Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43
44 == 2.1 Installation ==
45
46
47 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
48
49
50 [[image:1656041948552-849.png]]
51
52
53 (% style="color:blue" %)** Wiring:**
54
55 ~1. WSC1-L and sensors all powered by solar power via MPPT
56
57 2. WSC1-L and sensors connect to each other via RS485/Modbus.
58
59 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
60
61
62 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
63
64
65 [[image:1656042136605-251.png]]
66
67
68 (% style="color:red" %)**Notice 1:**
69
70 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
71 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
72 * Weather sensors won't work if solar panel and storage battery fails.
73
74 (% style="color:red" %)**Notice 2:**
75
76 Due to shipment and importation limitation, user is better to purchase below parts locally:
77
78 * Solar Panel
79 * Storage Battery
80 * MPPT Solar Recharger
81 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
82 * Cabinet.
83
84
85
86 == 2.2 How it works? ==
87
88
89 (((
90 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
91 )))
92
93
94 (((
95 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
96 )))
97
98 [[image:1656042192857-709.png]]
99
100
101 (% style="color:red" %)**Notice:**
102
103 1. WSC1-L will auto scan available weather sensors when power on or reboot.
104 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
105
106
107
108 == 2.3 Example to use for LoRaWAN network ==
109
110
111 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
112
113
114 [[image:1656042612899-422.png]]
115
116
117
118 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
119
120
121 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
122
123 Each WSC1-L is shipped with a sticker with the default device EUI as below:
124
125 [[image:image-20220624115043-1.jpeg]]
126
127
128 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
129
130 **Add APP EUI in the application.**
131
132 [[image:1656042662694-311.png]]
133
134 [[image:1656042673910-429.png]]
135
136
137
138
139 **Choose Manually to add WSC1-L**
140
141 [[image:1656042695755-103.png]]
142
143
144
145 **Add APP KEY and DEV EUI**
146
147 [[image:1656042723199-746.png]]
148
149
150
151 (((
152 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
153 )))
154
155
156 [[image:1656042745346-283.png]]
157
158
159
160 == 2.4 Uplink Payload ==
161
162
163 Uplink payloads include two types: Valid Sensor Value and other status / control command.
164
165 * Valid Sensor Value: Use FPORT=2
166 * Other control command: Use FPORT other than 2.
167
168
169
170 === 2.4.1 Uplink FPORT~=5, Device Status ===
171
172
173 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
174
175
176 (((
177 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
178 )))
179
180 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
181 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
182 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
183
184 [[image:1656043061044-343.png]]
185
186
187 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
188
189
190
191 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
192
193
194 For WSC1-L, this value is 0x0D.
195
196
197
198 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
199
200
201 0x0100, Means: v1.0.0 version.
202
203
204
205 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
206
207
208 *0x01: EU868
209
210 *0x02: US915
211
212 *0x03: IN865
213
214 *0x04: AU915
215
216 *0x05: KZ865
217
218 *0x06: RU864
219
220 *0x07: AS923
221
222 *0x08: AS923-1
223
224 *0x09: AS923-2
225
226 *0x0a: AS923-3
227
228
229
230 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
231
232
233 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
234
235
236
237 ==== (% style="color:#037691" %)**BAT:**(%%) ====
238
239
240 (((
241 shows the battery voltage for WSC1-L MCU.
242 )))
243
244 (((
245 Ex1: 0x0BD6/1000 = 3.03 V
246 )))
247
248
249
250 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
251
252
253 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
254 |Byte3|Byte2|Byte1
255
256 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
257
258 [[image:image-20220624134713-1.png]]
259
260
261 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
262
263 External sensors detected by WSC1-L include :
264
265 custom sensor A1,
266
267 PAR sensor (WSS-07),
268
269 Total Solar Radiation sensor (WSS-06),
270
271 CO2/PM2.5/PM10 (WSS-03),
272
273 Wind Speed/Direction (WSS-02)
274
275
276 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
277
278 (% style="color:#037691" %)**Downlink:0x26 01**
279
280 [[image:1656049673488-415.png]]
281
282
283
284 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
285
286
287 (((
288 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
289 )))
290
291 (((
292 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
293 )))
294
295
296 (((
297 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
298 )))
299
300
301 (% style="color:#4472c4" %)** Uplink Payload**:
302
303 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
304 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
305
306 (% style="color:#4472c4" %)** Sensor Segment Define**:
307
308 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
309 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
310
311 (% style="color:#4472c4" %)**Sensor Type Table:**
312
313 [[image:image-20220706154434-1.png]]
314
315
316 (((
317 Below is an example payload:  [[image:image-20220624140615-3.png]]
318 )))
319
320 (((
321
322 )))
323
324 (((
325 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
326 )))
327
328 * (((
329 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
330 )))
331
332 (((
333 Uplink 1:  [[image:image-20220624140735-4.png]]
334 )))
335
336 (((
337
338 )))
339
340 (((
341 Uplink 2:  [[image:image-20220624140842-5.png]]
342 )))
343
344 (((
345
346 )))
347
348 * (((
349 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
350 )))
351
352 (((
353 Uplink 1:  [[image:image-20220624141025-6.png]]
354 )))
355
356 (((
357
358 )))
359
360 Uplink 2:  [[image:image-20220624141100-7.png]]
361
362
363
364 === 2.4.3 Decoder in TTN V3 ===
365
366
367 (((
368 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
369 )))
370
371 (((
372
373 )))
374
375 (((
376 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
377 )))
378
379 (((
380
381 )))
382
383 (((
384 and put as below:
385
386
387 )))
388
389 [[image:1656051152438-578.png]]
390
391
392
393 == 2.5 Show data on Application Server ==
394
395
396 (((
397 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
398 )))
399
400 (((
401
402 )))
403
404 (((
405 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
406 )))
407
408 (((
409 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
410 )))
411
412 [[image:1656051197172-131.png]]
413
414
415
416 **Add TagoIO:**
417
418 [[image:1656051223585-631.png]]
419
420
421
422 **Authorization:**
423
424 [[image:1656051248318-368.png]]
425
426
427
428 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
429
430
431 [[image:1656051277767-168.png]]
432
433
434
435 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
436
437
438 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
439
440 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
441 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
442
443 There are two kinds of commands to configure WSC1-L, they are:
444
445 * (% style="color:#4472c4" %)**General Commands**.
446
447 These commands are to configure:
448
449 * General system settings like: uplink interval.
450 * LoRaWAN protocol & radio related command.
451
452 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
453
454 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
455
456
457 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
458
459 These commands only valid for WSC1-L, as below:
460
461
462
463 == 3.1 Set Transmit Interval Time ==
464
465
466 Feature: Change LoRaWAN End Node Transmit Interval.
467
468 (% style="color:#037691" %)**AT Command: AT+TDC**
469
470 [[image:image-20220624142619-8.png]]
471
472
473 (% style="color:#037691" %)**Downlink Command: 0x01**
474
475 Format: Command Code (0x01) followed by 3 bytes time value.
476
477 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
478
479 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
480 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
481
482
483
484 == 3.2 Set Emergency Mode ==
485
486
487 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
488
489 (% style="color:#037691" %)**AT Command:**
490
491 [[image:image-20220624142956-9.png]]
492
493
494 (% style="color:#037691" %)**Downlink Command:**
495
496 * 0xE101     Same as: AT+ALARMMOD=1
497 * 0xE100     Same as: AT+ALARMMOD=0
498
499
500
501 == 3.3 Add or Delete RS485 Sensor ==
502
503
504 (((
505 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
506 )))
507
508 (((
509 (% style="color:#037691" %)**AT Command: **
510 )))
511
512 (((
513 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
514 )))
515
516 * (((
517 Type_Code range:  A1 ~~ A4
518 )))
519 * (((
520 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
521 )))
522 * (((
523 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
524 )))
525 * (((
526 Read_Length:  RS485 response frame length supposed to receive. Max can receive
527 )))
528 * (((
529 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
530 )))
531 * (((
532 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
533 )))
534 * (((
535 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
536 )))
537
538 (((
539 **Example:**
540 )))
541
542 (((
543 User need to change external sensor use the type code as address code.
544 )))
545
546 (((
547 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
548 )))
549
550 [[image:image-20220624143553-10.png]]
551
552
553 The response frame of the sensor is as follows:
554
555 [[image:image-20220624143618-11.png]]
556
557
558
559 **Then the following parameters should be:**
560
561 * Address_Code range: A1
562 * Query_Length: 8
563 * Query_Command: A103000000019CAA
564 * Read_Length: 8
565 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
566 * has_CRC: 1
567 * timeout: 1500 (Fill in the test according to the actual situation)
568
569 **So the input command is:**
570
571 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
572
573
574 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
575
576 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
577 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
578 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
579
580 **Related commands:**
581
582 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
583
584 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
585
586
587 (% style="color:#037691" %)**Downlink Command:  **
588
589 **delete custom sensor A1:**
590
591 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
592
593 **Remove all custom sensors**
594
595 * 0xE5FF  
596
597
598
599 == 3.4 RS485 Test Command ==
600
601
602 (% style="color:#037691" %)**AT Command:**
603
604 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
605 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
606 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
607 (((
608 Send command to 485 sensor
609 )))
610
611 (((
612 Range : no more than 10 bytes
613 )))
614 )))|(% style="width:85px" %)OK
615
616 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
617
618 AT+RSWRITE=0103000001840A
619
620
621 (% style="color:#037691" %)**Downlink Command:**
622
623 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
624
625
626
627 == 3.5 RS485 response timeout ==
628
629
630 Feature: Set or get extended time to receive 485 sensor data.
631
632 (% style="color:#037691" %)**AT Command:**
633
634 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
635 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
636 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
637 (((
638 Set response timeout to:
639 )))
640
641 (((
642 Range : 0~~10000
643 )))
644 )))|(% style="width:85px" %)OK
645
646 (% style="color:#037691" %)**Downlink Command:**
647
648 Format: Command Code (0xE0) followed by 3 bytes time value.
649
650 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
651
652 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
653 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
654
655
656
657 == 3.6 Set Sensor Type ==
658
659
660 (((
661 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
662 )))
663
664 (((
665 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
666 )))
667
668 [[image:image-20220624144904-12.png]]
669
670
671 (% style="color:#037691" %)**AT Command:**
672
673 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
674 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
675 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
676
677 Eg: The setting command **AT+STYPE=802212** means:
678
679 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
680 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
681 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
682 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
683 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
684 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
685 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
686
687 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
688
689
690 (% style="color:#037691" %)**Downlink Command:**
691
692 * 0xE400802212     Same as: AT+STYPE=80221
693
694 (% style="color:red" %)**Note:**
695
696 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
697
698
699
700 = 4. Power consumption and battery =
701
702
703 == 4.1 Total Power Consumption ==
704
705
706 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
707
708
709
710 == 4.2 Reduce power consumption ==
711
712
713 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
714
715
716
717 == 4.3 Battery ==
718
719
720 (((
721 All sensors are only power by external power source. If external power source is off. All sensor won't work.
722 )))
723
724 (((
725 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
726 )))
727
728
729
730 = 5. Main Process Unit WSC1-L =
731
732
733 == 5.1 Features ==
734
735
736 * Wall Attachable.
737 * LoRaWAN v1.0.3 Class A protocol.
738 * RS485 / Modbus protocol
739 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
740 * AT Commands to change parameters
741 * Remote configure parameters via LoRaWAN Downlink
742 * Firmware upgradable via program port
743 * Powered by external 12v battery
744 * Back up rechargeable 1000mAh battery
745 * IP Rating: IP65
746 * Support default sensors or 3rd party RS485 sensors
747
748
749
750 == 5.2 Power Consumption ==
751
752
753 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
754
755
756
757 == 5.3 Storage & Operation Temperature ==
758
759
760 -20°C to +60°C
761
762
763
764 == 5.4 Pin Mapping ==
765
766
767 [[image:1656054149793-239.png]]
768
769
770
771 == 5.5 Mechanical ==
772
773
774 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
775
776
777
778 == 5.6 Connect to RS485 Sensors ==
779
780
781 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
782
783
784 [[image:1656054389031-379.png]]
785
786
787 Hardware Design for the Converter Board please see:
788
789 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
790
791
792
793 = 6. Weather Sensors =
794
795
796 == 6.1 Rain Gauge ~-~- WSS-01 ==
797
798
799 (((
800 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
801 )))
802
803 (((
804 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
805 )))
806
807 (((
808 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
809 )))
810
811 (((
812 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
813 )))
814
815 (((
816 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
817 )))
818
819
820
821 === 6.1.1 Feature ===
822
823
824 * RS485 Rain Gauge
825 * Small dimension, easy to install
826 * Vents under funnel, avoid leaf or other things to avoid rain flow.
827 * ABS enclosure.
828 * Horizontal adjustable.
829
830
831
832 === 6.1.2 Specification ===
833
834
835 * Resolution: 0.2mm
836 * Accuracy: ±3%
837 * Range: 0 ~~ 100mm
838 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
839 * Input Power: DC 5~~24v
840 * Interface: RS485
841 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
842 * Working Humidity: <100% (no dewing)
843 * Power Consumption: 4mA @ 12v.
844
845
846
847 === 6.1.3 Dimension ===
848
849
850 [[image:1656054957406-980.png]]
851
852
853
854 === 6.1.4 Pin Mapping ===
855
856
857 [[image:1656054972828-692.png]]
858
859
860
861 === 6.1.5 Installation Notice ===
862
863
864 (((
865 Do not power on while connect the cables. Double check the wiring before power on.
866 )))
867
868 (((
869 Installation Photo as reference:
870 )))
871
872
873 (((
874 (% style="color:#4472c4" %)** Install on Ground:**
875 )))
876
877 (((
878 WSS-01 Rain Gauge include screws so can install in ground directly .
879 )))
880
881
882 (((
883 (% style="color:#4472c4" %)** Install on pole:**
884 )))
885
886 (((
887 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
888 )))
889
890 [[image:image-20220624152218-1.png||height="526" width="276"]]
891
892 WS-K2: Bracket Kit for Pole installation
893
894
895 WSSC-K2 dimension document, please see:
896
897 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
898
899
900
901 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
902
903
904 [[image:1656055444035-179.png]]
905
906
907 (((
908 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
909 )))
910
911 (((
912 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
913 )))
914
915 (((
916 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
917 )))
918
919
920
921 === 6.2.1 Feature ===
922
923
924 * RS485 wind speed / direction sensor
925 * PC enclosure, resist corrosion
926
927
928
929 === 6.2.2 Specification ===
930
931
932 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
933 * Wind direction range: 0 ~~ 360°
934 * Start wind speed: ≤0.3m/s
935 * Accuracy: ±(0.3+0.03V)m/s , ±1°
936 * Input Power: DC 5~~24v
937 * Interface: RS485
938 * Working Temperature: -30℃~70℃
939 * Working Humidity: <100% (no dewing)
940 * Power Consumption: 13mA ~~ 12v.
941 * Cable Length: 2 meters
942
943
944
945 === 6.2.3 Dimension ===
946
947
948 [[image:image-20220624152813-2.png]]
949
950
951
952 === 6.2.4 Pin Mapping ===
953
954
955 [[image:1656056281231-994.png]]
956
957
958
959 === 6.2.5  Angle Mapping ===
960
961
962 [[image:1656056303845-585.png]]
963
964
965
966 === 6.2.6  Installation Notice ===
967
968
969 (((
970 Do not power on while connect the cables. Double check the wiring before power on.
971 )))
972
973 (((
974 The sensor must be installed with below direction, towards North.
975
976
977 )))
978
979 [[image:image-20220624153901-3.png]]
980
981
982
983 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
984
985
986 (((
987 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
988 )))
989
990 (((
991 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
992 )))
993
994 (((
995 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
996 )))
997
998
999
1000 === 6.3.1 Feature ===
1001
1002
1003 * RS485 CO2, PM2.5, PM10 sensor
1004 * NDIR to measure CO2 with Internal Temperature Compensation
1005 * Laser Beam Scattering to PM2.5 and PM10
1006
1007
1008
1009 === 6.3.2 Specification ===
1010
1011
1012 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
1013 * CO2 resolution: 1ppm
1014 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
1015 * PM2.5/PM10 resolution: 1μg/m3
1016 * Input Power: DC 7 ~~ 24v
1017 * Preheat time: 3min
1018 * Interface: RS485
1019 * Working Temperature:
1020 ** CO2: 0℃~50℃;
1021 ** PM2.5/PM10: -30 ~~ 50℃
1022 * Working Humidity:
1023 ** PM2.5/PM10: 15~80%RH (no dewing)
1024 ** CO2: 0~95%RH
1025 * Power Consumption: 50mA@ 12v.
1026
1027
1028
1029 === 6.3.3 Dimension ===
1030
1031
1032 [[image:1656056708366-230.png]]
1033
1034
1035
1036 === 6.3.4 Pin Mapping ===
1037
1038
1039 [[image:1656056722648-743.png]]
1040
1041
1042
1043 === 6.3.5 Installation Notice ===
1044
1045
1046 Do not power on while connect the cables. Double check the wiring before power on.
1047
1048
1049 [[image:1656056751153-304.png]]
1050
1051 [[image:1656056766224-773.png]]
1052
1053
1054
1055 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
1056
1057
1058 (((
1059 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1060 )))
1061
1062 (((
1063 WSS-04 has auto heating feature, this ensures measurement more reliable.
1064 )))
1065
1066 (((
1067 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1068 )))
1069
1070
1071
1072 === 6.4.1 Feature ===
1073
1074
1075 * RS485 Rain/Snow detect sensor
1076 * Surface heating to dry
1077 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1078
1079
1080
1081 === 6.4.2 Specification ===
1082
1083
1084 * Detect if there is rain or snow
1085 * Input Power: DC 12 ~~ 24v
1086 * Interface: RS485
1087 * Working Temperature: -30℃~70℃
1088 * Working Humidity: 10~90%RH
1089 * Power Consumption:
1090 ** No heating: 12mA @ 12v,
1091 ** heating: 94ma @ 12v.
1092
1093
1094
1095 === 6.4.3 Dimension ===
1096
1097
1098 [[image:1656056844782-155.png]]
1099
1100
1101
1102 === 6.4.4 Pin Mapping ===
1103
1104
1105 [[image:1656056855590-754.png]]
1106
1107
1108
1109 === 6.4.5 Installation Notice ===
1110
1111
1112 Do not power on while connect the cables. Double check the wiring before power on.
1113
1114
1115 (((
1116 Install with 15°degree.
1117 )))
1118
1119 [[image:1656056873783-780.png]]
1120
1121
1122 [[image:1656056883736-804.png]]
1123
1124
1125
1126 === 6.4.6 Heating ===
1127
1128
1129 (((
1130 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1131 )))
1132
1133
1134
1135 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1136
1137
1138 (((
1139 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1140 )))
1141
1142 (((
1143 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1144 )))
1145
1146
1147
1148 === 6.5.1 Feature ===
1149
1150
1151 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1152
1153
1154
1155 === 6.5.2 Specification ===
1156
1157
1158 * Input Power: DC 12 ~~ 24v
1159 * Interface: RS485
1160 * Temperature Sensor Spec:
1161 ** Range: -30 ~~ 70℃
1162 ** resolution 0.1℃
1163 ** Accuracy: ±0.5℃
1164 * Humidity Sensor Spec:
1165 ** Range: 0 ~~ 100% RH
1166 ** resolution 0.1 %RH
1167 ** Accuracy: 3% RH
1168 * Pressure Sensor Spec:
1169 ** Range: 10~1100hPa
1170 ** Resolution: 0.1hPa
1171 ** Accuracy: ±0.1hPa
1172 * Illuminate sensor:
1173 ** Range: 0~2/20/200kLux
1174 ** Resolution: 10 Lux
1175 ** Accuracy: ±3%FS
1176 * Working Temperature: -30℃~70℃
1177 * Working Humidity: 10~90%RH
1178 * Power Consumption: 4mA @ 12v
1179
1180
1181
1182 === 6.5.3 Dimension ===
1183
1184
1185 [[image:1656057170639-522.png]]
1186
1187
1188
1189 === 6.5.4 Pin Mapping ===
1190
1191
1192 [[image:1656057181899-910.png]]
1193
1194
1195
1196 === 6.5.5 Installation Notice ===
1197
1198
1199 Do not power on while connect the cables. Double check the wiring before power on.
1200
1201 [[image:1656057199955-514.png]]
1202
1203
1204 [[image:1656057212438-475.png]]
1205
1206
1207
1208 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1209
1210
1211 (((
1212 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1213 )))
1214
1215 (((
1216 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1217 )))
1218
1219 (((
1220 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1221 )))
1222
1223
1224
1225 === 6.6.1 Feature ===
1226
1227
1228 * RS485 Total Solar Radiation sensor
1229 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1230 * Measure Reflected Radiation if sense area towards ground.
1231
1232
1233
1234 === 6.6.2 Specification ===
1235
1236
1237 * Input Power: DC 5 ~~ 24v
1238 * Interface: RS485
1239 * Detect spectrum: 0.3~3μm(300~3000nm)
1240 * Measure strength range: 0~2000W/m2
1241 * Resolution: 0.1W/m2
1242 * Accuracy: ±3%
1243 * Yearly Stability: ≤±2%
1244 * Cosine response: ≤7% (@ Sun angle 10°)
1245 * Temperature Effect: ±2%(-10℃~40℃)
1246 * Working Temperature: -40℃~70℃
1247 * Working Humidity: 10~90%RH
1248 * Power Consumption: 4mA @ 12v
1249
1250
1251
1252 === 6.6.3 Dimension ===
1253
1254
1255 [[image:1656057348695-898.png]]
1256
1257
1258
1259 === 6.6.4 Pin Mapping ===
1260
1261
1262 [[image:1656057359343-744.png]]
1263
1264
1265
1266 === 6.6.5 Installation Notice ===
1267
1268
1269 Do not power on while connect the cables. Double check the wiring before power on.
1270
1271
1272 [[image:1656057369259-804.png]]
1273
1274
1275 [[image:1656057377943-564.png]]
1276
1277
1278
1279 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1280
1281
1282 (((
1283 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1284 )))
1285
1286 (((
1287 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1288 )))
1289
1290 (((
1291 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1292 )))
1293
1294
1295
1296 === 6.7.1 Feature ===
1297
1298
1299 (((
1300 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1301 )))
1302
1303 (((
1304 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1305 )))
1306
1307
1308
1309 === 6.7.2 Specification ===
1310
1311
1312 * Input Power: DC 5 ~~ 24v
1313 * Interface: RS485
1314 * Response Spectrum: 400~700nm
1315 * Measure range: 0~2500μmol/m2•s
1316 * Resolution: 1μmol/m2•s
1317 * Accuracy: ±2%
1318 * Yearly Stability: ≤±2%
1319 * Working Temperature: -30℃~75℃
1320 * Working Humidity: 10~90%RH
1321 * Power Consumption: 3mA @ 12v
1322
1323
1324
1325 === 6.7.3 Dimension ===
1326
1327
1328 [[image:1656057538793-888.png]]
1329
1330
1331
1332 === 6.7.4 Pin Mapping ===
1333
1334
1335 [[image:1656057548116-203.png]]
1336
1337
1338
1339 === 6.7.5 Installation Notice ===
1340
1341
1342 Do not power on while connect the cables. Double check the wiring before power on.
1343
1344
1345 [[image:1656057557191-895.png]]
1346
1347
1348 [[image:1656057565783-251.png]]
1349
1350
1351
1352 = 7. FAQ =
1353
1354
1355 == 7.1 What else do I need to purchase to build Weather Station? ==
1356
1357
1358 Below is the installation photo and structure:
1359
1360
1361 [[image:1656057598349-319.png]]
1362
1363
1364 [[image:1656057608049-693.png]]
1365
1366
1367
1368 == 7.2 How to upgrade firmware for WSC1-L? ==
1369
1370
1371 (((
1372 Firmware Location & Change log:
1373
1374 [[https:~~/~~/www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0>>https://www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0]]
1375 )))
1376
1377 (((
1378
1379 )))
1380
1381 (((
1382 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1383 )))
1384
1385
1386
1387 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1388
1389
1390 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1391
1392
1393
1394 == 7.4 Can I add my weather sensors? ==
1395
1396
1397 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1398
1399
1400
1401 = 8. Trouble Shooting =
1402
1403
1404 == 8.1 AT Command input doesn't work ==
1405
1406
1407 (((
1408 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1409 )))
1410
1411
1412
1413 = 9. Order Info =
1414
1415
1416 == 9.1 Main Process Unit ==
1417
1418
1419 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1420
1421 (% style="color:blue" %)**XX**(%%): The default frequency band
1422
1423 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1424 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1425 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1426 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1427 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1428 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1429 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1430 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1431
1432
1433
1434 == 9.2 Sensors ==
1435
1436
1437 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:500px" %)
1438 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 200px;" %)**Part Number**
1439 |(% style="width:462px" %)**Rain Gauge**|(% style="width:120px" %)WSS-01
1440 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:120px" %)WS-K2
1441 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:120px" %)WSS-02
1442 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:120px" %)WSS-03
1443 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:120px" %)WSS-04
1444 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:120px" %)WSS-05
1445 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:120px" %)WSS-06
1446 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:120px" %)WSS-07
1447
1448
1449
1450 = 10. Support =
1451
1452
1453 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1454 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1455
1456
1457
1458 = 11. Appendix I: Field Installation Photo =
1459
1460
1461 [[image:1656058346362-132.png||height="685" width="732"]]
1462
1463 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1464
1465
1466
1467 (% style="color:blue" %)**Wind Speed/Direction**
1468
1469 [[image:1656058373174-421.png||height="356" width="731"]]
1470
1471
1472
1473 (% style="color:blue" %)**Total Solar Radiation sensor**
1474
1475 [[image:1656058397364-282.png||height="453" width="732"]]
1476
1477
1478
1479 (% style="color:blue" %)**PAR Sensor**
1480
1481 [[image:1656058416171-615.png]]
1482
1483
1484
1485 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1486
1487 [[image:1656058441194-827.png||height="672" width="523"]]
1488
1489
1490
1491 (% style="color:blue" %)**Rain / Snow Detect**
1492
1493 [[image:1656058451456-166.png]]
1494
1495
1496
1497 (% style="color:blue" %)**Rain Gauge**
1498
1499 [[image:1656058463455-569.png||height="499" width="550"]]
1500
1501
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0