Changes for page Water Quality Sensors
Last modified by Karry Zhuang on 2025/07/25 09:38
From version 17.1
edited by Karry Zhuang
on 2024/07/18 18:58
on 2024/07/18 18:58
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 14 added, 0 removed)
- image-20240718190121-1.png
- image-20240718190204-2.png
- image-20240718190221-3.png
- image-20240718190249-4.png
- image-20240718191336-5.png
- image-20240718191348-6.png
- image-20240718195058-7.png
- image-20240718195414-8.png
- image-20240719155308-1.png
- image-20240720172533-1.png
- image-20240720172548-2.png
- image-20240720172620-3.png
- image-20240720172632-4.png
- image-20240720172640-5.png
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. karry1 +XWiki.Xiaoling - Content
-
... ... @@ -3,26 +3,39 @@ 3 3 {{toc/}} 4 4 5 5 6 + 7 + 6 6 = 1. DR-ECK Water EC Probe = 7 7 8 8 == 1.1 Specification: == 9 9 12 + 10 10 * **Power Input**: DC7~~30 14 + 11 11 * **Power Consumption** : < 0.5W 16 + 12 12 * **Interface**: RS485. 9600 Baud Rate 18 + 13 13 * **EC Range & Resolution:** 14 14 ** **ECK0.01** : 0.02 ~~ 20 μS/cm 15 15 ** **ECK0.1**: 0.2 ~~ 200.0 μS/cm 16 16 ** **ECK1.0** : 2 ~~ 2,000 μS/cm Resolution: 1 μS/cm 17 17 ** **ECK10.0** : 20 ~~ 20,000 μS/cm Resolution: 10 μS/cm 24 + 18 18 * **EC Accuracy**: ±1% FS 26 + 19 19 * **Temperature Measure Range**: -20 ~~ 60 °C 28 + 20 20 * **Temperature Accuracy: **±0.5 °C 30 + 21 21 * **IP Rated**: IP68 32 + 22 22 * **Max Pressure**: 0.6MPa 23 23 35 + 24 24 == 1.2 Application for Different Range == 25 25 38 + 26 26 [[image:image-20240714173018-1.png]] 27 27 28 28 ... ... @@ -29,8 +29,12 @@ 29 29 == 1.3 Wiring == 30 30 31 31 45 +[[image:image-20240720172533-1.png||height="347" width="569"]] 46 + 47 + 32 32 == 1.4 Mechinical Drawing == 33 33 50 + 34 34 [[image:image-20240714174241-2.png]] 35 35 36 36 ... ... @@ -37,46 +37,53 @@ 37 37 == 1.5 Installation == 38 38 39 39 40 - Do not powern whileconnectthe cables. Double checkthe wiringbefore power on.57 +**Electrode installation form:** 41 41 42 - InstallationPhoto as reference:59 +A: Side wall installation 43 43 44 - **~Submergedinstallation:**61 +B: Top flange installation 45 45 46 - Thelead wire of the equipment passes through the waterproof pipe, and the3/4 thread onthe top of the equipment is connectedto the 3/4 thread of the waterproof pipe with raw tape. Ensurethat the top of the equipmentandthe equipment wire are not flooded.63 +C: Pipeline bend installation 47 47 48 - [[image:image-20240715181933-4.png||height="281"width="258"]]65 +D: Pipeline bend installation 49 49 50 - **~Pipelineinstallation:**67 +E: Flow-through installation 51 51 52 - Connectthe equipment to thepipelinethrough the 3/4 thread.69 +F: Submerged installation 53 53 54 -[[image:image-2024071 5182122-6.png||height="291" width="408"]]71 +[[image:image-20240718190121-1.png||height="350" width="520"]] 55 55 56 -**Sam pling:**73 +**Several common installation methods of electrodes** 57 57 58 - Takerepresentativewatersamplesaccordingto samplingrequirements.Ifitis inconvenienttake samples, youcan also put the electrodeintothesolution to betested andreadtheoutput data. After a periodof time,take out the electrodeandcleanit.75 +When installing the sensor on site, you should strictly follow the correct installation method shown in the following picture. Incorrect installation method will cause data deviation. 59 59 60 - **Measurethe pHofthewatersample:**77 +A. Several common incorrect installation methods 61 61 62 - First rinse the electrode with distilled water, then rinse it with the water sample, thenimmerse theelectrodein the sample, carefully shakethetest cup or stir it to accelerate the electrode balance, letit stand, and record the pH value when the reading is stable.79 +[[image:image-20240718190204-2.png||height="262" width="487"]] 63 63 81 +**Error cause:** The electrode joint is too long, the extension part is too short, the sensor is easy to form a dead cavity, resulting in measurement error. 64 64 65 - == 1.6 Maintain ==83 +[[image:image-20240718190221-3.png||height="292" width="500"]] 66 66 85 +**Error cause: **Measurement error or instability may occur due to water flow not being able to fill the pipe or air accumulation at high altitudes. 67 67 68 -* The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself. Contact us as soon as possible! 69 -* There is an appropriate amount of soaking solution in the protective bottle at the front end of the electrode. The electrode head is soaked in it to keep the glass bulb and the liquid junction activated. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use. 70 -* Preparation of electrode soaking solution: Take a packet of PH4.00 buffer, dissolve it in 250 ml of pure water, and soak it in 3M potassium chloride solution. The preparation is as follows: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water. 71 -* The glass bulb at the front end of the electrode cannot come into contact with hard objects. Any damage and scratches will make the electrode ineffective. 72 -* Before measurement, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response. 73 -* The electrode should be cleaned with deionized water before and after measurement to ensure accuracy. 74 -* After long-term use, the pH electrode will become passivated, which is characterized by a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the bulb at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours. If the pH electrode is seriously passivated and soaking in 0.1M hydrochloric acid has no effect, the pH electrode bulb can be soaked in 4% HF (hydrofluoric acid) for 3-5 seconds, washed with pure water, and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance. 75 -* Glass bulb contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant. 76 -* ((( 77 -The equipment should be calibrated before each use. For long-term use, it is recommended to calibrate once every 3 months. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time. 78 -))) 87 +B. Correct installation method 79 79 89 +[[image:image-20240718190249-4.png||height="287" width="515"]] 90 + 91 + 92 +== 1.6 Maintenance == 93 + 94 + 95 +* The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible. 96 + 97 +* If the electrode is not used for a long time, it can generally be stored in a dry place, but it must be placed (stored) in distilled water for several hours before use to activate the electrode. Electrodes that are frequently used can be placed (stored) in distilled water. 98 + 99 +* Cleaning of conductivity electrodes: Organic stains on the electrode can be cleaned with warm water containing detergent, or with alcohol. Calcium and magnesium precipitates are best cleaned with 10% citric acid. The electrode plate or pole can only be cleaned by chemical methods or by shaking in water. Wiping the electrode plate will damage the coating (platinum black) on the electrode surface. 100 + 101 +* The equipment should be calibrated before each use. It is recommended to calibrate it every 3 months for long-term use. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). 102 + 103 + 80 80 == 1.7 RS485 Commands == 81 81 82 82 ... ... @@ -86,71 +86,100 @@ 86 86 87 87 === 1.7.1 Query address === 88 88 89 -send 90 90 91 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 92 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 93 -|(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4 114 +**send:** 94 94 116 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 117 +|=(% style="width: 74.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity low|=(% style="width: 59.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 59.75px;background-color:#4F81BD;color:white" %)CRC16 high 118 +|(% style="width:99px" %)0XFE |(% style="width:72px" %)0X03|(% style="width:50px" %)0X00|(% style="width:42px" %)0X50|(% style="width:42px" %)0X00|(% style="width:42px" %)0X00|(% style="width:56px" %)0X51|(% style="width:56px" %)0XD4 119 + 95 95 If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query. 96 96 97 97 98 -response 123 +**response:** 99 99 100 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:5 61.333px" %)101 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width:50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high102 -|(% style="width:99px" %)0X1|(% style="width:112px" %)0X3|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0 125 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %) 126 +|=(% style="width: 100px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 110px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 127 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0 103 103 129 + 104 104 === 1.7.2 Change address === 105 105 132 + 106 106 For example: Change the address of the sensor with address 1 to 2, master → slave 107 107 108 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width: 676.25px" %)109 -|=(% style="width: 5 0px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width:1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high110 -|(% style="width: 99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A135 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 136 +|=(% style="width: 74.75px; background-color: rgb(79, 129, 189); color: white;" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 137 +|(% style="width:67px" %)0X01|(% style="width:76px" %)0X06|(% style="width:60px" %)0X00|(% style="width:50px" %)0X50|(% style="width:50px" %)0X00|(% style="width:50px" %)0X02|(% style="width:57px" %)0X08|(% style="width:56px" %)0X1A 111 111 112 112 If the sensor receives correctly, the data is returned along the original path. 113 -Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query. 114 114 141 +(% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.** 115 115 143 + 116 116 === 1.7.3 Modify intercept === 117 117 118 118 119 -send 147 +**send:** 120 120 121 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width: 676.25px" %)122 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width:50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width:50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width:50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width:50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width:1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width:50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width:50px;background-color:#4F81BD;color:white" %)CRC16 high123 -|(% style="width: 99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X23|(% style="width:85px" %)0X00|(% style="width:1px" %)0X01|(% style="width:1px" %)0XFA|(% style="width:1px" %)(((124 -0X 97149 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %) 150 +|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 high 151 +|(% style="width:64px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X23|(% style="width:85px" %)0X00|(% style="width:1px" %)0X01|(% style="width:1px" %)0XF8|(% style="width:1px" %)((( 152 +0X07 125 125 ))) 126 126 127 127 Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command. 128 128 129 -response 157 +**response:** 130 130 131 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width: 676.25px" %)132 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width:50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width:50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width:50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width:50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width:1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width:50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width:50px;background-color:#4F81BD;color:white" %)CRC16 high159 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %) 160 +|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 high 133 133 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)((( 134 134 0X02 135 -)))|(% style="width:126px" %)0X00|(% style="width:85px" %)0X00|(% style="width:1px" %)0X0A|(% style="width:1px" %)0X 0A|(% style="width:1px" %)(((136 -0X E5163 +)))|(% style="width:126px" %)0X00|(% style="width:85px" %)0X00|(% style="width:1px" %)0X0A|(% style="width:1px" %)0X38|(% style="width:1px" %)((( 164 +0X8F 137 137 ))) 138 138 139 139 140 140 === 1.7.4 Query data === 141 141 170 + 171 +Query the data (EC,temperature) of the sensor (address 11), host → slave 172 + 173 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 174 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 175 +|(% style="width:99px" %)0X11|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XC6|(% style="width:56px" %)0X9B 176 + 177 +If the sensor receives correctly, the following data will be returned, slave → host 178 + 179 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 180 +|=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 181 +|(% style="width:99px" %)0X11|(% style="width:72px" %)0X03|(% style="width:68px" %)0X04|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X01|(% style="width:56px" %)0X64|(% style="width:56px" %)0X8B|(% style="width:56px" %)0XD0 182 + 142 142 The address of the EC K10 sensor is 11 143 143 144 144 The query data command is 11 03 00 00 00 02 C6 9B 145 145 146 -For example, the returned data is 11 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 8B D0. 02 AE is converted to decimal 686, K=10, EC: 6860uS/cm 187 +**For example**, the returned data is 11 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 8B D0. 02 AE is converted to decimal 686, K=10, EC: 6860uS/cm,temperature: 35.6℃ Convert the returned data to decimal and divide by 10. 147 147 148 148 190 +Query the data (EC,temperature) of the sensor (address 11), host → slave 191 + 192 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 193 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 194 +|(% style="width:99px" %)0X12|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XC6|(% style="width:56px" %)0XA8 195 + 196 +If the sensor receives correctly, the following data will be returned, slave → host 197 + 198 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 199 +|=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 200 +|(% style="width:99px" %)0X12|(% style="width:72px" %)0X03|(% style="width:68px" %)0X04|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X01|(% style="width:56px" %)0X64|(% style="width:56px" %)0XB8|(% style="width:56px" %)0XD0 201 + 149 149 The address of the EC K1 sensor is 12 150 150 151 151 The query data command is 12 03 00 00 00 02 C6 A8 152 152 153 -For example, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686, K=1, EC: 686uS/cm 206 +**For example**, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686, K=1, EC: 686uS/cm,temperature: 35.6℃ Convert the returned data to decimal and divide by 10. 154 154 155 155 156 156 === 1.7.5 Calibration Method === ... ... @@ -158,60 +158,213 @@ 158 158 159 159 This device uses one-point calibration, and you need to prepare a known E standard solution. When mileage K=1, 1~~2000 uses 1413μS/cm standard solution, and when mileage K=10, 10~~20000 uses 12.88mS/cm standard solution. 160 160 161 -The calibration steps are as follows: 214 +(% style="color:blue" %)**The calibration steps are as follows:** 215 + 162 162 (1) Place the electrode in distilled water and clean it. When mileage 1~~2000 uses 1413μS/cm standard solution, enter the following calibration command after the data is stable. 163 163 164 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width: 676.25px" %)165 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width:1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width:139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high218 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 219 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high 166 166 |(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)((( 167 167 0X00 168 - 169 169 0X00 170 - 171 171 0X37 172 - 173 173 0X32 174 174 )))|(% style="width:1px" %)0XBD|(% style="width:1px" %)0XFC 175 175 176 176 1413*10 gives 0X00003732 177 177 178 -response 229 +**response:** 179 179 180 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width: 676.25px" %)181 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width:50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width:50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width:50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width:50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width:1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width:50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width:50px;background-color:#4F81BD;color:white" %)CRC16 high231 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 232 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high 182 182 |(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XA2|(% style="width:1px" %)0XA0 183 183 184 184 (2) Place the electrode in distilled water to clean it. Use 12.88mS/cm standard solution for the range of 10~~20000. After the data is stable, enter the following calibration command 185 185 186 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width: 676.25px" %)187 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width:1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width:139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high237 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 238 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high 188 188 |(% style="width:99px" %)0X11|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)((( 189 189 0X00 190 - 191 191 0X01 192 - 193 193 0XF7 194 - 195 195 0X20 196 196 )))|(% style="width:1px" %)0X33|(% style="width:1px" %)0X75 197 197 198 198 12880*10 gives 0X01F720 199 199 200 -response 248 +**response:** 201 201 202 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width: 676.25px" %)203 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width:50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width:50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width:50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width:50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width:1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width:50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width:50px;background-color:#4F81BD;color:white" %)CRC16 high250 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 251 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high 204 204 |(% style="width:99px" %)0X11|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XEB|(% style="width:1px" %)0X50 205 205 206 206 207 - 208 208 = 2. DR-PH01 Water PH Sensor = 209 209 210 -== 2. 7RS485 Commands==257 +== 2.1 Specification == 211 211 212 212 213 - Theaddressof the pHsensor is 10260 +* **Power Input**: DC7~~30 214 214 262 +* **Power Consumption** : < 0.5W 263 + 264 +* **Interface**: RS485. 9600 Baud Rate 265 + 266 +* **pH measurement range**: 0~~14.00pH; resolution: 0.01pH 267 + 268 +* **pH measurement error**: ±0.15pH 269 + 270 +* **Repeatability error**: ±0.02pH 271 + 272 +* **Temperature measurement range**:0~~60°C; resolution: 0.1°C (set temperature for manual temperature compensation, default 25°C) 273 + 274 +* **Temperature measurement error**: ±0.5°C 275 + 276 +* **Temperature Measure Range**: -20 ~~ 60 °C 277 + 278 +* **Temperature Accuracy: **±0.5 °C 279 + 280 +* **IP Rated**: IP68 281 + 282 +* **Max Pressure**: 0.6MPa 283 + 284 + 285 +== 2.2 Wiring == 286 + 287 + 288 +[[image:image-20240720172548-2.png||height="348" width="571"]] 289 + 290 + 291 +== 2.3 Mechinical Drawing == 292 + 293 + 294 +[[image:image-20240714174241-2.png]] 295 + 296 + 297 +== 2.4 Installation Notice == 298 + 299 + 300 +Do not power on while connect the cables. Double check the wiring before power on. 301 + 302 +Installation Photo as reference: 303 + 304 +(% style="color:blue" %)**Submerged installation:** 305 + 306 +The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded. 307 + 308 +[[image:image-20240718191348-6.png]] 309 + 310 +(% style="color:blue" %)**Pipeline installation:** 311 + 312 +Connect the equipment to the pipeline through the 3/4 thread. 313 + 314 +[[image:image-20240718191336-5.png||height="239" width="326"]] 315 + 316 +(% style="color:blue" %)**Sampling:** 317 + 318 +Take representative water samples according to sampling requirements. If it is inconvenient to take samples, you can also put the electrode into the solution to be tested and read the output data. After a period of time, take out the electrode and clean it. 319 + 320 +(% style="color:blue" %)**Measure the pH of the water sample:** 321 + 322 +First rinse the electrode with distilled water, then rinse it with the water sample, then immerse the electrode in the sample, carefully shake the test cup or stir it to accelerate the electrode balance, let it stand, and record the pH value when the reading is stable. 323 + 324 + 325 +== 2.5 Maintenance == 326 + 327 + 328 +* The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself. Contact us as soon as possible! 329 + 330 +* There is an appropriate amount of soaking solution in the protective bottle at the front end of the electrode. The electrode head is soaked in it to keep the glass bulb and the liquid junction activated. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use. 331 + 332 +* Preparation of electrode soaking solution: Take a packet of PH4.00 buffer, dissolve it in 250 ml of pure water, and soak it in 3M potassium chloride solution. The preparation is as follows: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water. 333 + 334 +* The glass bulb at the front end of the electrode cannot come into contact with hard objects. Any damage and scratches will make the electrode ineffective. 335 + 336 +* Before measurement, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response. 337 + 338 +* The electrode should be cleaned with deionized water before and after measurement to ensure accuracy. 339 + 340 +* After long-term use, the pH electrode will become passivated, which is characterized by a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the bulb at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours. If the pH electrode is seriously passivated and soaking in 0.1M hydrochloric acid has no effect, the pH electrode bulb can be soaked in 4% HF (hydrofluoric acid) for 3-5 seconds, washed with pure water, and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance. 341 + 342 +* Glass bulb contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant. 343 + 344 +* The equipment should be calibrated before each use. For long-term use, it is recommended to calibrate once every 3 months. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time. 345 + 346 + 347 +== 2.6 RS485 Commands == 348 + 349 + 350 +RS485 signaldefault address 0x10 351 +Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1 352 + 353 + 354 +=== 2.6.1 Query address === 355 + 356 + 357 +**send:** 358 + 359 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 360 +|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high 361 +|(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4 362 + 363 +**response:** 364 + 365 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 366 +|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 367 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0 368 + 369 +=== 2.6.2 Change address === 370 + 371 + 372 +For example: Change the address of the sensor with address 1 to 2, master → slave 373 + 374 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 375 +|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high 376 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A 377 + 378 +If the sensor receives correctly, the data is returned along the original path. 379 + 380 +(% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.** 381 + 382 + 383 +=== 2.6.3 Modify intercept === 384 + 385 + 386 +**send:** 387 + 388 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 389 +|=(% style="width: 44.75px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Register Length high|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Register Length low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 390 +|(% style="width:71px" %)0X10|(% style="width:74px" %)0X06|(% style="width:67px" %)0X00|(% style="width:68px" %)0X10|(% style="width:69px" %)0X00|(% style="width:66px" %)0X64|(% style="width:57px" %)0X8A|(% style="width:57px" %)((( 391 +0XA5 392 +))) 393 + 394 +Change the intercept of the sensor at address 10 to 1 (default is 0). You need to pass the intercept 1*100 =100 into the command 0x006. 395 + 396 +**response:** 397 + 398 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 399 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high 400 +|(% style="width:99px" %)0X10|(% style="width:112px" %)0X06|(% style="width:135px" %)((( 401 +0X00 402 +)))|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)((( 403 +0XA5 404 +))) 405 + 406 +=== 2.6.4 Query data === 407 + 408 + 409 +Query the data (PH) of the sensor (address 10), host → slave 410 + 411 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 412 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 413 +|(% style="width:99px" %)0X10|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X4B 414 + 415 +If the sensor receives correctly, the following data will be returned, slave → host 416 + 417 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 418 +|=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 419 +|(% style="width:99px" %)0X10|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0XC4|(% style="width:56px" %)0X9B 420 + 215 215 The query data command is 10 03 00 00 00 01 87 4B. After the query, 7 bytes will be returned. 216 216 217 217 For example, the returned data is 10 03 02 (% style="color:red" %)**02 AE**(%%) C4 9B. ... ... @@ -219,13 +219,201 @@ 219 219 02 AE is the pH value, which is converted into decimal to get 686, and then two decimal places are added to get the actual value. 02 AE means the current pH value is 6.86. 220 220 221 221 428 +=== 2.6.5 Calibration Method === 429 + 430 + 431 +This device uses three-point calibration, and three known pH standard solutions need to be prepared. 432 + 433 +(% style="color:blue" %)**The calibration steps are as follows:** 434 + 435 +(1) Place the electrode in distilled water to clean it, and then place it in 9.18 standard buffer solution. After the data stabilizes, enter the following calibration command, and the 9.18 calibration is completed. 436 + 437 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 438 +|=(% style="width: 61px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 439 +|(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)((( 440 +0X00 441 +)))|(% style="width:68px" %)0X20|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X8A|(% style="width:55px" %)((( 442 +0XF1 443 +))) 444 + 445 +(2) Wash the electrode in distilled water and place it in 6.86 standard buffer. After the data stabilizes, enter the following calibration command. The 6.86 calibration is completed. 446 + 447 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 448 +|=(% style="width: 61px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 449 +|(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)((( 450 +0X00 451 +)))|(% style="width:68px" %)0X21|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0XDB|(% style="width:55px" %)((( 452 +0X31 453 +))) 454 + 455 +(3) Wash the electrode in distilled water and place it in 4.01 standard buffer. After the data stabilizes, enter the following calibration command, and the 4.00 calibration is completed. 456 + 457 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 458 +|=(% style="width: 61px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 459 +|(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)((( 460 +0X00 461 +)))|(% style="width:68px" %)0X22|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X2B|(% style="width:55px" %)((( 462 +0X31 463 +))) 464 + 465 +After the above three steps are completed, the calibration is successful. The advantage of three-point calibration compared to two-point calibration is that the electrode is calibrated separately in the acid and alkali parts, thereby achieving accurate calibration of the full range and making the measurement data more accurate. 466 + 467 + 222 222 = 3. DR-ORP1 Water ORP Sensor = 223 223 224 -== 3. 7RS485 Commands==470 +== 3.1 Specification == 225 225 226 226 227 - Theaddressof theORP sensoris 13473 +* **Power Input**: DC7~~30 228 228 475 +* **Measuring range**:** **-1999~~1999mV 476 + 477 +* **Resolution**: 1mV 478 + 479 +* **Interface**: RS485. 9600 Baud Rate 480 + 481 +* **Measurement error**: ±3mV 482 + 483 +* **Stability**: ≤2mv/24 hours 484 + 485 +* **Equipment working conditions**: Ambient temperature: 0-60°C Relative humidity: <85%RH 486 + 487 +* **IP Rated**: IP68 488 + 489 +* **Max Pressure**: 0.6MPa 490 + 491 + 492 +== 3.2 Wiring == 493 + 494 + 495 +[[image:image-20240720172620-3.png||height="378" width="620"]] 496 + 497 + 498 +== 3.3 Mechinical Drawing == 499 + 500 + 501 +[[image:image-20240714174241-2.png]] 502 + 503 + 504 +== 3.4 Installation Notice == 505 + 506 + 507 +Do not power on while connect the cables. Double check the wiring before power on. 508 + 509 +**Installation Photo as reference:** 510 + 511 +(% style="color:blue" %)** Submerged installation:** 512 + 513 +The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded. 514 + 515 +[[image:image-20240718191348-6.png]] 516 + 517 +(% style="color:blue" %)** Pipeline installation:** 518 + 519 +Connect the equipment to the pipeline through the 3/4 thread. 520 + 521 +[[image:image-20240718191336-5.png||height="239" width="326"]] 522 + 523 + 524 +== 3.5 Maintenance == 525 + 526 + 527 +(1) The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible. 528 + 529 +(2) In general, ORP electrodes do not need to be calibrated and can be used directly. When there is doubt about the quality and test results of the ORP electrode, the electrode potential can be checked with an ORP standard solution to determine whether the ORP electrode meets the measurement requirements, and the electrode can be recalibrated or replaced with a new ORP electrode. The frequency of calibration or inspection of the measuring electrode depends on different application conditions (the degree of dirt in the application, the deposition of chemical substances, etc.). 530 + 531 +(3) There is an appropriate soaking solution in the protective bottle at the front end of the electrode, and the electrode head is soaked in it to ensure the activation of the platinum sheet and the liquid junction. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use. 532 + 533 +(4) Preparation of electrode soaking solution: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water to prepare a 3.3M potassium chloride solution. 534 + 535 +(5) Before measuring, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response. 536 + 537 +(6) The electrode should be cleaned with deionized water before and after the measurement to ensure the measurement accuracy. 538 + 539 +(7) After long-term use, the ORP electrode will be passivated, which is manifested as a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the platinum sheet at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance. 540 + 541 +(8) Electrode contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant. If the platinum of the electrode is severely contaminated and an oxide film is formed, toothpaste can be applied to the platinum surface and then gently scrubbed to restore the platinum's luster. 542 + 543 +(9) The equipment should be calibrated before each use. It is recommended to calibrate once every 3 months for long-term use. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time. 544 + 545 + 546 +== 3.6 RS485 Commands == 547 + 548 + 549 +RS485 signaldefault address 0x13 550 +Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1 551 + 552 + 553 +=== 3.6.1 Query address === 554 + 555 + 556 +**send:** 557 + 558 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 559 +|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high 560 +|(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4 561 + 562 + 563 +**response:** 564 + 565 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 566 +|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 567 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0 568 + 569 + 570 +=== 3.6.2 Change address === 571 + 572 + 573 +For example: Change the address of the sensor with address 1 to 2, master → slave 574 + 575 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 576 +|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high 577 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A 578 + 579 +If the sensor receives correctly, the data is returned along the original path. 580 + 581 +(% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.** 582 + 583 + 584 +=== 3.6.3 Modify intercept === 585 + 586 + 587 +**send:** 588 + 589 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 590 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register Length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register Length low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high 591 +|(% style="width:99px" %)0X13|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)((( 592 +0X96 593 +))) 594 + 595 +Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command. 596 + 597 +**response:** 598 + 599 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 600 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width:68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high 601 +|(% style="width:99px" %)0X13|(% style="width:112px" %)0X06|(% style="width:135px" %)((( 602 +0X00 603 +)))|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)((( 604 +0X96 605 +))) 606 + 607 + 608 +=== 3.6.4 Query data === 609 + 610 + 611 +Query the data (ORP) of the sensor (address 13), host → slave 612 + 613 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 614 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 615 +|(% style="width:99px" %)0X13|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X78 616 + 617 +If the sensor receives correctly, the following data will be returned, slave → host 618 + 619 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 620 +|=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 621 +|(% style="width:99px" %)0X13|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X80|(% style="width:56px" %)0X9B 622 + 229 229 The query data command is 13 03 00 00 00 01 87 78 230 230 231 231 For example, the returned data is 13 03 02 (% style="color:red" %)**02 AE**(%%) 80 9B. ... ... @@ -233,31 +233,267 @@ 233 233 02 AE is the ORP value, converted to decimal, the actual value is 686, 02 AE means the current ORP value is 686mV 234 234 235 235 630 +=== 3.6.5 Calibration Method === 631 + 632 + 633 +This device uses two-point calibration, and two known ORP standard solutions need to be prepared. The calibration steps are as follows: 634 +(1) Place the electrode in distilled water to clean it, and then place it in 86mV standard buffer solution. After the data stabilizes, 635 +enter the following calibration command, and the 86mV point calibration is completed; 636 + 637 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 638 +|=(% style="width: 42px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 639 +|(% style="width:64px" %)0X13|(% style="width:72px" %)0X06|(% style="width:66px" %)((( 640 +0X00 641 +)))|(% style="width:68px" %)0X24|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0XCB|(% style="width:55px" %)((( 642 +0X03 643 +))) 644 + 645 +Wash the electrode in distilled water and place it in 256mV standard buffer. After the data is stable, enter the following calibration command to complete the 256mV point calibration. 646 + 647 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 648 +|=(% style="width: 42px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 649 +|(% style="width:68px" %)0X13|(% style="width:72px" %)0X06|(% style="width:66px" %)((( 650 +0X00 651 +)))|(% style="width:68px" %)0X25|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X9A|(% style="width:55px" %)((( 652 +0XC3 653 +))) 654 + 236 236 = 4. DR-DO1 Dissolved Oxygen Sensor = 237 237 238 -== 4. 7RS485 Commands==657 +== 4.1 Specification == 239 239 240 240 241 - Theaddress of the dissolvedoxygensensoris 14660 +* **Measuring range**: 0-20mg/L, 0-50°C 242 242 243 - Thequery datacommandis 14 03 00 14 00 01C6 CB662 +* **Accuracy**: 3%, ±0.5°C 244 244 664 +* **Resolution**: 0.01 mg/L, 0.01°C 665 + 666 +* **Maximum operating pressure**: 6 bar 667 + 668 +* **Output signal**: A: 4-20mA (current loop)B: RS485 (standard Modbus-RTU protocol, device default address: 01) 669 + 670 +* **Power supply voltage**: 5-24V DC 671 + 672 +* **Working environment**: temperature 0-60°C; humidity <95%RH 673 + 674 +* **Power consumption**: ≤0.5W 675 + 676 +== 4.2 wiring == 677 + 678 + 679 +[[image:image-20240720172632-4.png||height="390" width="640"]] 680 + 681 + 682 +== 4.3 Impedance requirements for current signals == 683 + 684 + 685 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:420px" %) 686 +|=(% style="width: 140px" %)Supply Voltage|=(% style="width: 70px;" %)9V|=(% style="width: 70px;" %)**12V**|=(% style="width: 70px;" %)**20V**|=(% style="width: 70px;" %)**24V** 687 +|(% style="width:137px" %)**Max Impedance**|(% style="width:70px" %)**<250Ω**|(% style="width:68px" %)**<400Ω**|(% style="width:68px" %)**<500Ω**|(% style="width:70px" %)**<900Ω** 688 + 689 +[[image:image-20240718195414-8.png||height="100" width="575"]] 690 + 691 + 692 +== 4.4 Mechinical Drawing == 693 + 694 + 695 +[[image:image-20240719155308-1.png||height="226" width="527"]] 696 + 697 + 698 +== 4.5 Instructions for use and maintenance == 699 + 700 + 701 +* It can be directly put into water without adding a protective tube, ensuring the long-term stability, reliability and accuracy of the sensor. 702 + 703 +* If the water conditions are complex and you want accurate data, you need to wipe the sensor probe frequently. 704 + 705 + 706 +== 4.6 RS485 Commands == 707 + 708 + 709 +RS485 signaldefault address 0x14 710 +Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1 711 + 712 + 713 +=== 4.6.1 Query address === 714 + 715 + 716 +**send:** 717 + 718 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 719 +|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Register address high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Register address low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 720 +|(% style="width:99px" %)0XFF|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XF1|(% style="width:56px" %)0XD7 721 + 722 +If you forget the original address of the sensor, you can use the broadcast address 0XFF instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query. 723 + 724 + 725 +**response:** 726 + 727 +Register 0 data high and register 0 data low indicate the actual address of the sensor: 1 728 +Register 1 data high and register 1 data low indicate the sensor version 729 + 730 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 731 +|=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 732 +|(% style="width:99px" %)0XFF|(% style="width:72px" %)0X03|(% style="width:64px" %)0X04|(% style="width:68px" %)0X00|(% style="width:70px" %)0X01|(% style="width:72px" %)0X00|(% style="width:56px" %)0X00|(% style="width:56px" %)0XB4|(% style="width:56px" %)0X3C 733 + 734 +=== 4.6.2 Change address === 735 + 736 + 737 +For example: Change the address of the sensor with address 1 to 2(address range: 1-119), master → slave 738 + 739 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 740 +|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Original address|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Start address high|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Start address low|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Sensor version|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Sensor version|=(% style="width: 39px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high|=(% style="width: 39px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low 741 +|(% style="width:67px" %)0X01|(% style="width:71px" %)0X10|(% style="width:65px" %)0X00|(% style="width:65px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:53px" %)0X04|(% style="width:53px" %)0X00|(% style="width:72px" %)0X02|(% style="width:53px" %)0X00|(% style="width:53px" %)0X00|(% style="width:56px" %)0XD2|(% style="width:53px" %)0X10 742 + 743 +**response:** 744 + 745 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 746 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 747 +|(% style="width:99px" %)0X01|(% style="width:72px" %)0X10|(% style="width:64px" %)0X00|(% style="width:68px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0X61|(% style="width:56px" %)0XCA 748 + 749 + 750 +=== 4.6.3 Query data === 751 + 752 + 753 +Query the data (dissolved oxygen) of the sensor (address 14), host → slave 754 + 755 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 756 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 757 +|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X14|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0XC6|(% style="width:56px" %)0XCB 758 + 759 +If the sensor receives correctly, the following data will be returned, slave → host 760 + 761 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 762 +|=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 763 +|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X03|(% style="width:72px" %)0X78|(% style="width:56px" %)0XB5|(% style="width:56px" %)0X55 764 + 245 245 After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**03 78**(%%) B5 55. 03 78 is the value of dissolved oxygen. 246 246 247 247 Converted to decimal, it is 888. Add two decimal places to get the actual value. 03 78 means the current dissolved oxygen is 8.88mg/L 248 248 249 249 770 +Query the data (temperature) of the sensor (address 14), host → slave 771 + 772 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 773 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 774 +|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X11|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0XD6|(% style="width:56px" %)0XCA 775 + 776 +If the sensor receives correctly, the following data will be returned, slave → host 777 + 778 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 779 +|=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 780 +|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X09|(% style="width:72px" %)0XA4|(% style="width:56px" %)0XB2|(% style="width:56px" %)0X6C 781 + 782 +After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**09 A4**(%%) B2 6C. 03 78 is the value of dissolved oxygen temperature. 783 + 784 +Converted to decimal, it is 2468. Add two decimal places to get the actual value. 09 A4 means the current dissolved oxygen temperature is 24.68°C 785 + 786 + 250 250 = 5. DR-TS1 Water Turbidity Sensor = 251 251 252 -== 5. 7RS485 Commands==789 +== 5.1 Specification == 253 253 254 254 255 - Theaddress of the dissolvedoxygensensor is15792 +* **Measuring range**: 0.11000.0NTU 256 256 794 +* **Accuracy**: ±5% 795 + 796 +* **Resolution**: 0.1NTU 797 + 798 +* **Stability**: ≤3mV/24 hours 799 + 800 +* **Output signal**: A: 420 mA (current loop)B: RS485 (standard Modbus-RTU protocol, device default address: 01) 801 + 802 +* **Power supply voltage**: 524V DC (when output signal is RS485)1224V DC (when output signal is 420mA) 803 + 804 +* **Working environment**: temperature 060°C; humidity ≤ 95%RH 805 + 806 +* **Power consumption**: ≤ 0.5W 807 + 808 +== 5.2 wiring == 809 + 810 + 811 +[[image:image-20240720172640-5.png||height="387" width="635"]] 812 + 813 + 814 +== 5.3 Impedance requirements for current signals == 815 + 816 + 817 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:420px" %) 818 +|=(% style="width: 140px" %)Supply Voltage|=(% style="width: 70px;" %)9V|=(% style="width: 70px;" %)**12V**|=(% style="width: 70px;" %)**20V**|=(% style="width: 70px;" %)**24V** 819 +|(% style="width:137px" %)**Max Impedance**|(% style="width:70px" %)**<250Ω**|(% style="width:68px" %)**<400Ω**|(% style="width:68px" %)**<500Ω**|(% style="width:70px" %)**<900Ω** 820 + 821 + 822 +== 5.4 Mechinical Drawing == 823 + 824 + 825 +[[image:image-20240718195058-7.png||height="305" width="593"]] 826 + 827 + 828 +== 5.5 Instructions for use and maintenance == 829 + 830 + 831 +* It can be directly put into water without adding a protective tube, ensuring the long-term stability, reliability and accuracy of the sensor. 832 + 833 +* If the water conditions are complex and you want accurate data, you need to wipe the sensor probe frequently. 834 + 835 +== 5.6 RS485 Commands == 836 + 837 + 838 +RS485 signaldefault address 0x15 839 +Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1 840 + 841 + 842 +=== 5.6.1 Query address === 843 + 844 + 845 +**send:** 846 + 847 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 848 +|=(% style="width: 80.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 54.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 58.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 849 +|(% style="width:99px" %)0XFE |(% style="width:64.75px" %)0X03|(% style="width:64px" %)0X00|(% style="width:64.75px" %)0X50|(% style="width:70px" %)0X00|(% style="width:72px" %)0X00|(% style="width:56px" %)0X51|(% style="width:56px" %)0XD4 850 + 851 +If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query. 852 + 853 + 854 +**response:** 855 + 856 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 857 +|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 858 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0 859 + 860 +=== 5.6.2 Change address === 861 + 862 + 863 +For example: Change the address of the sensor with address 1 to 2, master → slave 864 + 865 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 866 +|=(% style="width: 80.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 54.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 58.75px;background-color:#4F81BD;color:white" %)CRC16 high 867 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A 868 + 869 +If the sensor receives correctly, the data is returned along the original path. 870 + 871 +(% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.** 872 + 873 + 874 +=== 5.6.3 Query data === 875 + 876 + 877 +Query the data (turbidity) of the sensor (address 15), host → slave 878 + 879 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 880 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 881 +|(% style="width:99px" %)0X15|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X1E 882 + 883 +If the sensor receives correctly, the following data will be returned, slave → host 884 + 885 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 886 +|=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 887 +|(% style="width:99px" %)0X15|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0X9A|(% style="width:56px" %)0X09|(% style="width:56px" %)0X4C 888 + 257 257 The query data command is 15 03 00 00 00 01 87 1E 258 258 259 259 For example, the returned data is 15 03 02 (% style="color:red" %)**02 9A**(%%) 09 4C 260 260 261 261 02 9A is the turbidity value, converted to decimal, it is 666, and then divided by 10, the actual value is 66.6, 02 9A means the current turbidity value is 66.6 NTU 262 - 263 -
- image-20240718190121-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +281.1 KB - Content
- image-20240718190204-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +111.8 KB - Content
- image-20240718190221-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +140.2 KB - Content
- image-20240718190249-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +111.6 KB - Content
- image-20240718191336-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +46.6 KB - Content
- image-20240718191348-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +91.2 KB - Content
- image-20240718195058-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +97.6 KB - Content
- image-20240718195414-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +13.5 KB - Content
- image-20240719155308-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +57.4 KB - Content
- image-20240720172533-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.5 MB - Content
- image-20240720172548-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.5 MB - Content
- image-20240720172620-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.5 MB - Content
- image-20240720172632-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.5 MB - Content
- image-20240720172640-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.5 MB - Content