Show last authors
1 **Table of Contents:**
2
3 {{toc/}}
4
5
6
7
8
9
10 = **1. Introduction** =
11
12
13 This article provide the examples for RS485-LN to connect to different type of RS485 sensors.
14
15
16 == **1.1 Example 1: Connect to Leak relay and VFD** ==
17
18
19 This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to Relay and VFD and communicate with Mobile. The structure is like below:
20
21 [[image:image-20220527091852-1.png]]
22
23 Connection
24
25
26
27 [[image:image-20220527091942-2.png]](% style="display:none" %)
28
29 Connection
30
31
32 (% style="color:blue" %)**Related documents:**
33
34 * System Structure:  [[Solar Pump with Dragino>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Relay_VFD/||style="background-color: rgb(255, 255, 255);"]]
35 * Explanation on how to integrate to Node-red and to the Mobile Phone, and with link to the Github code:  [[Configure Manual>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Relay_VFD/||style="background-color: rgb(255, 255, 255);"]]
36 * [[Video Demo>>url:https://www.youtube.com/watch?v=TAFZ5eaf-MY&t=6s&ab_channel=XavierFlorensaBerenguer]]
37
38
39
40 == **1.2 Example 2: Connect to Pulse Counter** ==
41
42
43 This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to Pulse Counter and communicate with Mobile. This example and example 2 compose the structure for a farm IoT solution. The structure is like below:
44
45
46 [[image:image-20220527092058-3.png]]
47
48 Connection
49
50
51
52 [[image:image-20220527092146-4.png]]
53
54 Connection
55
56
57 (% style="color:blue" %)**Related documents:**
58
59 * Configure Document:  [[Pickdata MIO40 water pulse counter to LoRa with Dragino RS485-LN>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Pulse-Counter/]]
60 * [[Dragino Solution in Farm>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/&file=Dragino%20on%20Farms.pptx]]
61
62
63
64 == **1.3 Example3: Use RS485-LN with energy meters** ==
65
66
67 === **1.3.1 OverView** ===
68
69
70 (((
71 (% style="color:red" %)**Note**:The specifications of each energy meter are different, please refer to your own energy meter specifications.
72 )))
73
74 (((
75 This example describes a single-phase meter.This is the connection between the RS485-LN and the energy meter.
76 )))
77
78 [[image:image-20220527092419-5.png]]
79
80 Connection1
81
82
83
84 (((
85 (% style="color:blue" %)**How to connect with Energy Meter:**
86
87
88 )))
89
90 (((
91 Follow the instructions of the electric energy meter to connect the phase line and the neutral line, and then connect 485A+ and 485B- to RS485A and RA485B of RS485-LN respectively.
92 )))
93
94 (((
95 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
96 )))
97
98 (((
99 Power Source VIN to RS485-LN VIN+
100 )))
101
102 (((
103 Power Source GND to RS485-LN VIN-
104 )))
105
106 (((
107 Once there is power, the RS485-LN will be on.
108 )))
109
110 [[image:image-20220527092514-6.png]]
111
112 Connection2
113
114
115 [[image:image-20220527092555-7.png]]
116
117 Connection3
118
119
120
121 === **1.3.2 How to use the parameters of the energy meter and MODBUS commands** ===
122
123
124 If the user needs to read the parameters of the electric energy meter and use the modbus command,please refer to the appendix of the MODBUS communication protocol in the user manual of the energy meter.
125
126 [[image:image-20220601143257-10.png]]
127
128
129 (% style="color:blue" %)**Example:**(%%)  AT+COMMAND1=01 03 00 00 00 01 84 0A
130
131 * The first byte : slave address code (=001~247)
132 * The second byte : read register value function code
133 * 3rd and 4th bytes: start address of register to be read
134 * 5th and 6th bytes: Number of registers to read
135 * 7th and 8th bytes: CRC16 checksum from bytes 1 to 6.
136
137 (((
138
139
140
141 How to parse the reading of the return command of the parameter:
142
143 (% style="color:blue" %)**Example:**(%%) RETURN1:01 03 02 08 FD 7E 05
144 )))
145
146 * The first byte ARD: slave address code (=001~254)
147 * The second byte: Return to read function code
148 * 3rd byte: total number of bytes
149 * 4th~5th bytes: register data
150 * The 6th and 7th bytes: CRC16 checksum
151 * 08 FD is register data. Use short integer 16 bits to convert to decimal, get 2301, then 230.1V is the voltage.
152
153 (% class="wikigeneratedid" %)
154 (((
155
156
157
158
159 )))
160
161 === **1.3.3 How to configure RS485-LN and parse output commands** ===
162
163
164 RS485-LN provides two configuration methods: AT COMMAND and DOWNLINK.
165
166
167
168 ==== **1.3.3.1 via AT COMMAND** ====
169
170
171 First, we can use (% style="color:blue" %)**AT+CFGDEV**(%%) to get the return value, and we can also judge whether the input parameters are correct.
172
173 (((
174 If the configured parameters and commands are incorrect, the return value is not obtained.
175 )))
176
177 [[image:image-20220601143201-9.png]]
178
179 AT COMMAND
180
181
182 (% class="box infomessage" %)
183 (((
184 **AT+DATACUTx **:  This command defines how to handle the return from AT+COMMANDx, max reture length is 40 bytes. AT+DATACUTx=a,b,c
185 )))
186
187 a:  length for the return of AT+COMMAND
188
189 b: 1: grab valid value by byte, max 6 bytes;  2: grab valid value by bytes section, max 3 sections.
190
191 c:  define the position for valid value.
192
193 [[image:image-20220601143115-8.png]]
194
195 AT COMMAND
196
197
198
199 PAYLOAD is available after the valid value is intercepted.
200
201
202 [[image:image-20220601143046-7.png]]
203
204 AT COMMAND
205
206
207
208 You can get configured PAYLOAD on TTN.
209
210 [[image:image-20220601143519-1.png]]
211
212 (((
213 AT COMMAND
214 )))
215
216 (((
217
218 )))
219
220 (((
221 (% style="color:blue" %)**Example**:
222
223 (% style="color:red" %)**CMD1:**(%%) Read current data with MODBUS command. address: 0x03 AT+COMMAND1= 01 03 00 03 00 01,1
224 )))
225
226 (((
227 RETURN1: 01 03 02 00 02 39 85 00 00(return data)
228 )))
229
230 (((
231 AT+DATACUT1: 9,1,4+5+6+7 Take the return value 00 02 39 85 as the valid value of reading current data and used to splice payload.
232
233
234 )))
235
236 (((
237 (% style="color:red" %)**CMD2: **(%%)Read voltage data with MODBUS command. address: 0x00 AT+COMMAND2= 01 03 00 00 00 01,1
238 )))
239
240 (((
241 RETURN2: 01 03 02 08 DC BE 1D(return data)
242 )))
243
244 (((
245 AT+DATACUT2: 7,1,4+5 Take the return value 08 DC as the valid value of reading voltage data and used to splice payload.
246
247
248 )))
249
250 (((
251 (% style="color:red" %)**CMD3:**(%%) Read total active energy data with MODBUS command. address: 0x0031 AT+COMMAND3= 01 03 00 31 00 02,1
252 )))
253
254 (((
255 RETURN3: 01 03 04 00 00 00 44 FA 00(return data)
256 )))
257
258 (((
259 AT+DATACUT3: 9,1,4+5+6+7 Take the return value 00 00 00 44 as the valid value of reading total active energy data and used to splice payload.
260 )))
261
262 (((
263 Payload: 01 00 02 39 85 08 DC 00 00 00 44
264 )))
265
266 [[image:image-20220601142936-6.png]]
267
268 AT COMMAND
269
270
271 (% style="color:#4f81bd" %)**01 is device address,00 02 is the current, 08 DC is the voltage,00 00 00 44 is the total active energy.**
272
273
274 [[image:image-20220601143642-2.png]]
275
276 AT COMMAND
277
278
279
280 ==== **1.3.3.2 via LoRaWAN DOWNLINK** ====
281
282
283 [[image:image-20220527093358-15.png]]
284
285 (((
286 DOWNLINK
287 )))
288
289 (((
290
291 )))
292
293 (((
294 (% style="color:#4f81bd" %)**Type Code 0xAF**
295 )))
296
297 (((
298 (% class="box infomessage" %)
299 (((
300 0xAF downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
301 )))
302 )))
303
304 (((
305 (% style="color:red" %)**Note: if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.**
306 )))
307
308 (((
309 Format: AF MM NN LL XX XX XX XX YY
310 )))
311
312 (((
313 Where:
314 )))
315
316 (((
317 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
318 )))
319
320 (((
321 NN: 0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
322 )))
323
324 (((
325 LL: The length of AT+COMMAND or AT+DATACUT command
326 )))
327
328 (((
329 XX XX XX XX: AT+COMMAND or AT+DATACUT command
330 )))
331
332 (((
333 YY: If YY=0, RS485-LN will execute the downlink command without uplink; if YY=1, RS485-LN
334 )))
335
336 (((
337 will execute an uplink after got this command.
338 )))
339
340 (((
341
342
343 (% style="color:blue" %)**Example:**
344 )))
345
346 (((
347 **AF 03 01 06 0A 05 00 04 00 01 00**: Same as AT+COMMAND3=0A 05 00 04 00 01,1
348 )))
349
350 [[image:image-20220601144149-6.png]]
351
352 DOWNLINK
353
354
355
356 [[image:image-20220601143803-3.png]]
357
358 DOWNLINK
359
360
361
362 [[image:image-20220601144053-5.png]]
363
364 DOWNLINK
365
366
367
368 [[image:image-20220601143921-4.png]]
369
370 DOWNLINK
371
372
373
374 [[image:image-20220601142805-5.png]]
375
376 DOWNLINK
377
378
379
380 === **1.3.4 How to configure and output commands for RS485 to USB** ===
381
382 (((
383 This step is not necessary, it is just to show how to use a normal RS485 to USB adapter to connect to the meter to check the input and output. This can be used to test the connection and RS485 command of the meter without RS485-LN.
384 )))
385
386 (((
387 First, connect the A+ and A- of the USB to the 485 A and 485 B of the energy meter.
388 )))
389
390 (((
391 Open the serial port debugging, set the send and receive to HEX.
392 )))
393
394 (((
395 Baud rate: 9600
396 )))
397
398 (((
399 check digit: Even
400
401
402 )))
403
404 [[image:image-20220527093708-21.png]]
405
406 USB
407
408
409
410 [[image:image-20220527093747-22.png]]
411
412 USB
413
414
415
416 (((
417 The configuration command is consistent with the AT command, input the hexadecimal command directly into the serial port, and the serial port will output the command.
418
419
420 )))
421
422 (((
423 (% style="color:blue" %)**Example:**  (%%)input:01 03 00 31 00 02 95 c4
424 )))
425
426 (((
427 output:01 03 04 00 00 00 42 7A 02
428
429
430 )))
431
432 [[image:image-20220527093821-23.png]]
433
434 USB
435
436
437
438 === **1.3.5 How to configure multiple devices and modify device addresses** ===
439
440
441 If users need to read the parameters of multiple energy meters, they need to modify the device address, because the default device address of each energy meter is 01.
442
443 (((
444 (((
445 Set the device address according to the parameters in the appendix of the MODBUS communication protocol.
446 )))
447 )))
448
449 [[image:image-20220601142044-1.png]]
450
451
452 (% style="color:blue" %)**Example**(%%): These two meters are examples of setting parameters and device addresses.
453
454 [[image:image-20220527093950-25.png]]
455
456
457 [[image:image-20220527094028-26.png]]
458
459
460 (((
461 (((
462 First of all, since the default device address of the energy meter is 01, the configuration of two energy meters will conflict, so we first connect an energy meter and configure the device address.
463 )))
464 )))
465
466 (((
467 (((
468 We can use (% style="color:blue" %)**AT+CFGDEV**(%%) to set the device address.
469 )))
470 )))
471
472 (((
473 (((
474 We modify the device address 01 of the first energy meter to 02.
475 )))
476 )))
477
478 [[image:image-20220601142354-2.png]]
479
480
481 (% class="box infomessage" %)
482 (((
483 **AT+CFGDEV:01 10 00 61 00 01 02 00 02,1**
484 )))
485
486 * 01:device adaress
487
488 * 10:function code
489
490 * 00 61:Register address
491
492 * 00 01:Number of Registers
493
494 * 02:Number of bytes
495
496 * 00 02:Modified device address
497
498 * 1:Check code
499
500 The device address setting of the energy meter is complete.
501
502 Another energy meter is a single active energy meter with a floating-point format.
503
504 Its default device address is 01, and the following are the parameters for configuring two energy meters.
505
506 [[image:image-20220601142452-3.png]]
507
508
509 [[image:image-20220601142607-4.png]]
510
511
512 (% style="color:blue" %)**PAYLOAD: 01 08 DF 43 62**
513
514 * 08 DF is the valid value of the meter with device address 02.
515 * 43 62 is the valid value of the meter with device address 01.
516
517
518
519 == 1.4 Example 4: Circuit Breaker Remote Open Close ==
520
521
522 This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to SCHNEIDER SMART and Monitor and control your cabinet remotely with no wires and with Dragino RS485-LN LoRaWAN technology.
523
524 The structure is like below:
525
526 [[image:image-20220527094330-30.png]]
527
528 Connection
529
530
531 * Configure Documen:  [[Circuit Breaker Remote Open Close>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Circuit_Breaker_Remote_Open_Close/]]
532
533
534
535 == 1.5 Example 5: SEM Three Energy Meter with RS485-BL or RS485-LN ==
536
537
538 This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-BL to connect to SEM Three Energy Meter and send the data to mobile phone for remote minitor. The structure is like below:
539
540 * Configure Document For RS485-BL:  [[Connect to SEM Three>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Application_Note/&file=Dragino%20RS485BL%20and%20pickdata%20SEM%20Three%20v1.pdf||style="background-color: rgb(255, 255, 255);"]]
541 * Configure Document for RS485-LN:  [[Connect to SEM Three>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/SEM_Three_Energy_Meter/&file=SEM%20three%20and%20Dragino%20RS485-LN%20v1.pdf]]
542
543
544
545 == 1.6 Example 6: CEM C31 485-T1-MID Energy Meter with RS485-LN ==
546
547
548 This instruction is provided by Xavier Florensa Berenguer from [[NORIA GRUPO DE COMPRAS>>url:http://www.gruponovelec.com/]]. It is to show how to use RS485-LN to connect to CEM C31 485-T1-MID and send the data for remote minitor. The structure is like below:
549
550 * Configure Document For RS485-LN:  [[CEM C31 485-T1-MID>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/ELECTRICAL%20CABINET/&file=ELECTRICAL%20CABINET%20READINGS.pdf||style="background-color: rgb(255, 255, 255);"]]
551
552
553
554 == 1.7 Example 7: Schneider Electric PLC M221 with RS485-BL ==
555
556
557 [[image:image-20220527094556-31.png]]
558
559 Network Structure
560
561
562 * [[Reference Instruction>>url:https://www.dragino.com/downloads/index.php?dir=RS485-LN/Application_Note/Schneider%20Electric%20PLC/]]
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0