/LS (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
39
40 LDS40-LB/LS is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery **(%%)or (% style="color:blue" %)**solar powered + li-on battery**(%%), it is designed for long term use up to 5 years.
41
42 Each LDS40-LB/LS is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
43
44 [[image:image-20230715115406-2.png||height="500" width="871"]]
45
46
47 == 1.2 ​Features ==
48
49
50 * LoRaWAN 1.0.3 Class A
51 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
52 * Ultra-low power consumption
53 * Laser technology for distance detection
54 * Measure Distance: 0.1m ~~ 40m @ 90% Reflectivity
55 * Monitor Battery Level
56 * Support Bluetooth v5.1 and LoRaWAN remote configure
57 * Support wireless OTA update firmware
58 * AT Commands to change parameters
59 * Downlink to change configure
60 * 8500mAh Li/SOCl2 Battery (LDS40-LB)
61 * Solar panel + 3000mAh Li-on battery (LDS40-LS)
62
63 == 1.3 Specification ==
64
65
66 (% style="color:#037691" %)**Common DC Characteristics:**
67
68 * Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
69 * Operating Temperature: -40 ~~ 85°C
70
71 (% style="color:#037691" %)**Probe Spec:**
72
73 * Storage temperature:-30°C~~80°C
74 * Operating temperature: -20°C~~60°C
75 * Measure Distance:
76 ** 0.1m ~~ 40m @ 90% Reflectivity
77 ** 0.1m ~~ 13.5m @ 10% Reflectivity
78 * Distance resolution: 1cm
79 * Ambient light immunity: 100klux
80 * Enclosure rating : IP65
81 * Light source : VCSEL
82 * Central wavelength : 850nm
83 * FOV : 3°
84 * Material of enclosure : ABS+PC
85 * Wire length : 75cm
86
87 (% style="color:#037691" %)**LoRa Spec:**
88
89 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz, Band 2 (LF): 410 ~~ 528 Mhz
90 * Max +22 dBm constant RF output vs.
91 * RX sensitivity: down to -139 dBm.
92 * Excellent blocking immunity
93
94 (% style="color:#037691" %)**Battery:**
95
96 * Li/SOCI2 un-chargeable battery
97 * Capacity: 8500mAh
98 * Self-Discharge: <1% / Year @ 25°C
99 * Max continuously current: 130mA
100 * Max boost current: 2A, 1 second
101
102 (% style="color:#037691" %)**Power Consumption**
103
104 * Sleep Mode: 5uA @ 3.3v
105 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
106
107 == 1.4 Applications ==
108
109
110 * Horizontal distance measurement
111 * Parking management system
112 * Object proximity and presence detection
113 * Intelligent trash can management system
114 * Robot obstacle avoidance
115 * Automatic control
116 * Sewer
117
118 (% style="display:none" %)
119
120 == 1.5 Sleep mode and working mode ==
121
122
123 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
124
125 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
126
127
128 == 1.6 Button & LEDs ==
129
130
131 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]
132
133 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
134 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
135 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
136 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
137 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
138 )))
139 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
140 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
141 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
142 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
143 )))
144 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
145
146 == 1.7 BLE connection ==
147
148
149 LDS40-LB/LS support BLE remote configure.
150
151 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
152
153 * Press button to send an uplink
154 * Press button to active device.
155 * Device Power on or reset.
156
157 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
158
159
160 == 1.8 Pin Definitions ==
161
162 [[image:http://8.211.40.43/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS12-LB_LoRaWAN_LiDAR_ToF_Distance_Sensor_User_Manual/WebHome/image-20230805144259-1.png?width=741&height=413&rev=1.1||alt="image-20230805144259-1.png"]]
163
164
165 == 1.9 Mechanical ==
166
167 === 1.9.1 for LB version ===
168
169 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/DDS75-LB_LoRaWAN_Distance_Detection_Sensor_User_Manual/WebHome/image-20240105152536-3.png?rev=1.1||alt="image-20240105152536-3.png"]]
170
171
172
173
174
175 (% style="color:blue" %)**Probe Mechanical:**
176
177 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS40-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1666948963951-832.png?rev=1.1||alt="1666948963951-832.png"]]
178
179
180 === 1.9.2 for LS version ===
181
182
183 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/WebHome/image-20231231203439-3.png?width=886&height=385&rev=1.1||alt="image-20231231203439-3.png"]]
184
185
186 = 2. Configure LDS40-LB/LS to connect to LoRaWAN network =
187
188 == 2.1 How it works ==
189
190
191 The LDS40-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS40-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
192
193 (% style="display:none" %) (%%)
194
195 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
196
197
198 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
199
200 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
201
202 [[image:image-20230715115426-3.png||height="468" width="816"]](% style="display:none" %)
203
204
205 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS40-LB/LS.
206
207 Each LDS40-LB/LS is shipped with a sticker with the default device EUI as below:
208
209 [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
210
211
212 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
213
214
215 (% style="color:blue" %)**Register the device**
216
217 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
218
219
220 (% style="color:blue" %)**Add APP EUI and DEV EUI**
221
222 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
223
224
225 (% style="color:blue" %)**Add APP EUI in the application**
226
227
228 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
229
230
231 (% style="color:blue" %)**Add APP KEY**
232
233 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
234
235
236 (% style="color:blue" %)**Step 2:**(%%) Activate on LDS40-LB/LS
237
238
239 Press the button for 5 seconds to activate the LDS40-LB/LS.
240
241 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
242
243 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
244
245
246 == 2.3 ​Uplink Payload ==
247
248 === 2.3.1 Device Status, FPORT~=5 ===
249
250
251 Users can use the downlink command(**0x26 01**) to ask LDS40-LB/LS to send device configure detail, include device configure status. LDS40-LB/LS will uplink a payload via FPort=5 to server.
252
253 The Payload format is as below.
254
255 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
256 |=(% style="background-color:#4F81BD;color:white" %)(((
257 **Size(bytes)**
258 )))|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)2|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)2
259 |Value|Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT
260
261 Example parse in TTNv3
262
263 [[image:image-20230805160928-1.png||height="134" width="738"]]
264
265 (% style="color:#037691" %)**Sensor Model**(%%): For LDS40-LB/LS, this value is 0x25
266
267 (% style="color:#037691" %)**Frequency Band**:
268
269 0x01: EU868
270
271 0x02: US915
272
273 0x03: IN865
274
275 0x04: AU915
276
277 0x05: KZ865
278
279 0x06: RU864
280
281 0x07: AS923
282
283 0x08: AS923-1
284
285 0x09: AS923-2
286
287 0x0a: AS923-3
288
289 0x0b: CN470
290
291 0x0c: EU433
292
293 0x0d: KR920
294
295 0x0e: MA869
296
297 (% style="color:#037691" %)**Sub-Band**(%%):
298
299 AU915 and US915:value 0x00 ~~ 0x08
300
301 CN470: value 0x0B ~~ 0x0C
302
303 Other Bands: Always 0x00
304
305 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
306
307 (% style="color:#037691" %)**Battery Info**:
308
309 Check the battery voltage.
310
311 Ex1: 0x0B45 = 2885mV
312
313 Ex2: 0x0B49 = 2889mV
314
315
316 === 2.3.2 Uplink Payload, FPORT~=2 ===
317
318
319 (((
320 LDS40-LB/LS will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS40-LB/LS will:
321
322 periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
323
324 Uplink Payload totals 11 bytes.
325 )))
326
327 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
328 |=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)(((
329 **Size(bytes)**
330 )))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)2|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**
331 |(% style="width:62.5px" %)Value|(% style="width:62.5px" %)BAT|(% style="width:62.5px" %)(((
332 Temperature DS18B20
333 )))|Distance|Distance signal strength|Interrupt flag & Interrupt_level|LiDAR temp|(((
334 Message Type
335 )))
336
337 [[image:image-20230805161003-2.png||height="131" width="737"]]
338
339
340 ==== (% style="color:blue" %)**Battery Info**(%%) ====
341
342 Check the battery voltage for LDS40-LB/LS.
343
344 Ex1: 0x0B45 = 2885mV
345
346 Ex2: 0x0B49 = 2889mV
347
348
349 ==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
350
351 This is optional, user can connect external DS18B20 sensor to the (% style="color:blue" %)**+3.3v, 1-wire and GND**(%%) pin . and this field will report the temperature.
352
353 **Example**:
354
355 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
356
357 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
358
359
360 ==== (% style="color:blue" %)**Distance**(%%) ====
361
362 Indicates the distance value measured by the LDS40-LB/LS. The default unit is cm and the range is **0-4000**.
363
364 **Example**:
365
366 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is **0BEA(H) = 3050 (D)/10 = 305cm**.
367
368
369 ==== (% style="color:blue" %)**Distance signal strength**(%%) ====
370
371 Refers to the signal strength, the default output value will be between 0-65535. When the ranging gear is fixed, the farther the ranging, the lower the signal strength.
372
373 In actual use, when the signal strength value Strength≤60, the measured value of Dist is considered unreliable, and the default output is 4500. When the signal strength is greater than 60 and the actual distance is and the actual distance is 45~~60m, the output value of Dist is 4500. When the signal strength is greater than 60 and the actual distance is more than 60m, there will be over-period data appearing as 0 or other abnormal values.
374
375
376 **Example**:
377
378 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
379
380 Customers can judge whether they need to adjust the environment based on the signal strength.
381
382
383 **1) When the sensor detects valid data:**
384
385 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS40-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/image-20221028172727-3.png?width=1178&height=231&rev=1.1||alt="image-20221028172727-3.png"]]
386
387
388
389 **2) When the sensor detects invalid data:**
390
391 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS40-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/image-20221028172727-4.png?width=1183&height=232&rev=1.1||alt="image-20221028172727-4.png"]]
392
393
394
395 **3) When the sensor is not connected:**
396
397 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS40-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/image-20221028172727-5.png?width=1181&height=220&rev=1.1||alt="image-20221028172727-5.png"]]
398
399
400 ==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
401
402 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
403
404 (% style="color:red" %)**Note:**(%%) The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI.
405
406 **Example:**
407
408 If byte[0]&0x01=0x00 : Normal uplink packet.
409
410 If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
411
412
413 ==== (% style="color:blue" %)**LiDAR temp**(%%) ====
414
415 Characterize the internal temperature value of the sensor.
416
417 **Example: **
418 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28°C.
419 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14°C.
420
421
422 ==== (% style="color:blue" %)**Message Type**(%%) ====
423
424 (((
425 For a normal uplink payload, the message type is always 0x01.
426 )))
427
428 (((
429 Valid Message Type:
430 )))
431
432 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
433 |=(% style="width: 160px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
434 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
435 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
436
437 [[image:image-20230805161129-3.png||height="219" width="745"]]
438
439
440 === 2.3.3 Historical measuring distance, FPORT~=3 ===
441
442
443 LDS40-LB/LS stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
444
445 The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
446
447 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
448 |=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)(((
449 **Size(bytes)**
450 )))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)1|=(% style="background-color: rgb(79, 129, 189); color: white; width: 68px;" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**4**
451 |(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:68px" %)(((
452 Reserve(0xFF)
453 )))|(% style="width:68px" %)Distance|Distance signal strength|(((
454 LiDAR temp
455 )))|Unix TimeStamp
456
457 **Interrupt flag & Interrupt level:**
458
459 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:493px" %)
460 |=(% style="background-color:#4F81BD;color:white" %)(((
461 **Size(bit)**
462 )))|=(% style="background-color: rgb(79, 129, 189); color: white; width: 77px;" %)**bit7**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 84px;" %)**bit6**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 91px;" %)**[bit5:bit2]**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 80px;" %)**bit1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 83px;" %)**bit0**
463 |Value|(% style="width:77px" %)No ACK message|(% style="width:84px" %)Poll Message Flag|(% style="width:91px" %)Reserve|(% style="width:80px" %)Interrupt level|(% style="width:83px" %)Interrupt flag
464
465 * (((
466 Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS40-LB/LS will send max bytes according to the current DR and Frequency bands.
467 )))
468
469 For example, in the US915 band, the max payload for different DR is:
470
471 **a) DR0:** max is 11 bytes so one entry of data
472
473 **b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
474
475 **c) DR2:** total payload includes 11 entries of data
476
477 **d) DR3:** total payload includes 22 entries of data.
478
479 If LDS40-LB/LS doesn't have any data in the polling time. It will uplink 11 bytes of 0
480
481
482 **Downlink:**
483
484 0x31 64 CC A6 DC 64 CC A8 44 05
485
486 [[image:image-20230805162044-4.png||height="121" width="734"]]
487
488 **Uplink:**
489
490 40 FF 0D CA 06 88 1F 64 CC A6 E8 40 FF 0D D4 06 8C 1F 64 CC A7 24 40 FF 01 4A 0C BC 1F 64 CC A7 60 40 FF 0D DE 06 89 1F 64 CC A7 9C 43 FF 0D D4 06 89 1F 64 CC A7 C3 41 FF 0E 06 06 87 1F 64 CC A7 D5 41 FF 0D E8 05 58 1F 64 CC A8 1C
491
492
493 **Parsed Value:**
494
495 [DISTANCE , DISTANCE_SIGNAL_STRENGTH , LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
496
497
498 [353,1672,31,Low,False,2023-08-04 07:21:12],
499
500 [354,1676,31,Low,False,2023-08-04 07:22:12],
501
502 [33,3260,31,Low,False,2023-08-04 07:23:12],
503
504 [355,1673,31,Low,False,2023-08-04 07:24:12],
505
506 [354,1673,31,High,True,2023-08-04 07:24:51],
507
508 [359,1671,31,Low,True,2023-08-04 07:25:09],
509
510 [356,1368,31,Low,True,2023-08-04 07:26:20],
511
512
513 **History read from serial port :**
514
515 [[image:image-20230805162214-5.png]]
516
517
518 === 2.3.4  Decode payload in The Things Network ===
519
520
521 While using TTN network, you can add the payload format to decode the payload.
522
523 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS40-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
524
525
526 (((
527 The payload decoder function for TTN is here:
528 )))
529
530 (((
531 LDS40-LB/LS TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main>>https://github.com/dragino/dragino-end-node-decoder/tree/main]]
532 )))
533
534
535 == 2.4 ​Show Data in DataCake IoT Server ==
536
537
538 (((
539 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
540 )))
541
542
543 (((
544 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
545 )))
546
547 (((
548 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
549 )))
550
551
552 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS40-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
553
554
555 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS40-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
556
557
558 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
559
560 (% style="color:blue" %)**Step 4**(%%)**: Create LDS40-LB/LS product.**
561
562 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS40-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654832691989-514.png?rev=1.1||alt="1654832691989-514.png"]]
563
564
565 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS40-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592833877-762.png?rev=1.1||alt="1654592833877-762.png"]]
566
567
568 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS40-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654832740634-933.png?rev=1.1||alt="1654832740634-933.png"]]
569
570
571
572 (((
573 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
574 )))
575
576
577 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS40-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833065139-942.png?rev=1.1||alt="1654833065139-942.png"]]
578
579
580 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS40-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833092678-390.png?rev=1.1||alt="1654833092678-390.png"]]
581
582
583 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
584
585 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS40-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833163048-332.png?rev=1.1||alt="1654833163048-332.png"]]
586
587
588 == 2.5 Datalog Feature ==
589
590
591 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS40-LB/LS will store the reading for future retrieving purposes.
592
593
594 === 2.5.1 Ways to get datalog via LoRaWAN ===
595
596
597 Set PNACKMD=1, LDS40-LB/LS will wait for ACK for every uplink, when there is no LoRaWAN network,LDS40-LB/LS will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
598
599 * (((
600 a) LDS40-LB/LS will do an ACK check for data records sending to make sure every data arrive server.
601 )))
602 * (((
603 b) LDS40-LB/LS will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS40-LB/LS won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS40-LB/LS gets a ACK, LDS40-LB/LS will consider there is a network connection and resend all NONE-ACK messages.
604 )))
605
606
607 === 2.5.2 Unix TimeStamp ===
608
609
610 LDS40-LB/LS uses Unix TimeStamp format based on
611
612 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
613
614 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
615
616 Below is the converter example
617
618 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
619
620
621 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
622
623
624 === 2.5.3 Set Device Time ===
625
626
627 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
628
629 Once LDS40-LB/LS Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS40-LB/LS. If LDS40-LB/LS fails to get the time from the server, LDS40-LB/LS will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
630
631 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
632
633
634 === 2.5.4 Poll sensor value ===
635
636
637 Users can poll sensor values based on timestamps. Below is the downlink command.
638
639 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
640 |(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
641 |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
642 |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
643
644 (((
645 Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
646 )))
647
648 (((
649 For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
650 )))
651
652 (((
653 Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
654 )))
655
656 (((
657 Uplink Internal =5s,means LDS40-LB/LS will send one packet every 5s. range 5~~255s.
658 )))
659
660
661 == 2.6 Frequency Plans ==
662
663
664 The LDS40-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
665
666 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
667
668
669 == 2.7 LiDAR ToF Measurement ==
670
671 === 2.7.1 Principle of Distance Measurement ===
672
673
674 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
675
676 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
677
678
679 === 2.7.2 Distance Measurement Characteristics ===
680
681
682 The detection angle of the LDS40-LB/LS is 3 degrees, and the size of the light spot at different distances is the side length of the detection range. The size of the light spot at different distances is the side length of the detection range. The side length of the detection range (the shape is square), as shown.
683
684 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
685 |(% style="width:240px" %)**Distance(m)**|(% style="width:26px" %)1|(% style="width:35px" %)2|(% style="width:36px" %)3|(% style="width:32px" %)5|(% style="width:33px" %)7|(% style="width:34px" %)10|(% style="width:43px" %)20|(% style="width:41px" %)30|(% style="width:41px" %)40
686 |(% style="width:240px" %)**Detection range side length (cm)**|(% style="width:26px" %)5|(% style="width:35px" %)10|(% style="width:36px" %)16|(% style="width:32px" %)26|(% style="width:33px" %)37|(% style="width:34px" %)52|(% style="width:43px" %)105|(% style="width:41px" %)156|(% style="width:41px" %)208
687
688 Note that generally, the side length of the detected target object should be greater than the side length of the detection range of the LDS40-LB/LS; when the detected object is smaller than the detection range side length; when the detected object is smaller than the detection range side length, the effective range of the radar will be reduced.
689
690
691 === 2.7.3 Notice of usage ===
692
693
694 Possible invalid /wrong reading for LiDAR ToF tech:
695
696 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
697 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
698 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
699 * The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
700
701 === 2.7.4  Reflectivity of different objects ===
702
703
704 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
705 |=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
706 |(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
707 |(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
708 |(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
709 |(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
710 |(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
711 |(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
712 |(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
713 |(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
714 |(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
715 |(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
716 |(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
717 |(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
718 |(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
719 |(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
720 |(% style="width:53px" %)15|(% style="width:229px" %)(((
721 Unpolished white metal surface
722 )))|(% style="width:93px" %)130%
723 |(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
724 |(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
725 |(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
726
727 = 3. Configure LDS40-LB/LS =
728
729 == 3.1 Configure Methods ==
730
731
732 LDS40-LB/LS supports below configure method:
733
734 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
735
736 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
737
738 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
739
740 == 3.2 General Commands ==
741
742
743 These commands are to configure:
744
745 * General system settings like: uplink interval.
746
747 * LoRaWAN protocol & radio related command.
748
749 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
750
751 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
752
753
754 == 3.3 Commands special design for LDS40-LB/LS ==
755
756
757 These commands only valid for LDS40-LB/LS, as below:
758
759
760 === 3.3.1 Set Transmit Interval Time ===
761
762
763 (((
764 Feature: Change LoRaWAN End Node Transmit Interval.
765 )))
766
767 (((
768 (% style="color:blue" %)**AT Command: AT+TDC**
769 )))
770
771 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
772 |=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
773 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
774 30000
775 OK
776 the interval is 30000ms = 30s
777 )))
778 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
779 OK
780 Set transmit interval to 60000ms = 60 seconds
781 )))
782
783 (((
784 (% style="color:blue" %)**Downlink Command: 0x01**
785 )))
786
787 (((
788 Format: Command Code (0x01) followed by 3 bytes time value.
789 )))
790
791 (((
792 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
793 )))
794
795 * (((
796 Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
797 )))
798 * (((
799 Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
800
801
802
803 )))
804
805 === 3.3.2 Set Interrupt Mode ===
806
807
808 Feature, Set Interrupt mode for pin of GPIO_EXTI.
809
810 When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port.
811
812 (% style="color:blue" %)**AT Command: AT+INTMOD**
813
814 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
815 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
816 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
817 0
818 OK
819 the mode is 0 =Disable Interrupt
820 )))
821 |(% style="width:154px" %)(((
822 AT+INTMOD=2
823
824 (default)
825 )))|(% style="width:196px" %)(((
826 Set Transmit Interval
827 0. (Disable Interrupt),
828 ~1. (Trigger by rising and falling edge)
829 2. (Trigger by falling edge)
830 3. (Trigger by rising edge)
831 )))|(% style="width:157px" %)OK
832
833 (% style="color:blue" %)**Downlink Command: 0x06**
834
835 Format: Command Code (0x06) followed by 3 bytes.
836
837 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
838
839 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
840
841 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
842
843 === 3.3.3 Set Power Output Duration ===
844
845 Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
846
847 ~1. first enable the power output to external sensor,
848
849 2. keep it on as per duration, read sensor value and construct uplink payload
850
851 3. final, close the power output.
852
853 (% style="color:blue" %)**AT Command: AT+3V3T**
854
855 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
856 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
857 |(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)(((
858 0 (default)
859 OK
860 )))
861 |(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)(((
862 Close after a delay of 1000 milliseconds.
863 )))|(% style="width:157px" %)OK
864 |(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
865 |(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
866
867 (% style="color:blue" %)**Downlink Command: 0x07**
868
869
870 Format: Command Code (0x07) followed by 3 bytes.
871
872 The first byte is 01,the second and third bytes are the time to turn on.
873
874 * Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
875 * Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
876 * Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
877
878 = 4. Battery & Power Consumption =
879
880
881 LDS40-LB use ER26500 + SPC1520 battery pack and LDS40-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
882
883 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
884
885
886 = 5. OTA Firmware update =
887
888
889 (% class="wikigeneratedid" %)
890 User can change firmware LDS40-LB/LS to:
891
892 * Change Frequency band/ region.
893
894 * Update with new features.
895
896 * Fix bugs.
897
898 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/hrokl3anv4pxxw4/AACA-lNo-tyt9enLArl4XTGqa?dl=0]]**
899
900 Methods to Update Firmware:
901
902 * (Recommanded way) OTA firmware update via wireless : **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
903
904 * Update through UART TTL interface : **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
905
906 = 6. FAQ =
907
908 == 6.1 What is the frequency plan for LDS40-LB/LS? ==
909
910
911 LDS40-LB/LS use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
912
913
914 = 7. Trouble Shooting =
915
916 == 7.1 AT Command input doesn't work ==
917
918
919 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
920
921
922 == 7.2 Significant error between the output distant value of LiDAR and actual distance ==
923
924
925 (((
926 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
927 )))
928
929 (((
930 (% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
931 )))
932
933
934 (((
935 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
936 )))
937
938 (((
939 (% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
940 )))
941
942
943 = 8. Order Info =
944
945
946 **Part Number: (% style="color:blue" %)LDS40-LB-XX (%%)or (% style="color:blue" %)LDS40-LS-XX(%%)**
947
948 (% style="color:red" %)**XX**(%%): **The default frequency band**
949
950 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
951
952 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
953
954 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
955
956 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
957
958 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
959
960 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
961
962 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
963
964 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
965
966 = 9. ​Packing Info =
967
968
969 (% style="color:#037691" %)**Package Includes**:
970
971 * LDS40-LB or LDS40-LS LoRaWAN LiDAR ToF Distance Sensor x 1
972
973 (% style="color:#037691" %)**Dimension and weight**:
974
975 * Device Size: cm
976
977 * Device Weight: g
978
979 * Package Size / pcs : cm
980
981 * Weight / pcs : g
982
983 = 10. Support =
984
985
986 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
987
988 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0