Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %)**Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)**Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80
81
82 == 2.2 How it works? ==
83
84 (((
85 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
86 )))
87
88
89 (((
90 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
91 )))
92
93 [[image:1656042192857-709.png]]
94
95
96 (% style="color:red" %)**Notice:**
97
98 1. WSC1-L will auto scan available weather sensors when power on or reboot.
99 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
100
101
102
103 == 2.3 Example to use for LoRaWAN network ==
104
105 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
106
107
108 [[image:1656042612899-422.png]]
109
110
111
112 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
113
114
115 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
116
117 Each WSC1-L is shipped with a sticker with the default device EUI as below:
118
119 [[image:image-20220624115043-1.jpeg]]
120
121
122 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
123
124 **Add APP EUI in the application.**
125
126 [[image:1656042662694-311.png]]
127
128 [[image:1656042673910-429.png]]
129
130
131
132
133 **Choose Manually to add WSC1-L**
134
135 [[image:1656042695755-103.png]]
136
137
138
139 **Add APP KEY and DEV EUI**
140
141 [[image:1656042723199-746.png]]
142
143
144
145 (((
146 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
147 )))
148
149
150 [[image:1656042745346-283.png]]
151
152
153
154 == 2.4 Uplink Payload ==
155
156 Uplink payloads include two types: Valid Sensor Value and other status / control command.
157
158 * Valid Sensor Value: Use FPORT=2
159 * Other control command: Use FPORT other than 2.
160
161
162
163 === 2.4.1 Uplink FPORT~=5, Device Status ===
164
165 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
166
167
168 (((
169 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
170 )))
171
172 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
173 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
174 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
175
176 [[image:1656043061044-343.png]]
177
178
179 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
180
181
182
183 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
184
185 For WSC1-L, this value is 0x0D.
186
187
188
189 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
190
191 0x0100, Means: v1.0.0 version.
192
193
194
195 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
196
197 *0x01: EU868
198
199 *0x02: US915
200
201 *0x03: IN865
202
203 *0x04: AU915
204
205 *0x05: KZ865
206
207 *0x06: RU864
208
209 *0x07: AS923
210
211 *0x08: AS923-1
212
213 *0x09: AS923-2
214
215 *0x0a: AS923-3
216
217
218
219 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
220
221 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
222
223
224
225 ==== (% style="color:#037691" %)**BAT:**(%%) ====
226
227 (((
228 shows the battery voltage for WSC1-L MCU.
229 )))
230
231 (((
232 Ex1: 0x0BD6/1000 = 3.03 V
233 )))
234
235
236
237 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
238
239 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
240 |Byte3|Byte2|Byte1
241
242 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
243
244 [[image:image-20220624134713-1.png]]
245
246
247 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
248
249 External sensors detected by WSC1-L include :
250
251 custom sensor A1,
252
253 PAR sensor (WSS-07),
254
255 Total Solar Radiation sensor (WSS-06),
256
257 CO2/PM2.5/PM10 (WSS-03),
258
259 Wind Speed/Direction (WSS-02)
260
261
262 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
263
264 (% style="color:#037691" %)**Downlink:0x26 01**
265
266 [[image:1656049673488-415.png]]
267
268
269
270 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
271
272 (((
273 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
274 )))
275
276 (((
277 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
278 )))
279
280
281 (((
282 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
283 )))
284
285
286 (% style="color:#4472c4" %)** Uplink Payload**:
287
288 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
289 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
290
291 (% style="color:#4472c4" %)** Sensor Segment Define**:
292
293 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
294 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
295
296 (% style="color:#4472c4" %)**Sensor Type Table:**
297
298 [[image:image-20220624140352-2.png]]
299
300
301 (((
302 Below is an example payload:  [[image:image-20220624140615-3.png]]
303 )))
304
305 (((
306
307 )))
308
309 (((
310 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
311 )))
312
313 * (((
314 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
315 )))
316
317 (((
318 Uplink 1:  [[image:image-20220624140735-4.png]]
319 )))
320
321 (((
322
323 )))
324
325 (((
326 Uplink 2:  [[image:image-20220624140842-5.png]]
327 )))
328
329 (((
330
331 )))
332
333 * (((
334 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
335 )))
336
337 (((
338 Uplink 1:  [[image:image-20220624141025-6.png]]
339 )))
340
341 (((
342
343 )))
344
345 Uplink 2:  [[image:image-20220624141100-7.png]]
346
347
348
349
350 === 2.4.3 Decoder in TTN V3 ===
351
352 (((
353 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
354 )))
355
356 (((
357
358 )))
359
360 (((
361 Download decoder for suitable platform from:
362 )))
363
364 (((
365 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
366 )))
367
368 (((
369 and put as below:
370 )))
371
372 [[image:1656051152438-578.png]]
373
374
375
376 == 2.5 Show data on Application Server ==
377
378 (((
379 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
380 )))
381
382 (((
383
384 )))
385
386 (((
387 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
388 )))
389
390 (((
391 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
392 )))
393
394 [[image:1656051197172-131.png]]
395
396
397 **Add TagoIO:**
398
399 [[image:1656051223585-631.png]]
400
401
402 **Authorization:**
403
404 [[image:1656051248318-368.png]]
405
406
407 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
408
409 [[image:1656051277767-168.png]]
410
411
412
413 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
414
415 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
416
417 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
418 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
419
420 There are two kinds of commands to configure WSC1-L, they are:
421
422 * (% style="color:#4472c4" %)**General Commands**.
423
424 These commands are to configure:
425
426 * General system settings like: uplink interval.
427 * LoRaWAN protocol & radio related command.
428
429 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
430
431 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
432
433
434 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
435
436 These commands only valid for WSC1-L, as below:
437
438
439
440 == 3.1 Set Transmit Interval Time ==
441
442 Feature: Change LoRaWAN End Node Transmit Interval.
443
444 (% style="color:#037691" %)**AT Command: AT+TDC**
445
446 [[image:image-20220624142619-8.png]]
447
448
449 (% style="color:#037691" %)**Downlink Command: 0x01**
450
451 Format: Command Code (0x01) followed by 3 bytes time value.
452
453 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
454
455 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
456 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
457
458
459
460 == 3.2 Set Emergency Mode ==
461
462 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
463
464 (% style="color:#037691" %)**AT Command:**
465
466 [[image:image-20220624142956-9.png]]
467
468
469 (% style="color:#037691" %)**Downlink Command:**
470
471 * 0xE101     Same as: AT+ALARMMOD=1
472 * 0xE100     Same as: AT+ALARMMOD=0
473
474
475
476 == 3.3 Add or Delete RS485 Sensor ==
477
478 (((
479 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
480 )))
481
482 (((
483 (% style="color:#037691" %)**AT Command: **
484 )))
485
486 (((
487 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
488 )))
489
490 * (((
491 Type_Code range:  A1 ~~ A4
492 )))
493 * (((
494 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
495 )))
496 * (((
497 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
498 )))
499 * (((
500 Read_Length:  RS485 response frame length supposed to receive. Max can receive
501 )))
502 * (((
503 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
504 )))
505 * (((
506 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
507 )))
508 * (((
509 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
510 )))
511
512 (((
513 **Example:**
514 )))
515
516 (((
517 User need to change external sensor use the type code as address code.
518 )))
519
520 (((
521 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
522 )))
523
524 [[image:image-20220624143553-10.png]]
525
526
527 The response frame of the sensor is as follows:
528
529 [[image:image-20220624143618-11.png]]
530
531
532
533 **Then the following parameters should be:**
534
535 * Address_Code range: A1
536 * Query_Length: 8
537 * Query_Command: A103000000019CAA
538 * Read_Length: 8
539 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
540 * has_CRC: 1
541 * timeout: 1500 (Fill in the test according to the actual situation)
542
543 **So the input command is:**
544
545 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
546
547
548 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
549
550 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
551 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
552 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
553
554 **Related commands:**
555
556 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
557
558 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
559
560
561 (% style="color:#037691" %)**Downlink Command:  **
562
563 **delete custom sensor A1:**
564
565 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
566
567 **Remove all custom sensors**
568
569 * 0xE5FF  
570
571
572
573 == 3.4 RS485 Test Command ==
574
575 (% style="color:#037691" %)**AT Command:**
576
577 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
578 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
579 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
580 Send command to 485 sensor
581
582 Range : no more than 10 bytes
583 )))|(% style="width:85px" %)OK
584
585 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
586
587 AT+RSWRITE=0103000001840A
588
589
590 (% style="color:#037691" %)**Downlink Command:**
591
592 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
593
594
595
596 == 3.5 RS485 response timeout ==
597
598 Feature: Set or get extended time to receive 485 sensor data.
599
600 (% style="color:#037691" %)**AT Command:**
601
602 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
603 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
604 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
605 Set response timeout to:
606
607 Range : 0~~10000
608 )))|(% style="width:85px" %)OK
609
610 (% style="color:#037691" %)**Downlink Command:**
611
612 Format: Command Code (0xE0) followed by 3 bytes time value.
613
614 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
615
616 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
617 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
618
619
620
621 == 3.6 Set Sensor Type ==
622
623 (((
624 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
625 )))
626
627 (((
628 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
629 )))
630
631 [[image:image-20220624144904-12.png]]
632
633
634 (% style="color:#037691" %)**AT Command:**
635
636 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
637 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
638 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
639
640 Eg: The setting command **AT+STYPE=802212** means:
641
642 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
643 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
644 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
645 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
646 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
647 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
648 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
649
650 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
651
652
653 (% style="color:#037691" %)**Downlink Command:**
654
655 * 0xE400802212     Same as: AT+STYPE=80221
656
657 (% style="color:red" %)**Note:**
658
659 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
660
661
662
663
664 = 4. Power consumption and battery =
665
666 == 4.1 Total Power Consumption ==
667
668 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
669
670
671 == 4.2 Reduce power consumption ==
672
673 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
674
675
676 == 4.3 Battery ==
677
678 (((
679 All sensors are only power by external power source. If external power source is off. All sensor won't work.
680 )))
681
682 (((
683 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
684 )))
685
686
687 = 5. Main Process Unit WSC1-L =
688
689 == 5.1 Features ==
690
691 * Wall Attachable.
692 * LoRaWAN v1.0.3 Class A protocol.
693 * RS485 / Modbus protocol
694 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
695 * AT Commands to change parameters
696 * Remote configure parameters via LoRaWAN Downlink
697 * Firmware upgradable via program port
698 * Powered by external 12v battery
699 * Back up rechargeable 1000mAh battery
700 * IP Rating: IP65
701 * Support default sensors or 3rd party RS485 sensors
702
703
704
705 == 5.2 Power Consumption ==
706
707 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
708
709
710 == 5.3 Storage & Operation Temperature ==
711
712 -20°C to +60°C
713
714
715 == 5.4 Pin Mapping ==
716
717 [[image:1656054149793-239.png]]
718
719
720 == 5.5 Mechanical ==
721
722 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
723
724
725 == 5.6 Connect to RS485 Sensors ==
726
727 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
728
729
730 [[image:1656054389031-379.png]]
731
732
733 Hardware Design for the Converter Board please see:
734
735 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
736
737
738 = 6. Weather Sensors =
739
740 == 6.1 Rain Gauge ~-~- WSS-01 ==
741
742
743 (((
744 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
745 )))
746
747 (((
748 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
749 )))
750
751 (((
752 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
753 )))
754
755 (((
756 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
757 )))
758
759 (((
760 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
761 )))
762
763
764 === 6.1.1 Feature ===
765
766 * RS485 Rain Gauge
767 * Small dimension, easy to install
768 * Vents under funnel, avoid leaf or other things to avoid rain flow.
769 * ABS enclosure.
770 * Horizontal adjustable.
771
772
773
774 === 6.1.2 Specification ===
775
776 * Resolution: 0.2mm
777 * Accuracy: ±3%
778 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
779 * Input Power: DC 5~~24v
780 * Interface: RS485
781 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
782 * Working Humidity: <100% (no dewing)
783 * Power Consumption: 4mA @ 12v.
784
785
786
787 === 6.1.3 Dimension ===
788
789 [[image:1656054957406-980.png]]
790
791
792 === 6.1.4 Pin Mapping ===
793
794 [[image:1656054972828-692.png]]
795
796
797 === 6.1.5 Installation Notice ===
798
799 (((
800 Do not power on while connect the cables. Double check the wiring before power on.
801 )))
802
803 (((
804 Installation Photo as reference:
805 )))
806
807
808 (((
809 (% style="color:#4472c4" %)** Install on Ground:**
810 )))
811
812 (((
813 WSS-01 Rain Gauge include screws so can install in ground directly .
814 )))
815
816
817 (((
818 (% style="color:#4472c4" %)** Install on pole:**
819 )))
820
821 (((
822 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
823 )))
824
825 [[image:image-20220624152218-1.png||height="526" width="276"]]
826
827 WS-K2: Bracket Kit for Pole installation
828
829
830 WSSC-K2 dimension document, please see:
831
832 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
833
834
835 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
836
837 [[image:1656055444035-179.png]]
838
839 (((
840 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
841 )))
842
843 (((
844 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
845 )))
846
847 (((
848 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
849 )))
850
851
852 === 6.2.1 Feature ===
853
854 * RS485 wind speed / direction sensor
855 * PC enclosure, resist corrosion
856
857
858
859 === 6.2.2 Specification ===
860
861 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
862 * Wind direction range: 0 ~~ 360°
863 * Start wind speed: ≤0.3m/s
864 * Accuracy: ±(0.3+0.03V)m/s , ±1°
865 * Input Power: DC 5~~24v
866 * Interface: RS485
867 * Working Temperature: -30℃~70℃
868 * Working Humidity: <100% (no dewing)
869 * Power Consumption: 13mA ~~ 12v.
870 * Cable Length: 2 meters
871
872
873
874 === 6.2.3 Dimension ===
875
876 [[image:image-20220624152813-2.png]]
877
878
879 === 6.2.4 Pin Mapping ===
880
881 [[image:1656056281231-994.png]]
882
883
884 === 6.2.5  Angle Mapping ===
885
886 [[image:1656056303845-585.png]]
887
888
889 === 6.2.6  Installation Notice ===
890
891 (((
892 Do not power on while connect the cables. Double check the wiring before power on.
893 )))
894
895 (((
896 The sensor must be installed with below direction, towards North.
897 )))
898
899 [[image:image-20220624153901-3.png]]
900
901
902 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
903
904
905 (((
906 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
907 )))
908
909 (((
910 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
911 )))
912
913 (((
914 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
915 )))
916
917
918 === 6.3.1 Feature ===
919
920 * RS485 CO2, PM2.5, PM10 sensor
921 * NDIR to measure CO2 with Internal Temperature Compensation
922 * Laser Beam Scattering to PM2.5 and PM10
923
924
925
926 === 6.3.2 Specification ===
927
928 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
929 * CO2 resolution: 1ppm
930 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
931 * PM2.5/PM10 resolution: 1μg/m3
932 * Input Power: DC 7 ~~ 24v
933 * Preheat time: 3min
934 * Interface: RS485
935 * Working Temperature:
936 ** CO2: 0℃~50℃;
937 ** PM2.5/PM10: -30 ~~ 50℃
938 * Working Humidity:
939 ** PM2.5/PM10: 15~80%RH (no dewing)
940 ** CO2: 0~95%RH
941 * Power Consumption: 50mA@ 12v.
942
943
944
945 === 6.3.3 Dimension ===
946
947 [[image:1656056708366-230.png]]
948
949
950 === 6.3.4 Pin Mapping ===
951
952 [[image:1656056722648-743.png]]
953
954
955 === 6.3.5 Installation Notice ===
956
957 Do not power on while connect the cables. Double check the wiring before power on.
958
959 [[image:1656056751153-304.png]]
960
961 [[image:1656056766224-773.png]]
962
963
964 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
965
966
967 (((
968 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
969 )))
970
971 (((
972 WSS-04 has auto heating feature, this ensures measurement more reliable.
973 )))
974
975 (((
976 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
977 )))
978
979
980
981 === 6.4.1 Feature ===
982
983 * RS485 Rain/Snow detect sensor
984 * Surface heating to dry
985 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
986
987
988
989 === 6.4.2 Specification ===
990
991 * Detect if there is rain or snow
992 * Input Power: DC 12 ~~ 24v
993 * Interface: RS485
994 * Working Temperature: -30℃~70℃
995 * Working Humidity: 10~90%RH
996 * Power Consumption:
997 ** No heating: 12mA @ 12v,
998 ** heating: 94ma @ 12v.
999
1000
1001
1002 === 6.4.3 Dimension ===
1003
1004 [[image:1656056844782-155.png]]
1005
1006
1007 === 6.4.4 Pin Mapping ===
1008
1009 [[image:1656056855590-754.png]]
1010
1011
1012 === 6.4.5 Installation Notice ===
1013
1014 Do not power on while connect the cables. Double check the wiring before power on.
1015
1016
1017 (((
1018 Install with 15°degree.
1019 )))
1020
1021 [[image:1656056873783-780.png]]
1022
1023
1024 [[image:1656056883736-804.png]]
1025
1026
1027 === 6.4.6 Heating ===
1028
1029 (((
1030 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1031 )))
1032
1033
1034 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1035
1036
1037 (((
1038 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1039 )))
1040
1041 (((
1042 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1043 )))
1044
1045
1046 === 6.5.1 Feature ===
1047
1048 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1049
1050
1051
1052 === 6.5.2 Specification ===
1053
1054 * Input Power: DC 12 ~~ 24v
1055 * Interface: RS485
1056 * Temperature Sensor Spec:
1057 ** Range: -30 ~~ 70℃
1058 ** resolution 0.1℃
1059 ** Accuracy: ±0.5℃
1060 * Humidity Sensor Spec:
1061 ** Range: 0 ~~ 100% RH
1062 ** resolution 0.1 %RH
1063 ** Accuracy: 3% RH
1064 * Pressure Sensor Spec:
1065 ** Range: 10~1100hPa
1066 ** Resolution: 0.1hPa
1067 ** Accuracy: ±0.1hPa
1068 * Illuminate sensor:
1069 ** Range: 0~2/20/200kLux
1070 ** Resolution: 10 Lux
1071 ** Accuracy: ±3%FS
1072 * Working Temperature: -30℃~70℃
1073 * Working Humidity: 10~90%RH
1074 * Power Consumption: 4mA @ 12v
1075
1076
1077
1078 === 6.5.3 Dimension ===
1079
1080 [[image:1656057170639-522.png]]
1081
1082
1083 === 6.5.4 Pin Mapping ===
1084
1085 [[image:1656057181899-910.png]]
1086
1087
1088 === 6.5.5 Installation Notice ===
1089
1090 Do not power on while connect the cables. Double check the wiring before power on.
1091
1092 [[image:1656057199955-514.png]]
1093
1094
1095 [[image:1656057212438-475.png]]
1096
1097
1098 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1099
1100
1101 (((
1102 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1103 )))
1104
1105 (((
1106 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1107 )))
1108
1109 (((
1110 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1111 )))
1112
1113
1114
1115 === 6.6.1 Feature ===
1116
1117 * RS485 Total Solar Radiation sensor
1118 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1119 * Measure Reflected Radiation if sense area towards ground.
1120
1121
1122 === 6.6.2 Specification ===
1123
1124 * Input Power: DC 5 ~~ 24v
1125 * Interface: RS485
1126 * Detect spectrum: 0.3~3μm(300~3000nm)
1127 * Measure strength range: 0~2000W/m2
1128 * Resolution: 0.1W/m2
1129 * Accuracy: ±3%
1130 * Yearly Stability: ≤±2%
1131 * Cosine response: ≤7% (@ Sun angle 10°)
1132 * Temperature Effect: ±2%(-10℃~40℃)
1133 * Working Temperature: -40℃~70℃
1134 * Working Humidity: 10~90%RH
1135 * Power Consumption: 4mA @ 12v
1136
1137
1138
1139 === 6.6.3 Dimension ===
1140
1141 [[image:1656057348695-898.png]]
1142
1143
1144 === 6.6.4 Pin Mapping ===
1145
1146 [[image:1656057359343-744.png]]
1147
1148
1149 === 6.6.5 Installation Notice ===
1150
1151 Do not power on while connect the cables. Double check the wiring before power on.
1152
1153 [[image:1656057369259-804.png]]
1154
1155
1156 [[image:1656057377943-564.png]]
1157
1158
1159 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1160
1161
1162 (((
1163 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1164 )))
1165
1166 (((
1167 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1168 )))
1169
1170 (((
1171 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1172 )))
1173
1174
1175 === 6.7.1 Feature ===
1176
1177 (((
1178 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1179 )))
1180
1181 (((
1182 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1183 )))
1184
1185
1186 === 6.7.2 Specification ===
1187
1188 * Input Power: DC 5 ~~ 24v
1189 * Interface: RS485
1190 * Response Spectrum: 400~700nm
1191 * Measure range: 0~2500μmol/m2•s
1192 * Resolution: 1μmol/m2•s
1193 * Accuracy: ±2%
1194 * Yearly Stability: ≤±2%
1195 * Working Temperature: -30℃~75℃
1196 * Working Humidity: 10~90%RH
1197 * Power Consumption: 3mA @ 12v
1198
1199
1200
1201 === 6.7.3 Dimension ===
1202
1203 [[image:1656057538793-888.png]]
1204
1205
1206 === 6.7.4 Pin Mapping ===
1207
1208 [[image:1656057548116-203.png]]
1209
1210
1211 === 6.7.5 Installation Notice ===
1212
1213 Do not power on while connect the cables. Double check the wiring before power on.
1214
1215
1216 [[image:1656057557191-895.png]]
1217
1218
1219 [[image:1656057565783-251.png]]
1220
1221
1222 = 7. FAQ =
1223
1224 == 7.1 What else do I need to purchase to build Weather Station? ==
1225
1226 Below is the installation photo and structure:
1227
1228 [[image:1656057598349-319.png]]
1229
1230
1231 [[image:1656057608049-693.png]]
1232
1233
1234
1235 == 7.2 How to upgrade firmware for WSC1-L? ==
1236
1237 (((
1238 Firmware Location & Change log:
1239 )))
1240
1241 (((
1242 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1243 )))
1244
1245
1246 (((
1247 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1248 )))
1249
1250
1251 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1252
1253 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1254
1255
1256 == 7.4 Can I add my weather sensors? ==
1257
1258 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1259
1260
1261 = 8. Trouble Shooting =
1262
1263 == 8.1 AT Command input doesn't work ==
1264
1265 (((
1266 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1267 )))
1268
1269
1270 = 9. Order Info =
1271
1272 == 9.1 Main Process Unit ==
1273
1274 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1275
1276 (% style="color:blue" %)**XX**(%%): The default frequency band
1277
1278 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1279 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1280 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1281 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1282 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1283 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1284 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1285 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1286
1287
1288
1289
1290
1291 == 9.2 Sensors ==
1292
1293 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:400px" %)
1294 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 100px;" %)**Part Number**
1295 |(% style="width:462px" %)**Rain Gauge**|(% style="width:110px" %)WSS-01
1296 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:110px" %)WS-K2
1297 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:110px" %)WSS-02
1298 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:110px" %)WSS-03
1299 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:110px" %)WSS-04
1300 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:110px" %)WSS-05
1301 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:110px" %)WSS-06
1302 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:110px" %)WSS-07
1303
1304
1305
1306
1307
1308 = 10. Support =
1309
1310 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1311 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1312
1313
1314
1315
1316 = 11. Appendix I: Field Installation Photo =
1317
1318
1319 [[image:1656058346362-132.png||height="685" width="732"]]
1320
1321 **Storage Battery**: 12v,12AH li battery
1322
1323
1324
1325 **Wind Speed/Direction**
1326
1327 [[image:1656058373174-421.png||height="356" width="731"]]
1328
1329
1330
1331 **Total Solar Radiation sensor**
1332
1333 [[image:1656058397364-282.png||height="453" width="732"]]
1334
1335
1336
1337 **PAR Sensor**
1338
1339 [[image:1656058416171-615.png]]
1340
1341
1342
1343 **CO2/PM2.5/PM10 3 in 1 sensor**
1344
1345 [[image:1656058441194-827.png||height="672" width="523"]]
1346
1347
1348
1349 **Rain / Snow Detect**
1350
1351 [[image:1656058451456-166.png]]
1352
1353
1354
1355 **Rain Gauge**
1356
1357 [[image:1656058463455-569.png||height="499" width="550"]]
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0