Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %)**Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)**Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80
81 == 2.2 How it works? ==
82
83 (((
84 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
85 )))
86
87
88 (((
89 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
90 )))
91
92 [[image:1656042192857-709.png]]
93
94
95 (% style="color:red" %)**Notice:**
96
97 1. WSC1-L will auto scan available weather sensors when power on or reboot.
98 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
99
100
101 == 2.3 Example to use for LoRaWAN network ==
102
103 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
104
105
106 [[image:1656042612899-422.png]]
107
108
109
110 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
111
112
113 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
114
115 Each WSC1-L is shipped with a sticker with the default device EUI as below:
116
117 [[image:image-20220624115043-1.jpeg]]
118
119
120 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
121
122 **Add APP EUI in the application.**
123
124 [[image:1656042662694-311.png]]
125
126 [[image:1656042673910-429.png]]
127
128
129
130
131 **Choose Manually to add WSC1-L**
132
133 [[image:1656042695755-103.png]]
134
135
136
137 **Add APP KEY and DEV EUI**
138
139 [[image:1656042723199-746.png]]
140
141
142
143 (((
144 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
145 )))
146
147
148 [[image:1656042745346-283.png]]
149
150
151
152 == 2.4 Uplink Payload ==
153
154 Uplink payloads include two types: Valid Sensor Value and other status / control command.
155
156 * Valid Sensor Value: Use FPORT=2
157 * Other control command: Use FPORT other than 2.
158
159
160 === 2.4.1 Uplink FPORT~=5, Device Status ===
161
162 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
163
164
165 (((
166 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
167 )))
168
169 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
170 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
171 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
172
173 [[image:1656043061044-343.png]]
174
175
176 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
177
178
179
180 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
181
182 For WSC1-L, this value is 0x0D.
183
184
185
186 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
187
188 0x0100, Means: v1.0.0 version.
189
190
191
192 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
193
194 *0x01: EU868
195
196 *0x02: US915
197
198 *0x03: IN865
199
200 *0x04: AU915
201
202 *0x05: KZ865
203
204 *0x06: RU864
205
206 *0x07: AS923
207
208 *0x08: AS923-1
209
210 *0x09: AS923-2
211
212 *0x0a: AS923-3
213
214
215
216 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
217
218 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
219
220
221
222 ==== (% style="color:#037691" %)**BAT:**(%%) ====
223
224 (((
225 shows the battery voltage for WSC1-L MCU.
226 )))
227
228 (((
229 Ex1: 0x0BD6/1000 = 3.03 V
230 )))
231
232
233
234 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
235
236 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
237 |Byte3|Byte2|Byte1
238
239 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
240
241 [[image:image-20220624134713-1.png]]
242
243
244 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
245
246 External sensors detected by WSC1-L include :
247
248 custom sensor A1,
249
250 PAR sensor (WSS-07),
251
252 Total Solar Radiation sensor (WSS-06),
253
254 CO2/PM2.5/PM10 (WSS-03),
255
256 Wind Speed/Direction (WSS-02)
257
258
259 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
260
261 (% style="color:#037691" %)**Downlink:0x26 01**
262
263 [[image:1656049673488-415.png]]
264
265
266
267 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
268
269 (((
270 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
271 )))
272
273 (((
274 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
275 )))
276
277
278 (((
279 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
280 )))
281
282
283 (% style="color:#4472c4" %)** Uplink Payload**:
284
285 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
286 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
287
288 (% style="color:#4472c4" %)** Sensor Segment Define**:
289
290 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
291 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
292
293 (% style="color:#4472c4" %)**Sensor Type Table:**
294
295 [[image:image-20220706154434-1.png]]
296
297
298 (((
299 Below is an example payload:  [[image:image-20220624140615-3.png]]
300 )))
301
302 (((
303
304 )))
305
306 (((
307 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
308 )))
309
310 * (((
311 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
312 )))
313
314 (((
315 Uplink 1:  [[image:image-20220624140735-4.png]]
316 )))
317
318 (((
319
320 )))
321
322 (((
323 Uplink 2:  [[image:image-20220624140842-5.png]]
324 )))
325
326 (((
327
328 )))
329
330 * (((
331 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
332 )))
333
334 (((
335 Uplink 1:  [[image:image-20220624141025-6.png]]
336 )))
337
338 (((
339
340 )))
341
342 Uplink 2:  [[image:image-20220624141100-7.png]]
343
344
345
346 === 2.4.3 Decoder in TTN V3 ===
347
348 (((
349 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
350 )))
351
352 (((
353
354 )))
355
356 (((
357 Download decoder for suitable platform from:
358 )))
359
360 (((
361 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
362 )))
363
364 (((
365 and put as below:
366 )))
367
368 [[image:1656051152438-578.png]]
369
370
371
372 == 2.5 Show data on Application Server ==
373
374 (((
375 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
376 )))
377
378 (((
379
380 )))
381
382 (((
383 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
384 )))
385
386 (((
387 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
388 )))
389
390 [[image:1656051197172-131.png]]
391
392
393 **Add TagoIO:**
394
395 [[image:1656051223585-631.png]]
396
397
398 **Authorization:**
399
400 [[image:1656051248318-368.png]]
401
402
403 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
404
405 [[image:1656051277767-168.png]]
406
407
408
409 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
410
411 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
412
413 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
414 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
415
416 There are two kinds of commands to configure WSC1-L, they are:
417
418 * (% style="color:#4472c4" %)**General Commands**.
419
420 These commands are to configure:
421
422 * General system settings like: uplink interval.
423 * LoRaWAN protocol & radio related command.
424
425 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
426
427 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
428
429
430 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
431
432 These commands only valid for WSC1-L, as below:
433
434
435
436 == 3.1 Set Transmit Interval Time ==
437
438 Feature: Change LoRaWAN End Node Transmit Interval.
439
440 (% style="color:#037691" %)**AT Command: AT+TDC**
441
442 [[image:image-20220624142619-8.png]]
443
444
445 (% style="color:#037691" %)**Downlink Command: 0x01**
446
447 Format: Command Code (0x01) followed by 3 bytes time value.
448
449 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
450
451 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
452 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
453
454 == 3.2 Set Emergency Mode ==
455
456 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
457
458 (% style="color:#037691" %)**AT Command:**
459
460 [[image:image-20220624142956-9.png]]
461
462
463 (% style="color:#037691" %)**Downlink Command:**
464
465 * 0xE101     Same as: AT+ALARMMOD=1
466 * 0xE100     Same as: AT+ALARMMOD=0
467
468 == 3.3 Add or Delete RS485 Sensor ==
469
470 (((
471 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
472 )))
473
474 (((
475 (% style="color:#037691" %)**AT Command: **
476 )))
477
478 (((
479 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
480 )))
481
482 * (((
483 Type_Code range:  A1 ~~ A4
484 )))
485 * (((
486 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
487 )))
488 * (((
489 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
490 )))
491 * (((
492 Read_Length:  RS485 response frame length supposed to receive. Max can receive
493 )))
494 * (((
495 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
496 )))
497 * (((
498 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
499 )))
500 * (((
501 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
502 )))
503
504 (((
505 **Example:**
506 )))
507
508 (((
509 User need to change external sensor use the type code as address code.
510 )))
511
512 (((
513 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
514 )))
515
516 [[image:image-20220624143553-10.png]]
517
518
519 The response frame of the sensor is as follows:
520
521 [[image:image-20220624143618-11.png]]
522
523
524
525 **Then the following parameters should be:**
526
527 * Address_Code range: A1
528 * Query_Length: 8
529 * Query_Command: A103000000019CAA
530 * Read_Length: 8
531 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
532 * has_CRC: 1
533 * timeout: 1500 (Fill in the test according to the actual situation)
534
535 **So the input command is:**
536
537 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
538
539
540 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
541
542 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
543 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
544 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
545
546 **Related commands:**
547
548 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
549
550 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
551
552
553 (% style="color:#037691" %)**Downlink Command:  **
554
555 **delete custom sensor A1:**
556
557 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
558
559 **Remove all custom sensors**
560
561 * 0xE5FF  
562
563 == 3.4 RS485 Test Command ==
564
565 (% style="color:#037691" %)**AT Command:**
566
567 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
568 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
569 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
570 (((
571 Send command to 485 sensor
572 )))
573
574 (((
575 Range : no more than 10 bytes
576 )))
577 )))|(% style="width:85px" %)OK
578
579 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
580
581 AT+RSWRITE=0103000001840A
582
583
584 (% style="color:#037691" %)**Downlink Command:**
585
586 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
587
588 == 3.5 RS485 response timeout ==
589
590 Feature: Set or get extended time to receive 485 sensor data.
591
592 (% style="color:#037691" %)**AT Command:**
593
594 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
595 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
596 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
597 (((
598 Set response timeout to:
599 )))
600
601 (((
602 Range : 0~~10000
603 )))
604 )))|(% style="width:85px" %)OK
605
606 (% style="color:#037691" %)**Downlink Command:**
607
608 Format: Command Code (0xE0) followed by 3 bytes time value.
609
610 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
611
612 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
613 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
614
615 == 3.6 Set Sensor Type ==
616
617 (((
618 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
619 )))
620
621 (((
622 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
623 )))
624
625 [[image:image-20220624144904-12.png]]
626
627
628 (% style="color:#037691" %)**AT Command:**
629
630 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
631 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
632 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
633
634 Eg: The setting command **AT+STYPE=802212** means:
635
636 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
637 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
638 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
639 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
640 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
641 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
642 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
643
644 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
645
646
647 (% style="color:#037691" %)**Downlink Command:**
648
649 * 0xE400802212     Same as: AT+STYPE=80221
650
651 (% style="color:red" %)**Note:**
652
653 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
654
655
656
657
658 = 4. Power consumption and battery =
659
660 == 4.1 Total Power Consumption ==
661
662 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
663
664
665 == 4.2 Reduce power consumption ==
666
667 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
668
669
670 == 4.3 Battery ==
671
672 (((
673 All sensors are only power by external power source. If external power source is off. All sensor won't work.
674 )))
675
676 (((
677 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
678 )))
679
680
681 = 5. Main Process Unit WSC1-L =
682
683 == 5.1 Features ==
684
685 * Wall Attachable.
686 * LoRaWAN v1.0.3 Class A protocol.
687 * RS485 / Modbus protocol
688 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
689 * AT Commands to change parameters
690 * Remote configure parameters via LoRaWAN Downlink
691 * Firmware upgradable via program port
692 * Powered by external 12v battery
693 * Back up rechargeable 1000mAh battery
694 * IP Rating: IP65
695 * Support default sensors or 3rd party RS485 sensors
696
697 == 5.2 Power Consumption ==
698
699 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
700
701
702 == 5.3 Storage & Operation Temperature ==
703
704 -20°C to +60°C
705
706
707 == 5.4 Pin Mapping ==
708
709 [[image:1656054149793-239.png]]
710
711
712 == 5.5 Mechanical ==
713
714 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
715
716
717 == 5.6 Connect to RS485 Sensors ==
718
719 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
720
721
722 [[image:1656054389031-379.png]]
723
724
725 Hardware Design for the Converter Board please see:
726
727 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
728
729
730 = 6. Weather Sensors =
731
732 == 6.1 Rain Gauge ~-~- WSS-01 ==
733
734
735 (((
736 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
737 )))
738
739 (((
740 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
741 )))
742
743 (((
744 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
745 )))
746
747 (((
748 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
749 )))
750
751 (((
752 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
753 )))
754
755
756 === 6.1.1 Feature ===
757
758 * RS485 Rain Gauge
759 * Small dimension, easy to install
760 * Vents under funnel, avoid leaf or other things to avoid rain flow.
761 * ABS enclosure.
762 * Horizontal adjustable.
763
764 === 6.1.2 Specification ===
765
766 * Resolution: 0.2mm
767 * Accuracy: ±3%
768 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
769 * Input Power: DC 5~~24v
770 * Interface: RS485
771 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
772 * Working Humidity: <100% (no dewing)
773 * Power Consumption: 4mA @ 12v.
774
775 === 6.1.3 Dimension ===
776
777 [[image:1656054957406-980.png]]
778
779
780 === 6.1.4 Pin Mapping ===
781
782 [[image:1656054972828-692.png]]
783
784
785 === 6.1.5 Installation Notice ===
786
787 (((
788 Do not power on while connect the cables. Double check the wiring before power on.
789 )))
790
791 (((
792 Installation Photo as reference:
793 )))
794
795
796 (((
797 (% style="color:#4472c4" %)** Install on Ground:**
798 )))
799
800 (((
801 WSS-01 Rain Gauge include screws so can install in ground directly .
802 )))
803
804
805 (((
806 (% style="color:#4472c4" %)** Install on pole:**
807 )))
808
809 (((
810 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
811 )))
812
813 [[image:image-20220624152218-1.png||height="526" width="276"]]
814
815 WS-K2: Bracket Kit for Pole installation
816
817
818 WSSC-K2 dimension document, please see:
819
820 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
821
822
823 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
824
825 [[image:1656055444035-179.png]]
826
827 (((
828 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
829 )))
830
831 (((
832 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
833 )))
834
835 (((
836 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
837 )))
838
839
840 === 6.2.1 Feature ===
841
842 * RS485 wind speed / direction sensor
843 * PC enclosure, resist corrosion
844
845 === 6.2.2 Specification ===
846
847 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
848 * Wind direction range: 0 ~~ 360°
849 * Start wind speed: ≤0.3m/s
850 * Accuracy: ±(0.3+0.03V)m/s , ±1°
851 * Input Power: DC 5~~24v
852 * Interface: RS485
853 * Working Temperature: -30℃~70℃
854 * Working Humidity: <100% (no dewing)
855 * Power Consumption: 13mA ~~ 12v.
856 * Cable Length: 2 meters
857
858 === 6.2.3 Dimension ===
859
860 [[image:image-20220624152813-2.png]]
861
862
863 === 6.2.4 Pin Mapping ===
864
865 [[image:1656056281231-994.png]]
866
867
868 === 6.2.5  Angle Mapping ===
869
870 [[image:1656056303845-585.png]]
871
872
873 === 6.2.6  Installation Notice ===
874
875 (((
876 Do not power on while connect the cables. Double check the wiring before power on.
877 )))
878
879 (((
880 The sensor must be installed with below direction, towards North.
881 )))
882
883 [[image:image-20220624153901-3.png]]
884
885
886 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
887
888
889 (((
890 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
891 )))
892
893 (((
894 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
895 )))
896
897 (((
898 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
899 )))
900
901
902 === 6.3.1 Feature ===
903
904 * RS485 CO2, PM2.5, PM10 sensor
905 * NDIR to measure CO2 with Internal Temperature Compensation
906 * Laser Beam Scattering to PM2.5 and PM10
907
908 === 6.3.2 Specification ===
909
910 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
911 * CO2 resolution: 1ppm
912 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
913 * PM2.5/PM10 resolution: 1μg/m3
914 * Input Power: DC 7 ~~ 24v
915 * Preheat time: 3min
916 * Interface: RS485
917 * Working Temperature:
918 ** CO2: 0℃~50℃;
919 ** PM2.5/PM10: -30 ~~ 50℃
920 * Working Humidity:
921 ** PM2.5/PM10: 15~80%RH (no dewing)
922 ** CO2: 0~95%RH
923 * Power Consumption: 50mA@ 12v.
924
925 === 6.3.3 Dimension ===
926
927 [[image:1656056708366-230.png]]
928
929
930 === 6.3.4 Pin Mapping ===
931
932 [[image:1656056722648-743.png]]
933
934
935 === 6.3.5 Installation Notice ===
936
937 Do not power on while connect the cables. Double check the wiring before power on.
938
939 [[image:1656056751153-304.png]]
940
941 [[image:1656056766224-773.png]]
942
943
944 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
945
946
947 (((
948 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
949 )))
950
951 (((
952 WSS-04 has auto heating feature, this ensures measurement more reliable.
953 )))
954
955 (((
956 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
957 )))
958
959
960
961 === 6.4.1 Feature ===
962
963 * RS485 Rain/Snow detect sensor
964 * Surface heating to dry
965 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
966
967 === 6.4.2 Specification ===
968
969 * Detect if there is rain or snow
970 * Input Power: DC 12 ~~ 24v
971 * Interface: RS485
972 * Working Temperature: -30℃~70℃
973 * Working Humidity: 10~90%RH
974 * Power Consumption:
975 ** No heating: 12mA @ 12v,
976 ** heating: 94ma @ 12v.
977
978 === 6.4.3 Dimension ===
979
980 [[image:1656056844782-155.png]]
981
982
983 === 6.4.4 Pin Mapping ===
984
985 [[image:1656056855590-754.png]]
986
987
988 === 6.4.5 Installation Notice ===
989
990 Do not power on while connect the cables. Double check the wiring before power on.
991
992
993 (((
994 Install with 15°degree.
995 )))
996
997 [[image:1656056873783-780.png]]
998
999
1000 [[image:1656056883736-804.png]]
1001
1002
1003 === 6.4.6 Heating ===
1004
1005 (((
1006 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1007 )))
1008
1009
1010 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1011
1012
1013 (((
1014 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1015 )))
1016
1017 (((
1018 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1019 )))
1020
1021
1022 === 6.5.1 Feature ===
1023
1024 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1025
1026 === 6.5.2 Specification ===
1027
1028 * Input Power: DC 12 ~~ 24v
1029 * Interface: RS485
1030 * Temperature Sensor Spec:
1031 ** Range: -30 ~~ 70℃
1032 ** resolution 0.1℃
1033 ** Accuracy: ±0.5℃
1034 * Humidity Sensor Spec:
1035 ** Range: 0 ~~ 100% RH
1036 ** resolution 0.1 %RH
1037 ** Accuracy: 3% RH
1038 * Pressure Sensor Spec:
1039 ** Range: 10~1100hPa
1040 ** Resolution: 0.1hPa
1041 ** Accuracy: ±0.1hPa
1042 * Illuminate sensor:
1043 ** Range: 0~2/20/200kLux
1044 ** Resolution: 10 Lux
1045 ** Accuracy: ±3%FS
1046 * Working Temperature: -30℃~70℃
1047 * Working Humidity: 10~90%RH
1048 * Power Consumption: 4mA @ 12v
1049
1050 === 6.5.3 Dimension ===
1051
1052 [[image:1656057170639-522.png]]
1053
1054
1055 === 6.5.4 Pin Mapping ===
1056
1057 [[image:1656057181899-910.png]]
1058
1059
1060 === 6.5.5 Installation Notice ===
1061
1062 Do not power on while connect the cables. Double check the wiring before power on.
1063
1064 [[image:1656057199955-514.png]]
1065
1066
1067 [[image:1656057212438-475.png]]
1068
1069
1070 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1071
1072
1073 (((
1074 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1075 )))
1076
1077 (((
1078 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1079 )))
1080
1081 (((
1082 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1083 )))
1084
1085
1086
1087 === 6.6.1 Feature ===
1088
1089 * RS485 Total Solar Radiation sensor
1090 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1091 * Measure Reflected Radiation if sense area towards ground.
1092
1093 === 6.6.2 Specification ===
1094
1095 * Input Power: DC 5 ~~ 24v
1096 * Interface: RS485
1097 * Detect spectrum: 0.3~3μm(300~3000nm)
1098 * Measure strength range: 0~2000W/m2
1099 * Resolution: 0.1W/m2
1100 * Accuracy: ±3%
1101 * Yearly Stability: ≤±2%
1102 * Cosine response: ≤7% (@ Sun angle 10°)
1103 * Temperature Effect: ±2%(-10℃~40℃)
1104 * Working Temperature: -40℃~70℃
1105 * Working Humidity: 10~90%RH
1106 * Power Consumption: 4mA @ 12v
1107
1108 === 6.6.3 Dimension ===
1109
1110 [[image:1656057348695-898.png]]
1111
1112
1113 === 6.6.4 Pin Mapping ===
1114
1115 [[image:1656057359343-744.png]]
1116
1117
1118 === 6.6.5 Installation Notice ===
1119
1120 Do not power on while connect the cables. Double check the wiring before power on.
1121
1122 [[image:1656057369259-804.png]]
1123
1124
1125 [[image:1656057377943-564.png]]
1126
1127
1128 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1129
1130
1131 (((
1132 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1133 )))
1134
1135 (((
1136 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1137 )))
1138
1139 (((
1140 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1141 )))
1142
1143
1144 === 6.7.1 Feature ===
1145
1146 (((
1147 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1148 )))
1149
1150 (((
1151 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1152 )))
1153
1154
1155 === 6.7.2 Specification ===
1156
1157 * Input Power: DC 5 ~~ 24v
1158 * Interface: RS485
1159 * Response Spectrum: 400~700nm
1160 * Measure range: 0~2500μmol/m2•s
1161 * Resolution: 1μmol/m2•s
1162 * Accuracy: ±2%
1163 * Yearly Stability: ≤±2%
1164 * Working Temperature: -30℃~75℃
1165 * Working Humidity: 10~90%RH
1166 * Power Consumption: 3mA @ 12v
1167
1168 === 6.7.3 Dimension ===
1169
1170 [[image:1656057538793-888.png]]
1171
1172
1173 === 6.7.4 Pin Mapping ===
1174
1175 [[image:1656057548116-203.png]]
1176
1177
1178 === 6.7.5 Installation Notice ===
1179
1180 Do not power on while connect the cables. Double check the wiring before power on.
1181
1182
1183 [[image:1656057557191-895.png]]
1184
1185
1186 [[image:1656057565783-251.png]]
1187
1188
1189 = 7. FAQ =
1190
1191 == 7.1 What else do I need to purchase to build Weather Station? ==
1192
1193 Below is the installation photo and structure:
1194
1195 [[image:1656057598349-319.png]]
1196
1197
1198 [[image:1656057608049-693.png]]
1199
1200
1201
1202 == 7.2 How to upgrade firmware for WSC1-L? ==
1203
1204 (((
1205 Firmware Location & Change log:
1206 )))
1207
1208 (((
1209 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1210 )))
1211
1212
1213 (((
1214 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1215 )))
1216
1217
1218 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1219
1220 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1221
1222
1223 == 7.4 Can I add my weather sensors? ==
1224
1225 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1226
1227
1228 = 8. Trouble Shooting =
1229
1230 == 8.1 AT Command input doesn't work ==
1231
1232 (((
1233 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1234 )))
1235
1236
1237 = 9. Order Info =
1238
1239 == 9.1 Main Process Unit ==
1240
1241 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1242
1243 (% style="color:blue" %)**XX**(%%): The default frequency band
1244
1245 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1246 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1247 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1248 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1249 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1250 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1251 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1252 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1253
1254 == 9.2 Sensors ==
1255
1256 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:500px" %)
1257 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 200px;" %)**Part Number**
1258 |(% style="width:462px" %)**Rain Gauge**|(% style="width:120px" %)WSS-01
1259 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:120px" %)WS-K2
1260 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:120px" %)WSS-02
1261 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:120px" %)WSS-03
1262 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:120px" %)WSS-04
1263 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:120px" %)WSS-05
1264 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:120px" %)WSS-06
1265 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:120px" %)WSS-07
1266
1267 = 10. Support =
1268
1269 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1270 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1271
1272 = 11. Appendix I: Field Installation Photo =
1273
1274
1275 [[image:1656058346362-132.png||height="685" width="732"]]
1276
1277 **Storage Battery**: 12v,12AH li battery
1278
1279
1280
1281 **Wind Speed/Direction**
1282
1283 [[image:1656058373174-421.png||height="356" width="731"]]
1284
1285
1286
1287 **Total Solar Radiation sensor**
1288
1289 [[image:1656058397364-282.png||height="453" width="732"]]
1290
1291
1292
1293 **PAR Sensor**
1294
1295 [[image:1656058416171-615.png]]
1296
1297
1298
1299 **CO2/PM2.5/PM10 3 in 1 sensor**
1300
1301 [[image:1656058441194-827.png||height="672" width="523"]]
1302
1303
1304
1305 **Rain / Snow Detect**
1306
1307 [[image:1656058451456-166.png]]
1308
1309
1310
1311 **Rain Gauge**
1312
1313 [[image:1656058463455-569.png||height="499" width="550"]]
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0