Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %)**Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)**Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80
81 == 2.2 How it works? ==
82
83 (((
84 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
85 )))
86
87
88 (((
89 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
90 )))
91
92 [[image:1656042192857-709.png]]
93
94
95 (% style="color:red" %)**Notice:**
96
97 1. WSC1-L will auto scan available weather sensors when power on or reboot.
98 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
99
100
101 == 2.3 Example to use for LoRaWAN network ==
102
103 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
104
105
106 [[image:1656042612899-422.png]]
107
108
109
110 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
111
112
113 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
114
115 Each WSC1-L is shipped with a sticker with the default device EUI as below:
116
117 [[image:image-20220624115043-1.jpeg]]
118
119
120 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
121
122 **Add APP EUI in the application.**
123
124 [[image:1656042662694-311.png]]
125
126 [[image:1656042673910-429.png]]
127
128
129
130
131 **Choose Manually to add WSC1-L**
132
133 [[image:1656042695755-103.png]]
134
135
136
137 **Add APP KEY and DEV EUI**
138
139 [[image:1656042723199-746.png]]
140
141
142
143 (((
144 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
145 )))
146
147
148 [[image:1656042745346-283.png]]
149
150
151
152 == 2.4 Uplink Payload ==
153
154 Uplink payloads include two types: Valid Sensor Value and other status / control command.
155
156 * Valid Sensor Value: Use FPORT=2
157 * Other control command: Use FPORT other than 2.
158
159
160 === 2.4.1 Uplink FPORT~=5, Device Status ===
161
162 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
163
164
165 (((
166 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
167 )))
168
169 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
170 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
171 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
172
173 [[image:1656043061044-343.png]]
174
175
176 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
177
178
179
180 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
181
182 For WSC1-L, this value is 0x0D.
183
184
185
186 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
187
188 0x0100, Means: v1.0.0 version.
189
190
191
192 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
193
194 *0x01: EU868
195
196 *0x02: US915
197
198 *0x03: IN865
199
200 *0x04: AU915
201
202 *0x05: KZ865
203
204 *0x06: RU864
205
206 *0x07: AS923
207
208 *0x08: AS923-1
209
210 *0x09: AS923-2
211
212 *0x0a: AS923-3
213
214
215
216 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
217
218 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
219
220
221
222 ==== (% style="color:#037691" %)**BAT:**(%%) ====
223
224 (((
225 shows the battery voltage for WSC1-L MCU.
226 )))
227
228 (((
229 Ex1: 0x0BD6/1000 = 3.03 V
230 )))
231
232
233
234 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
235
236 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
237 |Byte3|Byte2|Byte1
238
239 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
240
241 [[image:image-20220624134713-1.png]]
242
243
244 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
245
246 External sensors detected by WSC1-L include :
247
248 custom sensor A1,
249
250 PAR sensor (WSS-07),
251
252 Total Solar Radiation sensor (WSS-06),
253
254 CO2/PM2.5/PM10 (WSS-03),
255
256 Wind Speed/Direction (WSS-02)
257
258
259 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
260
261 (% style="color:#037691" %)**Downlink:0x26 01**
262
263 [[image:1656049673488-415.png]]
264
265
266
267 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
268
269 (((
270 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
271 )))
272
273 (((
274 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
275 )))
276
277
278 (((
279 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
280 )))
281
282
283 (% style="color:#4472c4" %)** Uplink Payload**:
284
285 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
286 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
287
288 (% style="color:#4472c4" %)** Sensor Segment Define**:
289
290 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
291 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
292
293 (% style="color:#4472c4" %)**Sensor Type Table:**
294
295 [[image:image-20220706154434-1.png]]
296
297
298 (((
299 Below is an example payload:  [[image:image-20220624140615-3.png]]
300 )))
301
302 (((
303
304 )))
305
306 (((
307 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
308 )))
309
310 * (((
311 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
312 )))
313
314 (((
315 Uplink 1:  [[image:image-20220624140735-4.png]]
316 )))
317
318 (((
319
320 )))
321
322 (((
323 Uplink 2:  [[image:image-20220624140842-5.png]]
324 )))
325
326 (((
327
328 )))
329
330 * (((
331 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
332 )))
333
334 (((
335 Uplink 1:  [[image:image-20220624141025-6.png]]
336 )))
337
338 (((
339
340 )))
341
342 Uplink 2:  [[image:image-20220624141100-7.png]]
343
344
345
346 === 2.4.3 Decoder in TTN V3 ===
347
348 (((
349 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
350 )))
351
352 (((
353
354 )))
355
356 (((
357 Download decoder for suitable platform from:
358 )))
359
360 (((
361 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
362 )))
363
364 (((
365 and put as below:
366 )))
367
368 [[image:1656051152438-578.png]]
369
370
371
372 == 2.5 Show data on Application Server ==
373
374 (((
375 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
376 )))
377
378 (((
379
380 )))
381
382 (((
383 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
384 )))
385
386 (((
387 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
388 )))
389
390 [[image:1656051197172-131.png]]
391
392
393 **Add TagoIO:**
394
395 [[image:1656051223585-631.png]]
396
397
398 **Authorization:**
399
400 [[image:1656051248318-368.png]]
401
402
403 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
404
405 [[image:1656051277767-168.png]]
406
407
408
409 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
410
411 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
412
413 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
414 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
415
416 There are two kinds of commands to configure WSC1-L, they are:
417
418 * (% style="color:#4472c4" %)**General Commands**.
419
420 These commands are to configure:
421
422 * General system settings like: uplink interval.
423 * LoRaWAN protocol & radio related command.
424
425 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
426
427 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
428
429
430 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
431
432 These commands only valid for WSC1-L, as below:
433
434
435
436 == 3.1 Set Transmit Interval Time ==
437
438 Feature: Change LoRaWAN End Node Transmit Interval.
439
440 (% style="color:#037691" %)**AT Command: AT+TDC**
441
442 [[image:image-20220624142619-8.png]]
443
444
445 (% style="color:#037691" %)**Downlink Command: 0x01**
446
447 Format: Command Code (0x01) followed by 3 bytes time value.
448
449 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
450
451 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
452 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
453
454
455
456
457 == 3.2 Set Emergency Mode ==
458
459 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
460
461 (% style="color:#037691" %)**AT Command:**
462
463 [[image:image-20220624142956-9.png]]
464
465
466 (% style="color:#037691" %)**Downlink Command:**
467
468 * 0xE101     Same as: AT+ALARMMOD=1
469 * 0xE100     Same as: AT+ALARMMOD=0
470
471
472
473
474 == 3.3 Add or Delete RS485 Sensor ==
475
476 (((
477 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
478 )))
479
480 (((
481 (% style="color:#037691" %)**AT Command: **
482 )))
483
484 (((
485 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
486 )))
487
488 * (((
489 Type_Code range:  A1 ~~ A4
490 )))
491 * (((
492 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
493 )))
494 * (((
495 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
496 )))
497 * (((
498 Read_Length:  RS485 response frame length supposed to receive. Max can receive
499 )))
500 * (((
501 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
502 )))
503 * (((
504 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
505 )))
506 * (((
507 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
508 )))
509
510 (((
511 **Example:**
512 )))
513
514 (((
515 User need to change external sensor use the type code as address code.
516 )))
517
518 (((
519 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
520 )))
521
522 [[image:image-20220624143553-10.png]]
523
524
525 The response frame of the sensor is as follows:
526
527 [[image:image-20220624143618-11.png]]
528
529
530
531 **Then the following parameters should be:**
532
533 * Address_Code range: A1
534 * Query_Length: 8
535 * Query_Command: A103000000019CAA
536 * Read_Length: 8
537 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
538 * has_CRC: 1
539 * timeout: 1500 (Fill in the test according to the actual situation)
540
541 **So the input command is:**
542
543 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
544
545
546 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
547
548 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
549 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
550 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
551
552 **Related commands:**
553
554 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
555
556 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
557
558
559 (% style="color:#037691" %)**Downlink Command:  **
560
561 **delete custom sensor A1:**
562
563 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
564
565 **Remove all custom sensors**
566
567 * 0xE5FF  
568
569
570
571
572 == 3.4 RS485 Test Command ==
573
574 (% style="color:#037691" %)**AT Command:**
575
576 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
577 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
578 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
579 (((
580 Send command to 485 sensor
581 )))
582
583 (((
584 Range : no more than 10 bytes
585 )))
586 )))|(% style="width:85px" %)OK
587
588 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
589
590 AT+RSWRITE=0103000001840A
591
592
593 (% style="color:#037691" %)**Downlink Command:**
594
595 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
596
597
598
599
600 == 3.5 RS485 response timeout ==
601
602 Feature: Set or get extended time to receive 485 sensor data.
603
604 (% style="color:#037691" %)**AT Command:**
605
606 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
607 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
608 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
609 (((
610 Set response timeout to:
611 )))
612
613 (((
614 Range : 0~~10000
615 )))
616 )))|(% style="width:85px" %)OK
617
618 (% style="color:#037691" %)**Downlink Command:**
619
620 Format: Command Code (0xE0) followed by 3 bytes time value.
621
622 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
623
624 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
625 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
626
627
628
629
630 == 3.6 Set Sensor Type ==
631
632 (((
633 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
634 )))
635
636 (((
637 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
638 )))
639
640 [[image:image-20220624144904-12.png]]
641
642
643 (% style="color:#037691" %)**AT Command:**
644
645 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
646 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
647 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
648
649 Eg: The setting command **AT+STYPE=802212** means:
650
651 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
652 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
653 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
654 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
655 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
656 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
657 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
658
659 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
660
661
662 (% style="color:#037691" %)**Downlink Command:**
663
664 * 0xE400802212     Same as: AT+STYPE=80221
665
666 (% style="color:red" %)**Note:**
667
668 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
669
670
671
672 = 4. Power consumption and battery =
673
674 == 4.1 Total Power Consumption ==
675
676 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
677
678
679 == 4.2 Reduce power consumption ==
680
681 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
682
683
684 == 4.3 Battery ==
685
686 (((
687 All sensors are only power by external power source. If external power source is off. All sensor won't work.
688 )))
689
690 (((
691 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
692 )))
693
694
695 = 5. Main Process Unit WSC1-L =
696
697 == 5.1 Features ==
698
699 * Wall Attachable.
700 * LoRaWAN v1.0.3 Class A protocol.
701 * RS485 / Modbus protocol
702 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
703 * AT Commands to change parameters
704 * Remote configure parameters via LoRaWAN Downlink
705 * Firmware upgradable via program port
706 * Powered by external 12v battery
707 * Back up rechargeable 1000mAh battery
708 * IP Rating: IP65
709 * Support default sensors or 3rd party RS485 sensors
710
711
712
713
714 == 5.2 Power Consumption ==
715
716 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
717
718
719 == 5.3 Storage & Operation Temperature ==
720
721 -20°C to +60°C
722
723
724 == 5.4 Pin Mapping ==
725
726 [[image:1656054149793-239.png]]
727
728
729 == 5.5 Mechanical ==
730
731 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
732
733
734 == 5.6 Connect to RS485 Sensors ==
735
736 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
737
738
739 [[image:1656054389031-379.png]]
740
741
742 Hardware Design for the Converter Board please see:
743
744 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
745
746
747 = 6. Weather Sensors =
748
749 == 6.1 Rain Gauge ~-~- WSS-01 ==
750
751
752 (((
753 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
754 )))
755
756 (((
757 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
758 )))
759
760 (((
761 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
762 )))
763
764 (((
765 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
766 )))
767
768 (((
769 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
770 )))
771
772
773 === 6.1.1 Feature ===
774
775 * RS485 Rain Gauge
776 * Small dimension, easy to install
777 * Vents under funnel, avoid leaf or other things to avoid rain flow.
778 * ABS enclosure.
779 * Horizontal adjustable.
780
781
782
783
784 === 6.1.2 Specification ===
785
786 * Resolution: 0.2mm
787 * Accuracy: ±3%
788 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
789 * Input Power: DC 5~~24v
790 * Interface: RS485
791 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
792 * Working Humidity: <100% (no dewing)
793 * Power Consumption: 4mA @ 12v.
794
795
796
797
798 === 6.1.3 Dimension ===
799
800 [[image:1656054957406-980.png]]
801
802
803 === 6.1.4 Pin Mapping ===
804
805 [[image:1656054972828-692.png]]
806
807
808 === 6.1.5 Installation Notice ===
809
810 (((
811 Do not power on while connect the cables. Double check the wiring before power on.
812 )))
813
814 (((
815 Installation Photo as reference:
816 )))
817
818
819 (((
820 (% style="color:#4472c4" %)** Install on Ground:**
821 )))
822
823 (((
824 WSS-01 Rain Gauge include screws so can install in ground directly .
825 )))
826
827
828 (((
829 (% style="color:#4472c4" %)** Install on pole:**
830 )))
831
832 (((
833 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
834 )))
835
836 [[image:image-20220624152218-1.png||height="526" width="276"]]
837
838 WS-K2: Bracket Kit for Pole installation
839
840
841 WSSC-K2 dimension document, please see:
842
843 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
844
845
846 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
847
848 [[image:1656055444035-179.png]]
849
850 (((
851 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
852 )))
853
854 (((
855 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
856 )))
857
858 (((
859 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
860 )))
861
862
863 === 6.2.1 Feature ===
864
865 * RS485 wind speed / direction sensor
866 * PC enclosure, resist corrosion
867
868
869
870
871 === 6.2.2 Specification ===
872
873 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
874 * Wind direction range: 0 ~~ 360°
875 * Start wind speed: ≤0.3m/s
876 * Accuracy: ±(0.3+0.03V)m/s , ±1°
877 * Input Power: DC 5~~24v
878 * Interface: RS485
879 * Working Temperature: -30℃~70℃
880 * Working Humidity: <100% (no dewing)
881 * Power Consumption: 13mA ~~ 12v.
882 * Cable Length: 2 meters
883
884
885
886
887 === 6.2.3 Dimension ===
888
889 [[image:image-20220624152813-2.png]]
890
891
892 === 6.2.4 Pin Mapping ===
893
894 [[image:1656056281231-994.png]]
895
896
897 === 6.2.5  Angle Mapping ===
898
899 [[image:1656056303845-585.png]]
900
901
902 === 6.2.6  Installation Notice ===
903
904 (((
905 Do not power on while connect the cables. Double check the wiring before power on.
906 )))
907
908 (((
909 The sensor must be installed with below direction, towards North.
910 )))
911
912 [[image:image-20220624153901-3.png]]
913
914
915 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
916
917
918 (((
919 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
920 )))
921
922 (((
923 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
924 )))
925
926 (((
927 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
928 )))
929
930
931 === 6.3.1 Feature ===
932
933 * RS485 CO2, PM2.5, PM10 sensor
934 * NDIR to measure CO2 with Internal Temperature Compensation
935 * Laser Beam Scattering to PM2.5 and PM10
936
937
938
939
940 === 6.3.2 Specification ===
941
942 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
943 * CO2 resolution: 1ppm
944 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
945 * PM2.5/PM10 resolution: 1μg/m3
946 * Input Power: DC 7 ~~ 24v
947 * Preheat time: 3min
948 * Interface: RS485
949 * Working Temperature:
950 ** CO2: 0℃~50℃;
951 ** PM2.5/PM10: -30 ~~ 50℃
952 * Working Humidity:
953 ** PM2.5/PM10: 15~80%RH (no dewing)
954 ** CO2: 0~95%RH
955 * Power Consumption: 50mA@ 12v.
956
957
958
959
960 === 6.3.3 Dimension ===
961
962 [[image:1656056708366-230.png]]
963
964
965 === 6.3.4 Pin Mapping ===
966
967 [[image:1656056722648-743.png]]
968
969
970 === 6.3.5 Installation Notice ===
971
972 Do not power on while connect the cables. Double check the wiring before power on.
973
974 [[image:1656056751153-304.png]]
975
976 [[image:1656056766224-773.png]]
977
978
979 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
980
981
982 (((
983 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
984 )))
985
986 (((
987 WSS-04 has auto heating feature, this ensures measurement more reliable.
988 )))
989
990 (((
991 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
992 )))
993
994
995
996 === 6.4.1 Feature ===
997
998 * RS485 Rain/Snow detect sensor
999 * Surface heating to dry
1000 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1001
1002
1003
1004
1005 === 6.4.2 Specification ===
1006
1007 * Detect if there is rain or snow
1008 * Input Power: DC 12 ~~ 24v
1009 * Interface: RS485
1010 * Working Temperature: -30℃~70℃
1011 * Working Humidity: 10~90%RH
1012 * Power Consumption:
1013 ** No heating: 12mA @ 12v,
1014 ** heating: 94ma @ 12v.
1015
1016
1017
1018
1019 === 6.4.3 Dimension ===
1020
1021 [[image:1656056844782-155.png]]
1022
1023
1024 === 6.4.4 Pin Mapping ===
1025
1026 [[image:1656056855590-754.png]]
1027
1028
1029 === 6.4.5 Installation Notice ===
1030
1031 Do not power on while connect the cables. Double check the wiring before power on.
1032
1033
1034 (((
1035 Install with 15°degree.
1036 )))
1037
1038 [[image:1656056873783-780.png]]
1039
1040
1041 [[image:1656056883736-804.png]]
1042
1043
1044 === 6.4.6 Heating ===
1045
1046 (((
1047 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1048 )))
1049
1050
1051 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1052
1053
1054 (((
1055 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1056 )))
1057
1058 (((
1059 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1060 )))
1061
1062
1063 === 6.5.1 Feature ===
1064
1065 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1066
1067
1068
1069
1070 === 6.5.2 Specification ===
1071
1072 * Input Power: DC 12 ~~ 24v
1073 * Interface: RS485
1074 * Temperature Sensor Spec:
1075 ** Range: -30 ~~ 70℃
1076 ** resolution 0.1℃
1077 ** Accuracy: ±0.5℃
1078 * Humidity Sensor Spec:
1079 ** Range: 0 ~~ 100% RH
1080 ** resolution 0.1 %RH
1081 ** Accuracy: 3% RH
1082 * Pressure Sensor Spec:
1083 ** Range: 10~1100hPa
1084 ** Resolution: 0.1hPa
1085 ** Accuracy: ±0.1hPa
1086 * Illuminate sensor:
1087 ** Range: 0~2/20/200kLux
1088 ** Resolution: 10 Lux
1089 ** Accuracy: ±3%FS
1090 * Working Temperature: -30℃~70℃
1091 * Working Humidity: 10~90%RH
1092 * Power Consumption: 4mA @ 12v
1093
1094
1095
1096
1097 === 6.5.3 Dimension ===
1098
1099 [[image:1656057170639-522.png]]
1100
1101
1102 === 6.5.4 Pin Mapping ===
1103
1104 [[image:1656057181899-910.png]]
1105
1106
1107 === 6.5.5 Installation Notice ===
1108
1109 Do not power on while connect the cables. Double check the wiring before power on.
1110
1111 [[image:1656057199955-514.png]]
1112
1113
1114 [[image:1656057212438-475.png]]
1115
1116
1117 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1118
1119
1120 (((
1121 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1122 )))
1123
1124 (((
1125 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1126 )))
1127
1128 (((
1129 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1130 )))
1131
1132
1133
1134 === 6.6.1 Feature ===
1135
1136 * RS485 Total Solar Radiation sensor
1137 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1138 * Measure Reflected Radiation if sense area towards ground.
1139
1140
1141
1142
1143 === 6.6.2 Specification ===
1144
1145 * Input Power: DC 5 ~~ 24v
1146 * Interface: RS485
1147 * Detect spectrum: 0.3~3μm(300~3000nm)
1148 * Measure strength range: 0~2000W/m2
1149 * Resolution: 0.1W/m2
1150 * Accuracy: ±3%
1151 * Yearly Stability: ≤±2%
1152 * Cosine response: ≤7% (@ Sun angle 10°)
1153 * Temperature Effect: ±2%(-10℃~40℃)
1154 * Working Temperature: -40℃~70℃
1155 * Working Humidity: 10~90%RH
1156 * Power Consumption: 4mA @ 12v
1157
1158
1159
1160
1161 === 6.6.3 Dimension ===
1162
1163 [[image:1656057348695-898.png]]
1164
1165
1166 === 6.6.4 Pin Mapping ===
1167
1168 [[image:1656057359343-744.png]]
1169
1170
1171 === 6.6.5 Installation Notice ===
1172
1173 Do not power on while connect the cables. Double check the wiring before power on.
1174
1175 [[image:1656057369259-804.png]]
1176
1177
1178 [[image:1656057377943-564.png]]
1179
1180
1181 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1182
1183
1184 (((
1185 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1186 )))
1187
1188 (((
1189 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1190 )))
1191
1192 (((
1193 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1194 )))
1195
1196
1197 === 6.7.1 Feature ===
1198
1199 (((
1200 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1201 )))
1202
1203 (((
1204 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1205 )))
1206
1207
1208 === 6.7.2 Specification ===
1209
1210 * Input Power: DC 5 ~~ 24v
1211 * Interface: RS485
1212 * Response Spectrum: 400~700nm
1213 * Measure range: 0~2500μmol/m2•s
1214 * Resolution: 1μmol/m2•s
1215 * Accuracy: ±2%
1216 * Yearly Stability: ≤±2%
1217 * Working Temperature: -30℃~75℃
1218 * Working Humidity: 10~90%RH
1219 * Power Consumption: 3mA @ 12v
1220
1221
1222
1223
1224 === 6.7.3 Dimension ===
1225
1226 [[image:1656057538793-888.png]]
1227
1228
1229 === 6.7.4 Pin Mapping ===
1230
1231 [[image:1656057548116-203.png]]
1232
1233
1234 === 6.7.5 Installation Notice ===
1235
1236 Do not power on while connect the cables. Double check the wiring before power on.
1237
1238
1239 [[image:1656057557191-895.png]]
1240
1241
1242 [[image:1656057565783-251.png]]
1243
1244
1245 = 7. FAQ =
1246
1247 == 7.1 What else do I need to purchase to build Weather Station? ==
1248
1249 Below is the installation photo and structure:
1250
1251 [[image:1656057598349-319.png]]
1252
1253
1254 [[image:1656057608049-693.png]]
1255
1256
1257
1258 == 7.2 How to upgrade firmware for WSC1-L? ==
1259
1260 (((
1261 Firmware Location & Change log:
1262 )))
1263
1264 (((
1265 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1266 )))
1267
1268
1269 (((
1270 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1271 )))
1272
1273
1274 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1275
1276 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1277
1278
1279 == 7.4 Can I add my weather sensors? ==
1280
1281 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1282
1283
1284 = 8. Trouble Shooting =
1285
1286 == 8.1 AT Command input doesn't work ==
1287
1288 (((
1289 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1290 )))
1291
1292
1293 = 9. Order Info =
1294
1295 == 9.1 Main Process Unit ==
1296
1297 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1298
1299 (% style="color:blue" %)**XX**(%%): The default frequency band
1300
1301 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1302 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1303 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1304 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1305 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1306 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1307 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1308 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1309
1310
1311
1312
1313 == 9.2 Sensors ==
1314
1315 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:500px" %)
1316 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 200px;" %)**Part Number**
1317 |(% style="width:462px" %)**Rain Gauge**|(% style="width:120px" %)WSS-01
1318 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:120px" %)WS-K2
1319 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:120px" %)WSS-02
1320 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:120px" %)WSS-03
1321 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:120px" %)WSS-04
1322 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:120px" %)WSS-05
1323 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:120px" %)WSS-06
1324 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:120px" %)WSS-07
1325
1326
1327
1328 = 10. Support =
1329
1330 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1331 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1332
1333
1334
1335
1336 = 11. Appendix I: Field Installation Photo =
1337
1338
1339 [[image:1656058346362-132.png||height="685" width="732"]]
1340
1341 **Storage Battery**: 12v,12AH li battery
1342
1343
1344
1345 **Wind Speed/Direction**
1346
1347 [[image:1656058373174-421.png||height="356" width="731"]]
1348
1349
1350
1351 **Total Solar Radiation sensor**
1352
1353 [[image:1656058397364-282.png||height="453" width="732"]]
1354
1355
1356
1357 **PAR Sensor**
1358
1359 [[image:1656058416171-615.png]]
1360
1361
1362
1363 **CO2/PM2.5/PM10 3 in 1 sensor**
1364
1365 [[image:1656058441194-827.png||height="672" width="523"]]
1366
1367
1368
1369 **Rain / Snow Detect**
1370
1371 [[image:1656058451456-166.png]]
1372
1373
1374
1375 **Rain Gauge**
1376
1377 [[image:1656058463455-569.png||height="499" width="550"]]
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0