Show last authors
1 **Table of Contents:**
2
3 {{toc/}}
4
5
6
7
8
9
10 = 1. Introduction =
11
12
13 This article provide the examples for RS485-LN to connect to different type of RS485 sensors.
14
15
16 == 1.1 Example 1: Connect to Leak relay and VFD ==
17
18
19 This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to Relay and VFD and communicate with Mobile. The structure is like below:
20
21
22 [[image:image-20220527091852-1.png||height="547" width="994"]]
23
24 **Connection**
25
26
27
28 [[image:image-20220527091942-2.png]](% style="display:none" %)
29
30 **Connection**
31
32
33 (% style="color:blue" %)**Related documents:**
34
35 * System Structure:  [[Solar Pump with Dragino>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Relay_VFD/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
36
37 * Explanation on how to integrate to Node-red and to the Mobile Phone, and with link to the Github code:  [[Configure Manual>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Relay_VFD/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
38
39 * [[Video Demo>>url:https://www.youtube.com/watch?v=TAFZ5eaf-MY&t=6s&ab_channel=XavierFlorensaBerenguer]]
40
41
42
43 == 1.2 Example 2: Connect to Pulse Counter ==
44
45
46 This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to Pulse Counter and communicate with Mobile. This example and example 2 compose the structure for a farm IoT solution. The structure is like below:
47
48
49 [[image:image-20220527092058-3.png||height="552" width="905"]]
50
51 **Connection**
52
53
54
55 [[image:image-20220527092146-4.png||height="507" width="906"]]
56
57 **Connection**
58
59
60 (% style="color:blue" %)**Related documents:**
61
62 * Configure Document:  [[Pickdata MIO40 water pulse counter to LoRa with Dragino RS485-LN>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Pulse-Counter/||_mstmutation="1"]]
63
64 * [[Dragino Solution in Farm>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/&file=Dragino%20on%20Farms.pptx]]
65
66
67
68 == 1.3 Example 3: Use RS485-LN with energy meters ==
69
70 === 1.3.1 OverView ===
71
72
73 (((
74 (% style="color:red" %)**Note**:**The specifications of each energy meter are different, please refer to your own energy meter specifications.**
75 )))
76
77 (((
78 This example describes a single-phase meter.This is the connection between the RS485-LN and the energy meter.
79
80
81 )))
82
83 [[image:image-20220527092419-5.png]]
84
85 **Connection1**
86
87
88
89 (((
90 (% style="color:blue" %)**How to connect with Energy Meter:**
91
92
93 )))
94
95 (((
96 Follow the instructions of the electric energy meter to connect the phase line and the neutral line, and then connect 485A+ and 485B- to RS485A and RA485B of RS485-LN respectively.
97 )))
98
99 (((
100 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
101 )))
102
103 (((
104 Power Source **VIN** to RS485-LN **VIN+**
105 )))
106
107 (((
108 Power Source **GND** to RS485-LN **VIN-**
109 )))
110
111 (((
112 Once there is power, the RS485-LN will be on.
113
114
115 )))
116
117 [[image:image-20220527092514-6.png]]
118
119 **Connection2**
120
121
122
123 [[image:image-20220527092555-7.png]]
124
125 **Connection3**
126
127
128 === 1.3.2 How to use the parameters of the energy meter and MODBUS commands ===
129
130
131 If the user needs to read the parameters of the electric energy meter and use the modbus command,please refer to the appendix of the MODBUS communication protocol in the user manual of the energy meter.
132
133 [[image:image-20220601143257-10.png]]
134
135
136 (% style="color:blue" %)**Example:**(%%)  AT+COMMAND1=01 03 00 00 00 01 84 0A
137
138 * The first byte : slave address code (=001~247)
139
140 * The second byte : read register value function code
141
142 * 3rd and 4th bytes: start address of register to be read
143
144 * 5th and 6th bytes: Number of registers to read
145
146 * 7th and 8th bytes: CRC16 checksum from bytes 1 to 6.
147
148 (((
149
150
151
152 How to parse the reading of the return command of the parameter:
153
154 (% style="color:blue" %)**Example:**(%%) RETURN1:01 03 02 08 FD 7E 05
155 )))
156
157 * The first byte ARD: slave address code (=001~254)
158
159 * The second byte: Return to read function code
160
161 * 3rd byte: total number of bytes
162
163 * 4th~5th bytes: register data
164
165 * The 6th and 7th bytes: CRC16 checksum
166
167 * 08 FD is register data. Use short integer 16 bits to convert to decimal, get 2301, then 230.1V is the voltage.
168
169
170
171 === 1.3.3 How to configure RS485-LN and parse output commands ===
172
173
174 RS485-LN provides two configuration methods: AT COMMAND and DOWNLINK.
175
176
177 ==== **1.3.3.1 via AT COMMAND** ====
178
179
180 First, we can use (% style="color:blue" %)**AT+CFGDEV**(%%) to get the return value, and we can also judge whether the input parameters are correct.
181
182 (((
183 If the configured parameters and commands are incorrect, the return value is not obtained.
184
185
186 )))
187
188 [[image:image-20220601143201-9.png]]
189
190 **AT COMMAND**
191
192
193 (% class="box infomessage" %)
194 (((
195 (% _mstmutation="1" %)**AT+DATACUTx **(%%):  This command defines how to handle the return from AT+COMMANDx, max reture length is 40 bytes. AT+DATACUTx=a,b,c
196 )))
197
198 a:  length for the return of AT+COMMAND
199
200 b: 1: grab valid value by byte, max 6 bytes;  2: grab valid value by bytes section, max 3 sections.
201
202 c:  define the position for valid value.
203
204 [[image:image-20220601143115-8.png]]
205
206 **AT COMMAND**
207
208
209
210 PAYLOAD is available after the valid value is intercepted.
211
212 [[image:image-20220601143046-7.png]]
213
214 **AT COMMAND**
215
216
217
218 You can get configured PAYLOAD on TTN.
219
220 [[image:image-20220601143519-1.png]]
221
222 (((
223 **AT COMMAND**
224 )))
225
226 (((
227
228 )))
229
230 (((
231 (% style="color:blue" %)**Example**:
232
233 (% style="color:red" %)**CMD1:**(%%) Read current data with MODBUS command. address: 0x03 AT+COMMAND1= 01 03 00 03 00 01,1
234 )))
235
236 (((
237 RETURN1: 01 03 02 00 02 39 85 00 00(return data)
238 )))
239
240 (((
241 AT+DATACUT1: 9,1,4+5+6+7 Take the return value 00 02 39 85 as the valid value of reading current data and used to splice payload.
242
243
244 )))
245
246 (((
247 (% style="color:red" %)**CMD2: **(%%)Read voltage data with MODBUS command. address: 0x00 AT+COMMAND2= 01 03 00 00 00 01,1
248 )))
249
250 (((
251 RETURN2: 01 03 02 08 DC BE 1D(return data)
252 )))
253
254 (((
255 AT+DATACUT2: 7,1,4+5 Take the return value 08 DC as the valid value of reading voltage data and used to splice payload.
256
257
258 )))
259
260 (((
261 (% style="color:red" %)**CMD3:**(%%) Read total active energy data with MODBUS command. address: 0x0031 AT+COMMAND3= 01 03 00 31 00 02,1
262 )))
263
264 (((
265 RETURN3: 01 03 04 00 00 00 44 FA 00(return data)
266 )))
267
268 (((
269 AT+DATACUT3: 9,1,4+5+6+7 Take the return value 00 00 00 44 as the valid value of reading total active energy data and used to splice payload.
270 )))
271
272 (((
273 Payload: 01 00 02 39 85 08 DC 00 00 00 44
274 )))
275
276 [[image:image-20220601142936-6.png]]
277
278 AT COMMAND
279
280
281
282 (% style="color:blue" %)**01 is device address,00 02 is the current, 08 DC is the voltage,00 00 00 44 is the total active energy.**
283
284
285 [[image:image-20220601143642-2.png]]
286
287 AT COMMAND
288
289
290
291 ==== **1.3.3.2 via LoRaWAN DOWNLINK** ====
292
293
294 [[image:image-20220527093358-15.png]]
295
296 (((
297 **DOWNLINK**
298 )))
299
300
301
302 (((
303 (% style="color:blue" %)**Type Code 0xAF**
304 )))
305
306 (((
307 (% class="box infomessage" %)
308 (((
309 0xAF downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
310 )))
311 )))
312
313 (((
314 (% style="color:red" %)**Note: if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.**
315 )))
316
317 (((
318 Format: AF MM NN LL XX XX XX XX YY
319 )))
320
321 (((
322 Where:
323 )))
324
325 (((
326 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
327 )))
328
329 (((
330 NN: 0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
331 )))
332
333 (((
334 LL: The length of AT+COMMAND or AT+DATACUT command
335 )))
336
337 (((
338 XX XX XX XX: AT+COMMAND or AT+DATACUT command
339 )))
340
341 (((
342 YY: If YY=0, RS485-LN will execute the downlink command without uplink; if YY=1, RS485-LN
343 )))
344
345 (((
346 will execute an uplink after got this command.
347 )))
348
349
350 (((
351 (% style="color:blue" %)**Example:**
352 )))
353
354 (((
355 **AF 03 01 06 0A 05 00 04 00 01 00**: Same as AT+COMMAND3=0A 05 00 04 00 01,1
356 )))
357
358 [[image:image-20220601144149-6.png]]
359
360 **DOWNLINK**
361
362
363
364 [[image:image-20220601143803-3.png]]
365
366 **DOWNLINK**
367
368
369
370 [[image:image-20220601144053-5.png]]
371
372 **DOWNLINK**
373
374
375
376 [[image:image-20220601143921-4.png]]
377
378 **DOWNLINK**
379
380
381
382 [[image:image-20220601142805-5.png]]
383
384 **DOWNLINK**
385
386
387 === 1.3.4 How to configure and output commands for RS485 to USB ===
388
389
390 (((
391 This step is not necessary, it is just to show how to use a normal RS485 to USB adapter to connect to the meter to check the input and output. This can be used to test the connection and RS485 command of the meter without RS485-LN.
392 )))
393
394 (((
395 First, connect the A+ and A- of the USB to the 485 A and 485 B of the energy meter.
396 )))
397
398 (((
399 Open the serial port debugging, set the send and receive to HEX.
400 )))
401
402 (((
403 Baud rate: 9600
404 )))
405
406 (((
407 check digit: Even
408
409
410 )))
411
412 [[image:image-20220527093708-21.png]]
413
414 **USB**
415
416
417
418 [[image:image-20220527093747-22.png]]
419
420 **USB**
421
422
423
424 (((
425 The configuration command is consistent with the AT command, input the hexadecimal command directly into the serial port, and the serial port will output the command.
426 )))
427
428 (((
429 (% style="color:blue" %)**Example:**  (%%)input:01 03 00 31 00 02 95 c4
430 )))
431
432 (((
433 output:01 03 04 00 00 00 42 7A 02
434
435
436 )))
437
438 [[image:image-20220527093821-23.png]]
439
440 **USB**
441
442
443
444 === 1.3.5 How to configure multiple devices and modify device addresses ===
445
446
447 If users need to read the parameters of multiple energy meters, they need to modify the device address, because the default device address of each energy meter is 01.
448
449 (((
450 (((
451 Set the device address according to the parameters in the appendix of the MODBUS communication protocol.
452 )))
453 )))
454
455 [[image:image-20220601142044-1.png]]
456
457
458 (% style="color:blue" %)**Example**(%%): These two meters are examples of setting parameters and device addresses.
459
460
461 [[image:image-20220527093950-25.png]]
462
463
464 [[image:image-20220527094028-26.png]]
465
466
467 (((
468 (((
469 First of all, since the default device address of the energy meter is 01, the configuration of two energy meters will conflict, so we first connect an energy meter and configure the device address.
470 )))
471 )))
472
473 (((
474 (((
475 We can use (% style="color:blue" %)**AT+CFGDEV**(%%) to set the device address.
476 )))
477 )))
478
479 (((
480 (((
481 We modify the device address 01 of the first energy meter to 02.
482 )))
483 )))
484
485 [[image:image-20220601142354-2.png]]
486
487
488 (% class="box infomessage" %)
489 (((
490 **AT+CFGDEV:01 10 00 61 00 01 02 00 02,1**
491 )))
492
493 * 01: device adaress
494
495 * 10: function code
496
497 * 00 61:Register address
498
499 * 00 01:Number of Registers
500
501 * 02:Number of bytes
502
503 * 00 02:Modified device address
504
505 * 1:Check code
506
507 The device address setting of the energy meter is complete.
508
509 Another energy meter is a single active energy meter with a floating-point format.
510
511 Its default device address is 01, and the following are the parameters for configuring two energy meters.
512
513 [[image:image-20220601142452-3.png]]
514
515
516 [[image:image-20220601142607-4.png]]
517
518
519 (% style="color:blue" %)**PAYLOAD: 01 08 DF 43 62**
520
521 * 08 DF is the valid value of the meter with device address 02.
522 * 43 62 is the valid value of the meter with device address 01.
523
524 (% style="display:none" %) (%%)
525
526
527 == 1.4 Example 4: Circuit Breaker Remote Open Close ==
528
529
530 This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to SCHNEIDER SMART and Monitor and control your cabinet remotely with no wires and with Dragino RS485-LN LoRaWAN technology.
531
532 The structure is like below:
533
534 [[image:image-20220527094330-30.png]]
535
536 **Connection**
537
538
539 * Configure Documen:  [[Circuit Breaker Remote Open Close>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Circuit_Breaker_Remote_Open_Close/||_mstmutation="1"]]
540
541
542
543 == 1.5 Example 5: SEM Three Energy Meter with RS485-BL or RS485-LN ==
544
545
546 This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-BL to connect to SEM Three Energy Meter and send the data to mobile phone for remote minitor. The structure is like below:
547
548 * Configure Document For RS485-BL:  [[Connect to SEM Three>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Application_Note/&file=Dragino%20RS485BL%20and%20pickdata%20SEM%20Three%20v1.pdf||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
549
550 * Configure Document for RS485-LN:  [[Connect to SEM Three>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/SEM_Three_Energy_Meter/&file=SEM%20three%20and%20Dragino%20RS485-LN%20v1.pdf||_mstmutation="1"]]
551
552
553
554 == 1.6 Example 6: CEM C31 485-T1-MID Energy Meter with RS485-LN ==
555
556
557 This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to CEM C31 485-T1-MID and send the data for remote minitor. The structure is like below:
558
559 * Configure Document For RS485-LN:  [[CEM C31 485-T1-MID>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/ELECTRICAL%20CABINET/&file=ELECTRICAL%20CABINET%20READINGS.pdf||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
560
561
562
563 == 1.7 Example 7: Schneider Electric PLC M221 with RS485-BL ==
564
565
566 [[image:image-20220527094556-31.png]]
567
568 Network Structure
569
570
571 * [[Reference Instruction>>url:https://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Schneider%20Electric%20PLC/]]
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0