Hide last authors
Xiaoling 15.2 1 **Table of Contents:**
Xiaoling 1.1 2
Xiaoling 1.5 3 {{toc/}}
Xiaoling 1.1 4
Xiaoling 1.5 5
Xiaoling 14.8 6
Xiaoling 1.3 7 = 1. Introduction =
8
Xiaoling 14.8 9
Xiaoling 1.2 10 The Dragino LoRaWAN gateway can commuicate with LoRaWAN ABP End Node without the need of LoRaWAN server. It can be used in some cases such as:
Xiaoling 1.1 11
Xiaoling 1.2 12 * No internet connection.
Xiaoling 14.2 13 * User wants to get data forward in gateway and forward to their server base on MQTT/HTTP, etc. (Combine ABP communication method and [[MQTT forward together>>MQTT Forward Instruction]]).
Xiaoling 1.1 14
Xiaoling 1.7 15 (((
Xiaoling 1.13 16 The basic of this feature is the decoding of (% style="color:red" %)**LoRaWAN ABP End Node**(%%). Requirements:
Xiaoling 1.7 17 )))
Xiaoling 1.1 18
Xiaoling 1.2 19 1. LoRaWAN End Node in ABP mode. Make sure your end node works in this mode. End node most are default set to OTAA mode
20 1. LoRaWAN Gateway model: [[LPS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/148-lps8.html]], [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], [[DLOS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/160-dlos8.html]] ,[[LIG16>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/171-lig16.html]]
Xiaoling 1.13 21 1. Firmware version for below instruction:**[[(% style="color:purple" %)Since LG02_LG08~~-~~-build-v5.4.1593400722-20200629-1120>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/Release/]](%%)**
Xiaoling 1.1 22
Xiaoling 15.2 23
24
25
Xiaoling 1.4 26 = 2. How it works =
Xiaoling 1.1 27
Xiaoling 1.4 28
Xiaoling 1.13 29 (% style="color:#037691" %)**Video Instruction**(%%): **[[https:~~/~~/youtu.be/ZBjXwmp7rwM>>url:https://youtu.be/ZBjXwmp7rwM]]**
Xiaoling 1.4 30
Xiaoling 1.14 31
Xiaoling 1.2 32 Assume we have the LoRaWAN tracker LGT92 which works in ABP mode and US915 band. It has below keys:
Xiaoling 1.1 33
Xiaoling 1.8 34 (% class="box infomessage" %)
35 (((
Xiaoling 14.8 36 **AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df
Xiaoling 1.2 37 AT+APPSKEY=b3 17 f8 14 7a 43 27 8a 6a 31 c4 47 3d 55 5d 33
Xiaoling 14.8 38 AT+DADDR=2602111D**
Xiaoling 1.8 39 )))
Xiaoling 1.1 40
Xiaoling 1.8 41 (((
Xiaoling 1.2 42 and we have the LG308 works and US915 band and support ABP decryption. User can input these keys in LG308 so the LG308 can communicate with LGT92.
Xiaoling 14.8 43
44
Xiaoling 1.8 45 )))
Xiaoling 1.2 46
47 We need to input above keys in LG308 and enable ABP decryption.
48
Xiaoling 3.2 49 [[image:image-20220527161119-1.png]]
Xiaoling 1.2 50
51 Input the ABP keys in LG308
52
53
Xiaoling 1.3 54 == 2.1 Upstream ==
Xiaoling 1.2 55
Xiaoling 14.8 56
Xiaoling 1.2 57 Now when this End Node (Dev Addr=2602111D) send a uplink packet. When this packet arrive LG308, LG308 will decode it and put the decode data on the file /var/iot/channels/2602111D . So we have this data for further process with other applications in LG308.
58
Xiaoling 1.8 59 (((
Xiaoling 1.2 60 We can see the log of LG308 to know this packet arrive
Xiaoling 1.8 61 )))
Xiaoling 1.2 62
Xiaoling 3.2 63 [[image:image-20220527161149-2.png]]
Xiaoling 1.2 64
Xiaoling 14.8 65 LG308 log by "(% style="color:red" %)**logread -f**" (%%)command
Xiaoling 1.2 66
67
68 The data of End Node is stored in the file /var/iot/channels/2602111D. We can use hexdump command to check it.
69
Xiaoling 1.8 70 (% class="box" %)
71 (((
72 root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
Xiaoling 3.3 73 0000000 (% style="color:#037691" %)**4646 4646 4646 3946 3030 3030 3030 3546**(%%)      ~-~-> Got RSSI and SNR    
74 0000010 (% style="color:#037691" %)**cc0c 0b63 0266 017f ff7f ff00 **(%%) ~-~-> Payload
Xiaoling 1.2 75 000001c
Xiaoling 1.8 76 )))
Xiaoling 1.2 77
Xiaoling 14.8 78 * **RSSI**: 4646 4646 4646 3946 = 0xFFFF FF9F : So RSSI = (0xFFFF FF9F - 0x100000000) = -97
79 * **SNR**: 3030 3030 3030 3546 = 0x0000 005F = 95, need to divide 10 so SNR is 9.5
80 * **Payload**: 0xcc0c 0b63 0266 017f ff7f ff00
Xiaoling 1.2 81
Xiaoling 1.8 82 (% class="box" %)
83 (((
Xiaoling 3.3 84 (% style="color:red" %)**Notice 1**(%%): The data file stored in LG308 for the end node is bin file. If the end node sends ASCII string to gateway, the output will as below:
Xiaoling 3.6 85 in LGT92, use (% style="color:#037691" %)**AT+SEND=12:hello world** (%%)to send ASCII string
Xiaoling 1.8 86 root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
Xiaoling 1.2 87 0000000 4646 4646 4646 3946 3030 3030 3030 3546
Xiaoling 1.8 88 0000010 6865 6c6c 6f20 776f 726c 6400      ~-~-> Got ASCII code "hello world"    
Xiaoling 1.2 89 000001c
Xiaoling 1.8 90 )))
Xiaoling 1.2 91
Xiaoling 1.8 92 (% class="box" %)
93 (((
Xiaoling 14.8 94 (% style="color:red" %)**Notice 2**(%%): The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload.
Xiaoling 1.8 95 )))
Xiaoling 1.2 96
Xiaoling 3.4 97
Xiaoling 1.3 98 === 2.2.1 Decode Method ===
Xiaoling 1.2 99
Xiaoling 14.8 100
Xiaoling 3.6 101 The decode methods: (% style="color:#037691" %)**ASCII String, Decode_LHT65**(%%) doesn't affect how the sensor data is stored, they are to define how should the sensor data to be sent.
Xiaoling 1.2 102
103 For example we have a LHT65 , works in ABP mode and gateway successful get the data, which are:
104
Xiaoling 1.8 105 (% class="box" %)
106 (((
107 root@dragino-1baf44:~~# hexdump /var/iot/channels/01826108
Xiaoling 1.2 108 0000000 4646 4646 4646 4537 3030 3030 3030 3438
Xiaoling 1.8 109 0000010 ccd1 7fff 7fff 017f ff7f ff00         
Xiaoling 1.2 110 000001c
Xiaoling 1.8 111 )))
Xiaoling 1.2 112
Xiaoling 14.8 113
Xiaoling 1.2 114 If we choose ASCII decoder, the MQTT process will send out with mqtt-data:
115
Xiaoling 1.8 116 (% class="box" %)
117 (((
118 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
Xiaoling 1.2 119 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:decoder: ASCII
Xiaoling 3.6 120 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: (% style="color:#037691" %)**ffffffe700000048ccd17fff7fff017fff7fff00**
Xiaoling 1.8 121 )))
Xiaoling 1.2 122
Xiaoling 14.8 123
Xiaoling 1.2 124 If we choose Decode_LHT65, the MQTT process will send out with mqtt-data
125
Xiaoling 1.8 126 (% class="box" %)
127 (((
128 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
Xiaoling 1.2 129 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:decoder: Dragino_LHT65
Xiaoling 3.6 130 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]:** (% style="color:#037691" %){"Hum_SHT":32.7,"BatV":3.281,"TempC_DS":32.9,
131 "EXT":"Temperature Sensor","RSSI":-24,"TempC_SHT":85.0,"SNR":8.2,"ext_sensor":0}(%%)**
Xiaoling 1.8 132 )))
Xiaoling 1.2 133
134 Above scripts are store in /etc/lora/decoder/. User can put their scripts here and select it in the UI.
135
136
Xiaoling 15.2 137
Xiaoling 1.3 138 === 2.2.2 How to Decode My End Node ===
Xiaoling 1.2 139
Xiaoling 14.8 140
Xiaoling 1.2 141 1/ Configure the ABP keys for your end node in the gateway. enable ABP decode in Web UI
142
143 2/ Don't choose MQTT service, use LoRaWAN.
144
145 3/ When your end node send a message to the gateway, there will be a file store in /var/iot/channels. full path should be /var/iot/channels/END_NODE_DEV_ADDR
146
147 4/ Use the /etc/lora/decoder/Dragino_LHT65 as template to decode your payload. This script is written in Lua language. User can manually call this script when you see the data file in /var/iot/channels by running:
148
149 {{{/etc/lora/decoder/Dragino_LHT65 END_NODE_DEV_ADDR
150 }}}
151
152 5/ What you see as output is the MQTT data device will upload, user's end node has different payload compare with LHT65, most properly this file will report with error. User need to modify to match the actual payload. Some notice:
153
154 * RSSI and SNR are added when gateway receive the packet, so there is always this field.
155 * If you rename the file, please make it executable.
156 * See this link for lua.bit module: [[http:~~/~~/luaforge.net/projects/bit/>>url:http://luaforge.net/projects/bit/]]
157 * Lua json module: [[http:~~/~~/json.luaforge.net/>>url:http://json.luaforge.net/]]
158 * the last line return is what will be used for MQTT
159 * User can use other language ,not limited to Lua, just make sure the return is what you want to send.
160
Xiaoling 3.9 161
Xiaoling 14.8 162
Xiaoling 1.3 163 == 2.2 Downstream ==
Xiaoling 1.2 164
Xiaoling 14.8 165
Xiaoling 1.2 166 In LG308, we can create a file in the directory /var/iot/push for downstream purpose. We recommend using each command to generate this file. This file will be used for transmission and auto-deleted after used
167
168 The file should use below format:
169
Xiaoling 3.7 170 (% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload**
Xiaoling 1.2 171
172 Since fimware > Dragino-v2 lgw-5.4.1608518541 . Support more option
173
Xiaoling 3.7 174 (% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload,txpw,txbw,SF,frequency,rxwindow**
Xiaoling 1.2 175
Xiaoling 14.8 176 * **dev_addr:** Inptu the device address
177 * **imme/time:**
Xiaoling 1.2 178 ** imme: send downstream immediately,For Class C end node.
179 ** time: send downstream after receive device's uplink. For Class A end node
Xiaoling 14.8 180 * **txt/hex:**
Xiaoling 1.2 181 ** txt: send payload in ASCII
182 ** hex: send payload in HEX
Xiaoling 14.8 183 * **payload: **payload to be sent, payload lenght should match the LoRaWAN protocol requirement.
184 * **txpw:** Transmit Power. example: 20
185 * **txbw:** bandwidth:
Xiaoling 1.2 186 ** 1: 500 kHz
187 ** 2: 250 kHz
188 ** 3: 125 kHz
189 ** 4: 62.5 kHz
Xiaoling 14.8 190 * **SF:** Spreading Factor : SF7/SF8/SF9/SF10/SF11/SF12
191 * **Frequency:** Transmit Frequency: example: 923300000
192 * **rxwindow:** transmit on Rx1Window or Rx2Window.
Xiaoling 1.2 193
194
Xiaoling 15.2 195
Xiaoling 14.8 196 (% style="color:blue" %)**Completely exmaple:**
Xiaoling 1.2 197
Xiaoling 14.8 198 * **Old version:** echo 018193F4,imme,hex,0101 > /var/iot/push/test
199 * **New version:** echo 018193F4,imme,hex,0101,20,1,SF12,923300000,2 > /var/iot/push/test
Xiaoling 14.6 200
Xiaoling 14.8 201
Xiaoling 3.7 202 (% style="color:#037691" %)**Downstream Frequency**
203
Xiaoling 1.2 204 The LG308 will use the RX2 window info to send the downstream payload, use the default LoRaWAN settings, as below:
205
206 * EU868: 869.525Mhz, DR0(SF12BW125)
207 * US915: 923.3Mhz, SF12 BW500
208 * CN470: 505.3Mhz, SF12 BW125
209 * AU915: 923.3Mhz, SF12 BW500
210 * AS923: 923.2Mhz, SF10 BW125
211 * KR920: 921.9Mhz, SF12 BW125
212 * IN865: 866.55Mhz, SF10 BW125
213 * RU864: 869.1Mhz, SF12 BW125
214
Xiaoling 14.6 215
Xiaoling 3.6 216 (% style="color:#037691" %)**Examples:**
Xiaoling 1.2 217
Xiaoling 1.10 218 (% class="box" %)
219 (((
220 we can use echo command to create files in LG308 for downstream.
221 root@dragino-1d25dc:~~# echo 2602111D,time,hex,12345678 > /var/iot/push/test
222 )))
Xiaoling 1.2 223
Xiaoling 1.10 224 (% class="box" %)
225 (((
Xiaoling 14.8 226 **1)** From logread -f of gateway, we can see it has been added as pedning.
Xiaoling 1.10 227 lora_pkt_fwd[4286]: INFO~~ [DNLK]Looking file : test
228 lora_pkt_fwd[4286]: INFO~~ [DNLK]devaddr:2602111D, txmode:time, pdfm:hex, size:4, payload1:4Vx,payload_hex:77C1BB90
229 lora_pkt_fwd[4286]: INFO~~ [DNLK] DNLINK PENDING!(1 elems).
230 )))
Xiaoling 1.2 231
Xiaoling 1.10 232 (% class="box" %)
233 (((
Xiaoling 14.8 234 **2)** When there is an upstrea from end node, this downstream will be sent and shows:
Xiaoling 1.2 235 lora_pkt_fwd[4286]: INFO: tx_start_delay=1497 (1497.000000) - (1497, bw_delay=0.000000, notch_delay=0.000000)
236 lora_pkt_fwd[4286]: [LGWSEND]lgw_send done: count_us=3537314420, freq=923300000, size=17
Xiaoling 1.10 237 )))
Xiaoling 1.2 238
Xiaoling 1.10 239 (% class="box" %)
240 (((
Xiaoling 14.8 241 **3)** and the end node will got:
Xiaoling 1.10 242 [5764825]~*~*~*~** UpLinkCounter= 98 ~*~*~*~**
Xiaoling 1.2 243 [5764827]TX on freq 905300000 Hz at DR 0
244 Update Interval: 60000 ms
245 [5765202]txDone
246 [5766193]RX on freq 927500000 Hz at DR 10
247 [5766225]rxTimeOut
248 [5767205]RX on freq 923300000 Hz at DR 8
249 [5767501]rxDone
250 Rssi= -41
251 Receive data
Xiaoling 3.8 252 (% style="color:#037691" %)**2:12345678**  (%%) ~-~-> Hex
Xiaoling 1.10 253 )))
Xiaoling 1.2 254
Xiaoling 1.10 255 (% class="box" %)
256 (((
Xiaoling 14.8 257 **4) **If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got:
Xiaoling 1.10 258 [5955877]~*~*~*~** UpLinkCounter= 102 ~*~*~*~**
Xiaoling 1.2 259 [5955879]TX on freq 904100000 Hz at DR 0
260 Update Interval: 60000 ms
261 [5956254]txDone
262 [5957246]RX on freq 923900000 Hz at DR 10
263 [5957278]rxTimeOut
264 [5958257]RX on freq 923300000 Hz at DR 8
265 [5958595]rxDone
266 Rssi= -37
267 Receive data
Xiaoling 3.8 268 (% style="color:#037691" %)**2:3132333435363738**(%%) ~-~-> ASCII string "12345678"
Xiaoling 1.10 269 )))
Xiaoling 1.2 270
Xiaoling 3.8 271
Xiaoling 1.3 272 = 3. Example 1: Communicate with LT-22222-L =
Xiaoling 1.2 273
Xiaoling 14.8 274
Xiaoling 1.2 275 Script can be download from: [[Example Script 1>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/customized_script/&file=talk_to_lt-22222-l_v0.1.sh]]
276
Xiaoling 1.10 277 (% class="box" %)
278 (((
Xiaoling 14.8 279 //#!/bin/sh
Xiaoling 1.2 280 # This scripts shows how to use LPS8/LG308/DLOS8 to communicate with two LoRaWAN End Nodes, without the use of internet or LoRaWAN server
281 #
Xiaoling 1.10 282 # Hardware Prepare:
283 # 1. LT-22222-L x 2, both are configured to work in
284 #   a) Class C ;
285 # b) ABP Mode ;
Xiaoling 1.2 286 # c) AT+Mod=1
Xiaoling 1.10 287 # 2. LPS8,
288 #   a) Firmware version >
289 #   b) Input the LT-22222-L keys in LPS so LPS8 can talk with them.
290 #   c) Lorawan server choose built-in
291 #   d) in Custom page, select custom script to point to this script. (put this script in /etc/iot/scripts directory)
Xiaoling 1.2 292 #
Xiaoling 1.10 293 # How it works?
294 #   a) Devices 1 sends a uplink payload to LPS8. LPS8 will get the DI1 and DI2 info from the payload
295 #   b) LPS8 will send a message to Device 2 to set the Device2 DO1 = Device1 DI1, and Device DO2 = Device DI2.
296 #   c) Device2 will change DO1 and DO2 to according to the message from LPS8, and send back a message to LPS8 with the its DO1
297 #   and DO2 value. LPS8 will ask Device1 to change its DO1 to same as Device 2, and change the DO2 to the same as Device 2.
298 #   ( The purpose of this step is to show that the Device2 has already do the change there).
299 #
300 #  For example: If current status of Device1 and Device2 leds shows:
301 #  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
302 #  Device2: DI1: OFF, DI2: OFF , DO1: OFF,  DO2: OFF
303 #
304 #  Step2  will cause below change:
305 #  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
306 #  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
307
308 #  Step3 will cause below change:
309 #  Device1: DI1: ON, DI2: ON , DO1: ON,  DO2: ON
310 #  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
311 #  So if a person is in the Device 1 location, he can check if the DO LED match DI LEDs on Device 1 to confirm
Xiaoling 14.8 312 #  whether the Device 2 has been changed.//
Xiaoling 1.10 313 )))
Xiaoling 1.2 314
Xiaoling 14.8 315 **~1. Input keys**
Xiaoling 1.2 316
Xiaoling 5.2 317 [[image:image-20220527162450-3.png]]
Xiaoling 1.2 318
319 Input Keys in LPS8
320
Xiaoling 5.2 321
Xiaoling 14.8 322 **2. Make sure the LPS8 and LT use the same frequency bands, choose EU868 in this test.**
Xiaoling 1.2 323
Xiaoling 14.8 324 **3. Choose Built-in server**
Xiaoling 1.2 325
Xiaoling 5.2 326 [[image:image-20220527162518-4.png]]
Xiaoling 1.2 327
328 Choose Built-in server
329
Xiaoling 5.2 330
Xiaoling 14.8 331 **4. Run the script.**
Xiaoling 1.2 332
Xiaoling 7.2 333 [[image:image-20220527162552-5.png]]
Xiaoling 1.2 334
335 Run the script
336
Xiaoling 7.2 337
Xiaoling 14.8 338 **5. Output:**
Xiaoling 1.2 339
Xiaoling 7.2 340 [[image:image-20220527162619-6.png]]
Xiaoling 1.2 341
342 Output from LPS8
343
344
Xiaoling 1.3 345 = 4. Example 2: Communicate to TCP Server =
Xiaoling 1.2 346
Xiaoling 14.8 347
Xiaoling 10.2 348 [[image:image-20220527162648-7.png]]
Xiaoling 1.2 349
350 Network Structure
351
352
353 Full instruction video inlcude how to write scripts to fit server needed is here:
354
355
Xiaoling 10.2 356 (% style="color:#037691" %)**Video Instruction**(%%): **[[https:~~/~~/youtu.be/-nevW6U2TsE>>url:https://youtu.be/-nevW6U2TsE]]**
Xiaoling 1.2 357
358
Xiaoling 10.2 359 (% style="color:red" %)**Note: Firmware version must be higher than lgw-5.4.1607519907**
360
Xiaoling 14.8 361
Xiaoling 1.2 362 Assume we already set up ABP keys in the gateway:
363
Xiaoling 10.2 364 [[image:image-20220527162852-8.png]]
Xiaoling 1.2 365
366 Input Keys in LPS8
367
Xiaoling 10.2 368
Xiaoling 1.2 369
Xiaoling 14.8 370 **run socket tool in PC**
371
Xiaoling 10.2 372 [[image:image-20220527163028-9.png]]
Xiaoling 1.2 373
Xiaoling 10.2 374
Xiaoling 1.2 375 Socket tool
376
377
378
Xiaoling 14.8 379 **Input Server address and port**
380
Xiaoling 11.2 381 [[image:image-20220527163106-10.png]]
Xiaoling 1.2 382
383 Input Server address and port
384
385
386
Xiaoling 14.8 387 **See value receive in socket tool:**
388
Xiaoling 12.2 389 [[image:image-20220527163144-11.png]]
Xiaoling 1.2 390
391 value receive in socket tool
392
Xiaoling 14.8 393
Xiaoling 1.2 394 If user want to modify the TCP connection method. He can refer: [[https:~~/~~/github.com/dragino/dragino-packages/blob/lg02/haserl-ui/root/usr/bin/tcp_process.sh>>url:https://github.com/dragino/dragino-packages/blob/lg02/haserl-ui/root/usr/bin/tcp_process.sh]]. Same script is on /usr/bin of gateway.
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0