Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %) ** Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70
71 (% style="color:red" %)** Notice 2:**
72
73 Due to shipment and importation limitation, user is better to purchase below parts locally:
74
75 * Solar Panel
76 * Storage Battery
77 * MPPT Solar Recharger
78 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
79 * Cabinet.
80
81
82
83
84
85 == 2.2 How it works? ==
86
87 (((
88 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
89 )))
90
91
92 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
93
94 [[image:1656042192857-709.png]]
95
96
97 (% style="color:red" %)**Notice:**
98
99 1. WSC1-L will auto scan available weather sensors when power on or reboot.
100 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
101
102
103
104
105
106 == 2.3 Example to use for LoRaWAN network ==
107
108 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
109
110
111 [[image:1656042612899-422.png]]
112
113
114
115 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
116
117
118 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
119
120 Each WSC1-L is shipped with a sticker with the default device EUI as below:
121
122 [[image:image-20220624115043-1.jpeg]]
123
124
125 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
126
127 **Add APP EUI in the application.**
128
129 [[image:1656042662694-311.png]]
130
131 [[image:1656042673910-429.png]]
132
133
134
135
136 **Choose Manually to add WSC1-L**
137
138 [[image:1656042695755-103.png]]
139
140
141
142 **Add APP KEY and DEV EUI**
143
144 [[image:1656042723199-746.png]]
145
146
147
148 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
149
150
151 [[image:1656042745346-283.png]]
152
153
154
155 == 2.4 Uplink Payload ==
156
157 Uplink payloads include two types: Valid Sensor Value and other status / control command.
158
159 * Valid Sensor Value: Use FPORT=2
160 * Other control command: Use FPORT other than 2.
161
162 === 2.4.1 Uplink FPORT~=5, Device Status ===
163
164 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
165
166
167 (((
168 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
169 )))
170
171 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
172 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
173 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
174
175 [[image:1656043061044-343.png]]
176
177
178 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
179
180
181
182 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
183
184 For WSC1-L, this value is 0x0D.
185
186
187
188 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
189
190 0x0100, Means: v1.0.0 version.
191
192
193
194 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
195
196 *0x01: EU868
197
198 *0x02: US915
199
200 *0x03: IN865
201
202 *0x04: AU915
203
204 *0x05: KZ865
205
206 *0x06: RU864
207
208 *0x07: AS923
209
210 *0x08: AS923-1
211
212 *0x09: AS923-2
213
214 *0x0a: AS923-3
215
216
217
218 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
219
220 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
221
222
223
224 ==== (% style="color:#037691" %)**BAT:**(%%) ====
225
226 shows the battery voltage for WSC1-L MCU.
227
228 Ex1: 0x0BD6/1000 = 3.03 V
229
230
231
232 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
233
234 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
235 |Byte3|Byte2|Byte1
236
237 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
238
239 [[image:image-20220624134713-1.png]]
240
241
242 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
243
244 External sensors detected by WSC1-L include :
245
246 custom sensor A1,
247
248 PAR sensor (WSS-07),
249
250 Total Solar Radiation sensor (WSS-06),
251
252 CO2/PM2.5/PM10 (WSS-03),
253
254 Wind Speed/Direction (WSS-02)
255
256
257 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
258
259 (% style="color:#037691" %)**Downlink:0x26 01**
260
261 [[image:1656049673488-415.png]]
262
263
264
265 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
266
267 (((
268 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
269 )))
270
271 (((
272 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
273 )))
274
275
276 (((
277 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
278 )))
279
280
281 (% style="color:#4472c4" %)** Uplink Payload**:
282
283 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
284 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
285
286 (% style="color:#4472c4" %)** Sensor Segment Define**:
287
288 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
289 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
290
291 (% style="color:#4472c4" %)**Sensor Type Table:**
292
293 [[image:image-20220624140352-2.png]]
294
295
296 Below is an example payload:  [[image:image-20220624140615-3.png]]
297
298
299 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
300
301 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
302
303 Uplink 1:  [[image:image-20220624140735-4.png]]
304
305 Uplink 2:  [[image:image-20220624140842-5.png]]
306
307
308 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
309
310 Uplink 1:  [[image:image-20220624141025-6.png]]
311
312 Uplink 2:  [[image:image-20220624141100-7.png]]
313
314
315
316
317 === 2.4.3 Decoder in TTN V3 ===
318
319 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
320
321
322 Download decoder for suitable platform from:
323
324 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
325
326 and put as below:
327
328 [[image:1656051152438-578.png]]
329
330
331
332 == 2.5 Show data on Application Server ==
333
334 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
335
336
337 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
338
339 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
340
341 [[image:1656051197172-131.png]]
342
343
344 **Add TagoIO:**
345
346 [[image:1656051223585-631.png]]
347
348
349 **Authorization:**
350
351 [[image:1656051248318-368.png]]
352
353
354 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
355
356 [[image:1656051277767-168.png]]
357
358
359
360 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
361
362 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
363
364 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
365 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
366
367 There are two kinds of commands to configure WSC1-L, they are:
368
369 * (% style="color:#4472c4" %)**General Commands**.
370
371 These commands are to configure:
372
373 * General system settings like: uplink interval.
374 * LoRaWAN protocol & radio related command.
375
376 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
377
378 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
379
380
381 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
382
383 These commands only valid for WSC1-L, as below:
384
385
386
387
388
389
390 == 3.1 Set Transmit Interval Time ==
391
392 Feature: Change LoRaWAN End Node Transmit Interval.
393
394 (% style="color:#037691" %)**AT Command: AT+TDC**
395
396 [[image:image-20220624142619-8.png]]
397
398
399 (% style="color:#037691" %)**Downlink Command: 0x01**
400
401 Format: Command Code (0x01) followed by 3 bytes time value.
402
403 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
404
405 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
406 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
407
408
409
410
411
412 == 3.2 Set Emergency Mode ==
413
414 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
415
416 (% style="color:#037691" %)**AT Command:**
417
418 [[image:image-20220624142956-9.png]]
419
420
421 (% style="color:#037691" %)**Downlink Command:**
422
423 * 0xE101     Same as: AT+ALARMMOD=1
424 * 0xE100     Same as: AT+ALARMMOD=0
425
426
427
428
429
430 == 3.3 Add or Delete RS485 Sensor ==
431
432 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
433
434 (% style="color:#037691" %)**AT Command: **
435
436 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
437
438 * Type_Code range:  A1 ~~ A4
439 * Query_Length:  RS485 Query frame length, Value cannot be greater than 10
440 * Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
441 * Read_Length:  RS485 response frame length supposed to receive. Max can receive
442 * Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
443 * has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
444 * timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
445
446 **Example:**
447
448 User need to change external sensor use the type code as address code.
449
450 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
451
452 [[image:image-20220624143553-10.png]]
453
454
455 The response frame of the sensor is as follows:
456
457 [[image:image-20220624143618-11.png]]
458
459
460
461 **Then the following parameters should be:**
462
463 * Address_Code range: A1
464 * Query_Length: 8
465 * Query_Command: A103000000019CAA
466 * Read_Length: 8
467 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
468 * has_CRC: 1
469 * timeout: 1500 (Fill in the test according to the actual situation)
470
471
472 **So the input command is:**
473
474 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
475
476
477 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
478
479 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
480 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
481 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
482
483 **Related commands:**
484
485 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
486
487 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
488
489
490 (% style="color:#037691" %)**Downlink Command:  **
491
492 **delete custom sensor A1:**
493
494 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
495
496 **Remove all custom sensors**
497
498 * 0xE5FF  
499
500
501
502
503
504 == 3.4 RS485 Test Command ==
505
506 (% style="color:#037691" %)**AT Command:**
507
508 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
509 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
510 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
511 Send command to 485 sensor
512
513 Range : no more than 10 bytes
514 )))|(% style="width:85px" %)OK
515
516 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
517
518 AT+RSWRITE=0103000001840A
519
520
521 (% style="color:#037691" %)**Downlink Command:**
522
523 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
524
525
526
527
528
529 == 3.5 RS485 response timeout ==
530
531 Feature: Set or get extended time to receive 485 sensor data.
532
533 (% style="color:#037691" %)**AT Command:**
534
535 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
536 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
537 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
538 Set response timeout to:
539
540 Range : 0~~10000
541 )))|(% style="width:85px" %)OK
542
543 (% style="color:#037691" %)**Downlink Command:**
544
545 Format: Command Code (0xE0) followed by 3 bytes time value.
546
547 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
548
549 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
550 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
551
552
553
554
555
556 == 3.6 Set Sensor Type ==
557
558 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
559
560 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
561
562 [[image:image-20220624144904-12.png]]
563
564
565 (% style="color:#037691" %)**AT Command:**
566
567 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
568 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
569 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
570
571 Eg: The setting command **AT+STYPE=802212** means:
572
573 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
574 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
575 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
576 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
577 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
578 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
579 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
580
581 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
582
583
584 (% style="color:#037691" %)**Downlink Command:**
585
586 * 0xE400802212     Same as: AT+STYPE=80221
587
588 (% style="color:red" %)**Note:**
589
590 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
591
592
593
594
595 = 4. Power consumption and battery =
596
597 == 4.1 Total Power Consumption ==
598
599 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
600
601
602 == 4.2 Reduce power consumption ==
603
604 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
605
606
607 == 4.3 Battery ==
608
609 (((
610 All sensors are only power by external power source. If external power source is off. All sensor won't work.
611 )))
612
613 (((
614 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
615 )))
616
617
618 = 5. Main Process Unit WSC1-L =
619
620 == 5.1 Features ==
621
622 * Wall Attachable.
623 * LoRaWAN v1.0.3 Class A protocol.
624 * RS485 / Modbus protocol
625 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
626 * AT Commands to change parameters
627 * Remote configure parameters via LoRaWAN Downlink
628 * Firmware upgradable via program port
629 * Powered by external 12v battery
630 * Back up rechargeable 1000mAh battery
631 * IP Rating: IP65
632 * Support default sensors or 3rd party RS485 sensors
633
634 == 5.2 Power Consumption ==
635
636 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
637
638
639 == 5.3 Storage & Operation Temperature ==
640
641 -20°C to +60°C
642
643
644 == 5.4 Pin Mapping ==
645
646 [[image:1656054149793-239.png]]
647
648
649 == 5.5 Mechanical ==
650
651 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
652
653
654 == 5.6 Connect to RS485 Sensors ==
655
656 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
657
658
659 [[image:1656054389031-379.png]]
660
661
662 Hardware Design for the Converter Board please see:
663
664 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
665
666
667 = 6. Weather Sensors =
668
669 == 6.1 Rain Gauge ~-~- WSS-01 ==
670
671
672 (((
673 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
674 )))
675
676 (((
677 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
678 )))
679
680 (((
681 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
682 )))
683
684 (((
685 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
686 )))
687
688 (((
689 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
690 )))
691
692
693 === 6.1.1 Feature ===
694
695 * RS485 Rain Gauge
696 * Small dimension, easy to install
697 * Vents under funnel, avoid leaf or other things to avoid rain flow.
698 * ABS enclosure.
699 * Horizontal adjustable.
700
701
702
703 === 6.1.2 Specification ===
704
705 * Resolution: 0.2mm
706 * Accuracy: ±3%
707 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
708 * Input Power: DC 5~~24v
709 * Interface: RS485
710 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
711 * Working Humidity: <100% (no dewing)
712 * Power Consumption: 4mA @ 12v.
713
714
715
716 === 6.1.3 Dimension ===
717
718 [[image:1656054957406-980.png]]
719
720
721 === 6.1.4 Pin Mapping ===
722
723 [[image:1656054972828-692.png]]
724
725
726 === 6.1.5 Installation Notice ===
727
728 Do not power on while connect the cables. Double check the wiring before power on.
729
730 Installation Photo as reference:
731
732
733 (% style="color:#4472c4" %)** Install on Ground:**
734
735 WSS-01 Rain Gauge include screws so can install in ground directly .
736
737
738 (% style="color:#4472c4" %)** Install on pole:**
739
740 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
741
742 [[image:image-20220624152218-1.png||height="526" width="276"]]
743
744 WS-K2: Bracket Kit for Pole installation
745
746
747 WSSC-K2 dimension document, please see:
748
749 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
750
751
752 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
753
754 [[image:1656055444035-179.png]]
755
756 (((
757 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
758 )))
759
760 (((
761 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
762 )))
763
764 (((
765 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
766 )))
767
768
769 === 6.2.1 Feature ===
770
771 * RS485 wind speed / direction sensor
772 * PC enclosure, resist corrosion
773
774
775
776 === 6.2.2 Specification ===
777
778 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
779 * Wind direction range: 0 ~~ 360°
780 * Start wind speed: ≤0.3m/s
781 * Accuracy: ±(0.3+0.03V)m/s , ±1°
782 * Input Power: DC 5~~24v
783 * Interface: RS485
784 * Working Temperature: -30℃~70℃
785 * Working Humidity: <100% (no dewing)
786 * Power Consumption: 13mA ~~ 12v.
787 * Cable Length: 2 meters
788
789
790
791 === 6.2.3 Dimension ===
792
793 [[image:image-20220624152813-2.png]]
794
795
796 === 6.2.4 Pin Mapping ===
797
798 [[image:1656056281231-994.png]]
799
800
801 === 6.2.5  Angle Mapping ===
802
803 [[image:1656056303845-585.png]]
804
805
806 === 6.2.6  Installation Notice ===
807
808 Do not power on while connect the cables. Double check the wiring before power on.
809
810 The sensor must be installed with below direction, towards North.
811
812 [[image:image-20220624153901-3.png]]
813
814
815 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
816
817
818 (((
819 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
820 )))
821
822 (((
823 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
824 )))
825
826 (((
827 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
828 )))
829
830
831 === 6.3.1 Feature ===
832
833 * RS485 CO2, PM2.5, PM10 sensor
834 * NDIR to measure CO2 with Internal Temperature Compensation
835 * Laser Beam Scattering to PM2.5 and PM10
836
837
838
839 === 6.3.2 Specification ===
840
841 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
842 * CO2 resolution: 1ppm
843 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
844 * PM2.5/PM10 resolution: 1μg/m3
845 * Input Power: DC 7 ~~ 24v
846 * Preheat time: 3min
847 * Interface: RS485
848 * Working Temperature:
849 ** CO2: 0℃~50℃;
850 ** PM2.5/PM10: -30 ~~ 50℃
851 * Working Humidity:
852 ** PM2.5/PM10: 15~80%RH (no dewing)
853 ** CO2: 0~95%RH
854 * Power Consumption: 50mA@ 12v.
855
856
857
858 === 6.3.3 Dimension ===
859
860 [[image:1656056708366-230.png]]
861
862
863 === 6.3.4 Pin Mapping ===
864
865 [[image:1656056722648-743.png]]
866
867
868 === 6.3.5 Installation Notice ===
869
870 Do not power on while connect the cables. Double check the wiring before power on.
871
872 [[image:1656057016033-551.png]]
873
874 [[image:1656056751153-304.png]]
875
876 [[image:1656056766224-773.png]]
877
878
879 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
880
881
882 (((
883 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
884 )))
885
886 (((
887 WSS-04 has auto heating feature, this ensures measurement more reliable.
888 )))
889
890 (((
891 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
892 )))
893
894
895
896 === 6.4.1 Feature ===
897
898 * RS485 Rain/Snow detect sensor
899 * Surface heating to dry
900 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
901
902
903
904 === 6.4.2 Specification ===
905
906 * Detect if there is rain or snow
907 * Input Power: DC 12 ~~ 24v
908 * Interface: RS485
909 * Working Temperature: -30℃~70℃
910 * Working Humidity: 10~90%RH
911 * Power Consumption:
912 ** No heating: 12mA @ 12v,
913 ** heating: 94ma @ 12v.
914
915
916
917 === 6.4.3 Dimension ===
918
919 [[image:1656056844782-155.png]]
920
921
922 === 6.4.4 Pin Mapping ===
923
924 [[image:1656056855590-754.png]]
925
926
927 === 6.4.5 Installation Notice ===
928
929 Do not power on while connect the cables. Double check the wiring before power on.
930
931
932 Install with 15°degree.
933
934 [[image:1656056873783-780.png]]
935
936
937 [[image:1656056883736-804.png]]
938
939
940 === 6.4.6 Heating ===
941
942 (((
943 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
944 )))
945
946
947 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
948
949
950 (((
951 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
952 )))
953
954 (((
955 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
956 )))
957
958
959 === 6.5.1 Feature ===
960
961 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
962
963
964
965 === 6.5.2 Specification ===
966
967 * Input Power: DC 12 ~~ 24v
968 * Interface: RS485
969 * Temperature Sensor Spec:
970 ** Range: -30 ~~ 70℃
971 ** resolution 0.1℃
972 ** Accuracy: ±0.5℃
973 * Humidity Sensor Spec:
974 ** Range: 0 ~~ 100% RH
975 ** resolution 0.1 %RH
976 ** Accuracy: 3% RH
977 * Pressure Sensor Spec:
978 ** Range: 10~1100hPa
979 ** Resolution: 0.1hPa
980 ** Accuracy: ±0.1hPa
981 * Illuminate sensor:
982 ** Range: 0~2/20/200kLux
983 ** Resolution: 10 Lux
984 ** Accuracy: ±3%FS
985 * Working Temperature: -30℃~70℃
986 * Working Humidity: 10~90%RH
987 * Power Consumption: 4mA @ 12v
988
989
990
991 === 6.5.3 Dimension ===
992
993 [[image:1656057170639-522.png]]
994
995
996 === 6.5.4 Pin Mapping ===
997
998 [[image:1656057181899-910.png]]
999
1000
1001 === 6.5.5 Installation Notice ===
1002
1003 Do not power on while connect the cables. Double check the wiring before power on.
1004
1005 [[image:1656057199955-514.png]]
1006
1007
1008 [[image:1656057212438-475.png]]
1009
1010
1011 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1012
1013
1014 (((
1015 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1016 )))
1017
1018 (((
1019 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1020 )))
1021
1022 (((
1023 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1024 )))
1025
1026
1027
1028 === 6.6.1 Feature ===
1029
1030 * RS485 Total Solar Radiation sensor
1031 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1032 * Measure Reflected Radiation if sense area towards ground.
1033
1034
1035
1036 === 6.6.2 Specification ===
1037
1038 * Input Power: DC 5 ~~ 24v
1039 * Interface: RS485
1040 * Detect spectrum: 0.3~3μm(300~3000nm)
1041 * Measure strength range: 0~2000W/m2
1042 * Resolution: 0.1W/m2
1043 * Accuracy: ±3%
1044 * Yearly Stability: ≤±2%
1045 * Cosine response: ≤7% (@ Sun angle 10°)
1046 * Temperature Effect: ±2%(-10℃~40℃)
1047 * Working Temperature: -40℃~70℃
1048 * Working Humidity: 10~90%RH
1049 * Power Consumption: 4mA @ 12v
1050
1051
1052
1053 === 6.6.3 Dimension ===
1054
1055 [[image:1656057348695-898.png]]
1056
1057
1058 === 6.6.4 Pin Mapping ===
1059
1060 [[image:1656057359343-744.png]]
1061
1062
1063 === 6.6.5 Installation Notice ===
1064
1065 Do not power on while connect the cables. Double check the wiring before power on.
1066
1067 [[image:1656057369259-804.png]]
1068
1069
1070 [[image:1656057377943-564.png]]
1071
1072
1073 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1074
1075
1076 (((
1077 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1078 )))
1079
1080 (((
1081 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1082 )))
1083
1084 (((
1085 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1086 )))
1087
1088
1089 === 6.7.1 Feature ===
1090
1091 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light’s Photosynthetically Available Radiation.
1092
1093
1094 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1095
1096
1097 === 6.7.2 Specification ===
1098
1099 * Input Power: DC 5 ~~ 24v
1100 * Interface: RS485
1101 * Response Spectrum: 400~700nm
1102 * Measure range: 0~2500μmol/m2•s
1103 * Resolution: 1μmol/m2•s
1104 * Accuracy: ±2%
1105 * Yearly Stability: ≤±2%
1106 * Working Temperature: -30℃~75℃
1107 * Working Humidity: 10~90%RH
1108 * Power Consumption: 3mA @ 12v
1109
1110
1111 === 6.7.3 Dimension ===
1112
1113 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1114
1115
1116 === 6.7.4 Pin Mapping ===
1117
1118 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1119
1120
1121 === 6.7.5 Installation Notice ===
1122
1123 Do not power on while connect the cables. Double check the wiring before power on.
1124
1125
1126 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1127
1128 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1129
1130
1131 = 7. FAQ =
1132
1133 == 7.1 What else do I need to purchase to build Weather Station? ==
1134
1135 Below is the installation photo and structure:
1136
1137 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
1138
1139
1140 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image039.png]]
1141
1142
1143
1144
1145 == 7.2 How to upgrade firmware for WSC1-L? ==
1146
1147 Firmware Location & Change log:
1148
1149 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1150
1151
1152 Firmware Upgrade instruction:
1153
1154 [[https:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List>>url:https://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List]]
1155
1156
1157 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1158
1159 User can follow the introduction for how to upgrade image. When download the images, choose the required image file for download.
1160
1161
1162
1163 == 7.4 Can I add my weather sensors? ==
1164
1165 Yes, connect the sensor to RS485 bus and see instruction: [[add sensors.>>path:#Add_sensor]]
1166
1167
1168 = 8. Trouble Shooting =
1169
1170
1171
1172
1173
1174
1175 = 9. Order Info =
1176
1177
1178 == 9.1 Main Process Unit ==
1179
1180 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1181
1182 (% style="color:blue" %)**XX**(%%): The default frequency band
1183
1184 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1185 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1186 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1187 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1188 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1189 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1190 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1191 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1192
1193
1194 == 9.2 Sensors ==
1195
1196 |**Sensor Model**|**Part Number**
1197 |**Rain Gauge**|WSS-01
1198 |**Rain Gauge installation Bracket for Pole**|WS-K2
1199 |**Wind Speed Direction 2 in 1 Sensor**|WSS-02
1200 |**CO2/PM2.5/PM10 3 in 1 Sensor**|WSS-03
1201 |**Rain/Snow Detect Sensor**|WSS-04
1202 |**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|WSS-05
1203 |**Total Solar Radiation Sensor**|WSS-06
1204 |**PAR (Photosynthetically Available Radiation)**|WSS-07
1205
1206 = 10. Support =
1207
1208 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1209 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1210
1211 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1212
1213
1214
1215
1216
1217 = 11. Appendix I: Field Installation Photo =
1218
1219
1220 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image040.png]]
1221
1222
1223 **Storage Battery**: 12v,12AH li battery
1224
1225
1226 Wind Speed/Direction.
1227
1228 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image041.png]]
1229
1230
1231 Total Solar Radiation sensor
1232
1233 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image042.png]]
1234
1235
1236
1237 PAR Sensor
1238
1239 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image043.png]]
1240
1241
1242 CO2/PM2.5/PM10 3 in 1 sensor
1243
1244 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image044.png]]
1245
1246
1247 Rain / Snow Detect:
1248
1249 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image045.png]]
1250
1251
1252 Rain Gauge.
1253
1254 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image046.png]]
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0