Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %) ** Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)** Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80
81 == 2.2 How it works? ==
82
83 (((
84 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
85 )))
86
87
88 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
89
90 [[image:1656042192857-709.png]]
91
92
93 (% style="color:red" %)**Notice:**
94
95 1. WSC1-L will auto scan available weather sensors when power on or reboot.
96 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
97
98
99 == 2.3 Example to use for LoRaWAN network ==
100
101 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
102
103
104 [[image:1656042612899-422.png]]
105
106
107
108 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
109
110
111 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
112
113 Each WSC1-L is shipped with a sticker with the default device EUI as below:
114
115 [[image:image-20220624115043-1.jpeg]]
116
117
118 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
119
120 **Add APP EUI in the application.**
121
122 [[image:1656042662694-311.png]]
123
124 [[image:1656042673910-429.png]]
125
126
127
128
129 **Choose Manually to add WSC1-L**
130
131 [[image:1656042695755-103.png]]
132
133
134
135 **Add APP KEY and DEV EUI**
136
137 [[image:1656042723199-746.png]]
138
139
140
141 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
142
143
144 [[image:1656042745346-283.png]]
145
146
147
148 == 2.4 Uplink Payload ==
149
150 Uplink payloads include two types: Valid Sensor Value and other status / control command.
151
152 * Valid Sensor Value: Use FPORT=2
153 * Other control command: Use FPORT other than 2.
154
155 === 2.4.1 Uplink FPORT~=5, Device Status ===
156
157 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
158
159
160 (((
161 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
162 )))
163
164 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
165 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
166 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
167
168 [[image:1656043061044-343.png]]
169
170
171 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
172
173
174
175 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
176
177 For WSC1-L, this value is 0x0D.
178
179
180
181 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
182
183 0x0100, Means: v1.0.0 version.
184
185
186
187 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
188
189 *0x01: EU868
190
191 *0x02: US915
192
193 *0x03: IN865
194
195 *0x04: AU915
196
197 *0x05: KZ865
198
199 *0x06: RU864
200
201 *0x07: AS923
202
203 *0x08: AS923-1
204
205 *0x09: AS923-2
206
207 *0x0a: AS923-3
208
209
210
211 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
212
213 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
214
215
216
217 ==== (% style="color:#037691" %)**BAT:**(%%) ====
218
219 shows the battery voltage for WSC1-L MCU.
220
221 Ex1: 0x0BD6/1000 = 3.03 V
222
223
224
225 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
226
227 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
228 |Byte3|Byte2|Byte1
229
230 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
231
232 [[image:image-20220624134713-1.png]]
233
234
235 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
236
237 External sensors detected by WSC1-L include :
238
239 custom sensor A1,
240
241 PAR sensor (WSS-07),
242
243 Total Solar Radiation sensor (WSS-06),
244
245 CO2/PM2.5/PM10 (WSS-03),
246
247 Wind Speed/Direction (WSS-02)
248
249
250 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
251
252 (% style="color:#037691" %)**Downlink:0x26 01**
253
254 [[image:1656049673488-415.png]]
255
256
257
258 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
259
260 (((
261 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
262 )))
263
264 (((
265 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
266 )))
267
268
269 (((
270 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
271 )))
272
273
274 (% style="color:#4472c4" %)** Uplink Payload**:
275
276 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
277 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
278
279 (% style="color:#4472c4" %)** Sensor Segment Define**:
280
281 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
282 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
283
284 (% style="color:#4472c4" %)**Sensor Type Table:**
285
286 [[image:image-20220624140352-2.png]]
287
288
289 Below is an example payload:  [[image:image-20220624140615-3.png]]
290
291
292 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
293
294 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
295
296 Uplink 1:  [[image:image-20220624140735-4.png]]
297
298 Uplink 2:  [[image:image-20220624140842-5.png]]
299
300
301 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
302
303 Uplink 1:  [[image:image-20220624141025-6.png]]
304
305 Uplink 2:  [[image:image-20220624141100-7.png]]
306
307
308
309
310 === 2.4.3 Decoder in TTN V3 ===
311
312 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
313
314
315 Download decoder for suitable platform from:
316
317 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
318
319 and put as below:
320
321 [[image:1656051152438-578.png]]
322
323
324
325 == 2.5 Show data on Application Server ==
326
327 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
328
329
330 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
331
332 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
333
334 [[image:1656051197172-131.png]]
335
336
337 **Add TagoIO:**
338
339 [[image:1656051223585-631.png]]
340
341
342 **Authorization:**
343
344 [[image:1656051248318-368.png]]
345
346
347 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
348
349 [[image:1656051277767-168.png]]
350
351
352
353 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
354
355 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
356
357 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
358 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
359
360 There are two kinds of commands to configure WSC1-L, they are:
361
362 * (% style="color:#4472c4" %)**General Commands**.
363
364 These commands are to configure:
365
366 * General system settings like: uplink interval.
367 * LoRaWAN protocol & radio related command.
368
369 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
370
371 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
372
373
374 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
375
376 These commands only valid for WSC1-L, as below:
377
378
379
380
381
382
383 == 3.1 Set Transmit Interval Time ==
384
385 Feature: Change LoRaWAN End Node Transmit Interval.
386
387 (% style="color:#037691" %)**AT Command: AT+TDC**
388
389 [[image:image-20220624142619-8.png]]
390
391
392 (% style="color:#037691" %)**Downlink Command: 0x01**
393
394 Format: Command Code (0x01) followed by 3 bytes time value.
395
396 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
397
398 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
399 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
400
401
402 == 3.2 Set Emergency Mode ==
403
404 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
405
406 (% style="color:#037691" %)**AT Command:**
407
408 [[image:image-20220624142956-9.png]]
409
410
411 (% style="color:#037691" %)**Downlink Command:**
412
413 * 0xE101     Same as: AT+ALARMMOD=1
414 * 0xE100     Same as: AT+ALARMMOD=0
415
416
417 == 3.3 Add or Delete RS485 Sensor ==
418
419 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
420
421 (% style="color:#037691" %)**AT Command: **
422
423 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
424
425 * Type_Code range:  A1 ~~ A4
426 * Query_Length:  RS485 Query frame length, Value cannot be greater than 10
427 * Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
428 * Read_Length:  RS485 response frame length supposed to receive. Max can receive
429 * Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
430 * has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
431 * timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
432
433 **Example:**
434
435 User need to change external sensor use the type code as address code.
436
437 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
438
439 [[image:image-20220624143553-10.png]]
440
441
442 The response frame of the sensor is as follows:
443
444 [[image:image-20220624143618-11.png]]
445
446
447
448 **Then the following parameters should be:**
449
450 * Address_Code range: A1
451 * Query_Length: 8
452 * Query_Command: A103000000019CAA
453 * Read_Length: 8
454 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
455 * has_CRC: 1
456 * timeout: 1500 (Fill in the test according to the actual situation)
457
458 **So the input command is:**
459
460 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
461
462
463 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
464
465 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
466 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
467 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
468
469 **Related commands:**
470
471 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
472
473 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
474
475
476 (% style="color:#037691" %)**Downlink Command:  **
477
478 **delete custom sensor A1:**
479
480 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
481
482 **Remove all custom sensors**
483
484 * 0xE5FF  
485
486
487 == 3.4 RS485 Test Command ==
488
489 (% style="color:#037691" %)**AT Command:**
490
491 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
492 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
493 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
494 Send command to 485 sensor
495
496 Range : no more than 10 bytes
497 )))|(% style="width:85px" %)OK
498
499 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
500
501 AT+RSWRITE=0103000001840A
502
503
504 (% style="color:#037691" %)**Downlink Command:**
505
506 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
507
508
509 == 3.5 RS485 response timeout ==
510
511 Feature: Set or get extended time to receive 485 sensor data.
512
513 (% style="color:#037691" %)**AT Command:**
514
515 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
516 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
517 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
518 Set response timeout to:
519
520 Range : 0~~10000
521 )))|(% style="width:85px" %)OK
522
523 (% style="color:#037691" %)**Downlink Command:**
524
525 Format: Command Code (0xE0) followed by 3 bytes time value.
526
527 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
528
529 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
530 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
531
532
533 == 3.6 Set Sensor Type ==
534
535 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
536
537 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
538
539 [[image:image-20220624144904-12.png]]
540
541
542 (% style="color:#037691" %)**AT Command:**
543
544 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
545 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
546 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
547
548 Eg: The setting command **AT+STYPE=802212** means:
549
550 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
551 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
552 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
553 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
554 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
555 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
556 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
557
558 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
559
560
561 (% style="color:#037691" %)**Downlink Command:**
562
563 * 0xE400802212     Same as: AT+STYPE=80221
564
565 (% style="color:red" %)**Note:**
566
567 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
568
569
570
571
572 = 4. Power consumption and battery =
573
574 == 4.1 Total Power Consumption ==
575
576 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
577
578
579 == 4.2 Reduce power consumption ==
580
581 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
582
583
584 == 4.3 Battery ==
585
586 (((
587 All sensors are only power by external power source. If external power source is off. All sensor won't work.
588 )))
589
590 (((
591 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
592 )))
593
594
595 = 5. Main Process Unit WSC1-L =
596
597 == 5.1 Features ==
598
599 * Wall Attachable.
600 * LoRaWAN v1.0.3 Class A protocol.
601 * RS485 / Modbus protocol
602 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
603 * AT Commands to change parameters
604 * Remote configure parameters via LoRaWAN Downlink
605 * Firmware upgradable via program port
606 * Powered by external 12v battery
607 * Back up rechargeable 1000mAh battery
608 * IP Rating: IP65
609 * Support default sensors or 3rd party RS485 sensors
610
611 == 5.2 Power Consumption ==
612
613 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
614
615
616 == 5.3 Storage & Operation Temperature ==
617
618 -20°C to +60°C
619
620
621 == 5.4 Pin Mapping ==
622
623 [[image:1656054149793-239.png]]
624
625
626 == 5.5 Mechanical ==
627
628 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
629
630
631 == 5.6 Connect to RS485 Sensors ==
632
633 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
634
635
636 [[image:1656054389031-379.png]]
637
638
639 Hardware Design for the Converter Board please see:
640
641 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
642
643
644 = 6. Weather Sensors =
645
646 == 6.1 Rain Gauge ~-~- WSS-01 ==
647
648
649 (((
650 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
651 )))
652
653 (((
654 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
655 )))
656
657 (((
658 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
659 )))
660
661 (((
662 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
663 )))
664
665 (((
666 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
667 )))
668
669
670 === 6.1.1 Feature ===
671
672 * RS485 Rain Gauge
673 * Small dimension, easy to install
674 * Vents under funnel, avoid leaf or other things to avoid rain flow.
675 * ABS enclosure.
676 * Horizontal adjustable.
677
678 === 6.1.2 Specification ===
679
680 * Resolution: 0.2mm
681 * Accuracy: ±3%
682 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
683 * Input Power: DC 5~~24v
684 * Interface: RS485
685 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
686 * Working Humidity: <100% (no dewing)
687 * Power Consumption: 4mA @ 12v.
688
689 === 6.1.3 Dimension ===
690
691 [[image:1656054957406-980.png]]
692
693
694 === 6.1.4 Pin Mapping ===
695
696 [[image:1656054972828-692.png]]
697
698
699 === 6.1.5 Installation Notice ===
700
701 Do not power on while connect the cables. Double check the wiring before power on.
702
703 Installation Photo as reference:
704
705
706 (% style="color:#4472c4" %)** Install on Ground:**
707
708 WSS-01 Rain Gauge include screws so can install in ground directly .
709
710
711 (% style="color:#4472c4" %)** Install on pole:**
712
713 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
714
715 [[image:image-20220624152218-1.png||height="526" width="276"]]
716
717 WS-K2: Bracket Kit for Pole installation
718
719
720 WSSC-K2 dimension document, please see:
721
722 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
723
724
725 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
726
727 [[image:1656055444035-179.png]]
728
729 (((
730 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
731 )))
732
733 (((
734 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
735 )))
736
737 (((
738 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
739 )))
740
741
742 === 6.2.1 Feature ===
743
744 * RS485 wind speed / direction sensor
745 * PC enclosure, resist corrosion
746
747 === 6.2.2 Specification ===
748
749 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
750 * Wind direction range: 0 ~~ 360°
751 * Start wind speed: ≤0.3m/s
752 * Accuracy: ±(0.3+0.03V)m/s , ±1°
753 * Input Power: DC 5~~24v
754 * Interface: RS485
755 * Working Temperature: -30℃~70℃
756 * Working Humidity: <100% (no dewing)
757 * Power Consumption: 13mA ~~ 12v.
758 * Cable Length: 2 meters
759
760 === 6.2.3 Dimension ===
761
762 [[image:image-20220624152813-2.png]]
763
764
765 === 6.2.4 Pin Mapping ===
766
767 [[image:1656056281231-994.png]]
768
769
770 === 6.2.5  Angle Mapping ===
771
772 [[image:1656056303845-585.png]]
773
774
775 === 6.2.6  Installation Notice ===
776
777 Do not power on while connect the cables. Double check the wiring before power on.
778
779 The sensor must be installed with below direction, towards North.
780
781 [[image:image-20220624153901-3.png]]
782
783
784 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
785
786
787 (((
788 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
789 )))
790
791 (((
792 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
793 )))
794
795 (((
796 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
797 )))
798
799
800 === 6.3.1 Feature ===
801
802 * RS485 CO2, PM2.5, PM10 sensor
803 * NDIR to measure CO2 with Internal Temperature Compensation
804 * Laser Beam Scattering to PM2.5 and PM10
805
806 === 6.3.2 Specification ===
807
808 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
809 * CO2 resolution: 1ppm
810 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
811 * PM2.5/PM10 resolution: 1μg/m3
812 * Input Power: DC 7 ~~ 24v
813 * Preheat time: 3min
814 * Interface: RS485
815 * Working Temperature:
816 ** CO2: 0℃~50℃;
817 ** PM2.5/PM10: -30 ~~ 50℃
818 * Working Humidity:
819 ** PM2.5/PM10: 15~80%RH (no dewing)
820 ** CO2: 0~95%RH
821 * Power Consumption: 50mA@ 12v.
822
823 === 6.3.3 Dimension ===
824
825 [[image:1656056708366-230.png]]
826
827
828 === 6.3.4 Pin Mapping ===
829
830 [[image:1656056722648-743.png]]
831
832
833 === 6.3.5 Installation Notice ===
834
835 Do not power on while connect the cables. Double check the wiring before power on.
836
837 [[image:1656057016033-551.png]]
838
839 [[image:1656056751153-304.png]]
840
841 [[image:1656056766224-773.png]]
842
843
844 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
845
846
847 (((
848 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
849 )))
850
851 (((
852 WSS-04 has auto heating feature, this ensures measurement more reliable.
853 )))
854
855 (((
856 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
857 )))
858
859
860
861 === 6.4.1 Feature ===
862
863 * RS485 Rain/Snow detect sensor
864 * Surface heating to dry
865 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
866
867 === 6.4.2 Specification ===
868
869 * Detect if there is rain or snow
870 * Input Power: DC 12 ~~ 24v
871 * Interface: RS485
872 * Working Temperature: -30℃~70℃
873 * Working Humidity: 10~90%RH
874 * Power Consumption:
875 ** No heating: 12mA @ 12v,
876 ** heating: 94ma @ 12v.
877
878 === 6.4.3 Dimension ===
879
880 [[image:1656056844782-155.png]]
881
882
883 === 6.4.4 Pin Mapping ===
884
885 [[image:1656056855590-754.png]]
886
887
888 === 6.4.5 Installation Notice ===
889
890 Do not power on while connect the cables. Double check the wiring before power on.
891
892
893 Install with 15°degree.
894
895 [[image:1656056873783-780.png]]
896
897
898 [[image:1656056883736-804.png]]
899
900
901 === 6.4.6 Heating ===
902
903 (((
904 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
905 )))
906
907
908 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
909
910
911 (((
912 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
913 )))
914
915 (((
916 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
917 )))
918
919
920 === 6.5.1 Feature ===
921
922 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
923
924 === 6.5.2 Specification ===
925
926 * Input Power: DC 12 ~~ 24v
927 * Interface: RS485
928 * Temperature Sensor Spec:
929 ** Range: -30 ~~ 70℃
930 ** resolution 0.1℃
931 ** Accuracy: ±0.5℃
932 * Humidity Sensor Spec:
933 ** Range: 0 ~~ 100% RH
934 ** resolution 0.1 %RH
935 ** Accuracy: 3% RH
936 * Pressure Sensor Spec:
937 ** Range: 10~1100hPa
938 ** Resolution: 0.1hPa
939 ** Accuracy: ±0.1hPa
940 * Illuminate sensor:
941 ** Range: 0~2/20/200kLux
942 ** Resolution: 10 Lux
943 ** Accuracy: ±3%FS
944 * Working Temperature: -30℃~70℃
945 * Working Humidity: 10~90%RH
946 * Power Consumption: 4mA @ 12v
947
948 === 6.5.3 Dimension ===
949
950 [[image:1656057170639-522.png]]
951
952
953 === 6.5.4 Pin Mapping ===
954
955 [[image:1656057181899-910.png]]
956
957
958 === 6.5.5 Installation Notice ===
959
960 Do not power on while connect the cables. Double check the wiring before power on.
961
962 [[image:1656057199955-514.png]]
963
964
965 [[image:1656057212438-475.png]]
966
967
968 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
969
970
971 (((
972 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
973 )))
974
975 (((
976 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
977 )))
978
979 (((
980 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
981 )))
982
983
984
985 === 6.6.1 Feature ===
986
987 * RS485 Total Solar Radiation sensor
988 * Measure Total Radiation between 0.3~3μm(300~3000nm)
989 * Measure Reflected Radiation if sense area towards ground.
990
991 === 6.6.2 Specification ===
992
993 * Input Power: DC 5 ~~ 24v
994 * Interface: RS485
995 * Detect spectrum: 0.3~3μm(300~3000nm)
996 * Measure strength range: 0~2000W/m2
997 * Resolution: 0.1W/m2
998 * Accuracy: ±3%
999 * Yearly Stability: ≤±2%
1000 * Cosine response: ≤7% (@ Sun angle 10°)
1001 * Temperature Effect: ±2%(-10℃~40℃)
1002 * Working Temperature: -40℃~70℃
1003 * Working Humidity: 10~90%RH
1004 * Power Consumption: 4mA @ 12v
1005
1006 === 6.6.3 Dimension ===
1007
1008 [[image:1656057348695-898.png]]
1009
1010
1011 === 6.6.4 Pin Mapping ===
1012
1013 [[image:1656057359343-744.png]]
1014
1015
1016 === 6.6.5 Installation Notice ===
1017
1018 Do not power on while connect the cables. Double check the wiring before power on.
1019
1020 [[image:1656057369259-804.png]]
1021
1022
1023 [[image:1656057377943-564.png]]
1024
1025
1026 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1027
1028
1029 (((
1030 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1031 )))
1032
1033 (((
1034 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1035 )))
1036
1037 (((
1038 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1039 )))
1040
1041
1042 === 6.7.1 Feature ===
1043
1044 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1045
1046 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1047
1048
1049 === 6.7.2 Specification ===
1050
1051 * Input Power: DC 5 ~~ 24v
1052 * Interface: RS485
1053 * Response Spectrum: 400~700nm
1054 * Measure range: 0~2500μmol/m2•s
1055 * Resolution: 1μmol/m2•s
1056 * Accuracy: ±2%
1057 * Yearly Stability: ≤±2%
1058 * Working Temperature: -30℃~75℃
1059 * Working Humidity: 10~90%RH
1060 * Power Consumption: 3mA @ 12v
1061
1062 === 6.7.3 Dimension ===
1063
1064 [[image:1656057538793-888.png]]
1065
1066
1067 === 6.7.4 Pin Mapping ===
1068
1069 [[image:1656057548116-203.png]]
1070
1071
1072 === 6.7.5 Installation Notice ===
1073
1074 Do not power on while connect the cables. Double check the wiring before power on.
1075
1076
1077 [[image:1656057557191-895.png]]
1078
1079
1080 [[image:1656057565783-251.png]]
1081
1082
1083 = 7. FAQ =
1084
1085 == 7.1 What else do I need to purchase to build Weather Station? ==
1086
1087 Below is the installation photo and structure:
1088
1089 [[image:1656057598349-319.png]]
1090
1091
1092 [[image:1656057608049-693.png]]
1093
1094
1095
1096 == 7.2 How to upgrade firmware for WSC1-L? ==
1097
1098 (((
1099 Firmware Location & Change log:
1100 )))
1101
1102 (((
1103 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1104 )))
1105
1106
1107 (((
1108 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1109 )))
1110
1111
1112 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1113
1114 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1115
1116
1117 == 7.4 Can I add my weather sensors? ==
1118
1119 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1120
1121
1122 = 8. Trouble Shooting =
1123
1124 == 8.1 AT Command input doesn't work ==
1125
1126 (((
1127 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1128 )))
1129
1130
1131 = 9. Order Info =
1132
1133 == 9.1 Main Process Unit ==
1134
1135 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1136
1137 (% style="color:blue" %)**XX**(%%): The default frequency band
1138
1139 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1140 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1141 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1142 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1143 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1144 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1145 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1146 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1147
1148
1149
1150
1151 == 9.2 Sensors ==
1152
1153 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1154 |=(% style="width: 462px;" %)**Sensor Model**|=(% style="width: 110px;" %)**Part Number**
1155 |(% style="width:462px" %)**Rain Gauge**|(% style="width:110px" %)WSS-01
1156 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:110px" %)WS-K2
1157 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:110px" %)WSS-02
1158 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:110px" %)WSS-03
1159 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:110px" %)WSS-04
1160 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:110px" %)WSS-05
1161 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:110px" %)WSS-06
1162 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:110px" %)WSS-07
1163
1164
1165 = 10. Support =
1166
1167 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1168 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1169
1170
1171
1172
1173
1174 = 11. Appendix I: Field Installation Photo =
1175
1176
1177 [[image:1656058346362-132.png]]
1178
1179 **Storage Battery**: 12v,12AH li battery
1180
1181
1182
1183 Wind Speed/Direction.
1184
1185 [[image:1656058373174-421.png]]
1186
1187
1188
1189 Total Solar Radiation sensor
1190
1191 [[image:1656058397364-282.png]]
1192
1193
1194
1195 PAR Sensor
1196
1197 [[image:1656058416171-615.png]]
1198
1199
1200
1201 CO2/PM2.5/PM10 3 in 1 sensor
1202
1203 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image044.png]]
1204
1205
1206 Rain / Snow Detect:
1207
1208 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image045.png]]
1209
1210
1211 Rain Gauge.
1212
1213 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image046.png]]
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0