Changes for page Water Quality Sensors
Last modified by Karry Zhuang on 2025/07/18 16:37
From version 15.2
edited by Karry Zhuang
on 2024/07/18 18:35
on 2024/07/18 18:35
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 14 added, 0 removed)
- image-20240718190121-1.png
- image-20240718190204-2.png
- image-20240718190221-3.png
- image-20240718190249-4.png
- image-20240718191336-5.png
- image-20240718191348-6.png
- image-20240718195058-7.png
- image-20240718195414-8.png
- image-20240719155308-1.png
- image-20240720172533-1.png
- image-20240720172548-2.png
- image-20240720172620-3.png
- image-20240720172632-4.png
- image-20240720172640-5.png
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. karry1 +XWiki.Xiaoling - Content
-
... ... @@ -3,10 +3,13 @@ 3 3 {{toc/}} 4 4 5 5 6 + 7 + 6 6 = 1. DR-ECK Water EC Probe = 7 7 8 8 == 1.1 Specification: == 9 9 12 + 10 10 * **Power Input**: DC7~~30 11 11 * **Power Consumption** : < 0.5W 12 12 * **Interface**: RS485. 9600 Baud Rate ... ... @@ -21,8 +21,10 @@ 21 21 * **IP Rated**: IP68 22 22 * **Max Pressure**: 0.6MPa 23 23 27 + 24 24 == 1.2 Application for Different Range == 25 25 30 + 26 26 [[image:image-20240714173018-1.png]] 27 27 28 28 ... ... @@ -29,8 +29,12 @@ 29 29 == 1.3 Wiring == 30 30 31 31 37 +[[image:image-20240720172533-1.png||height="347" width="569"]] 38 + 39 + 32 32 == 1.4 Mechinical Drawing == 33 33 42 + 34 34 [[image:image-20240714174241-2.png]] 35 35 36 36 ... ... @@ -37,47 +37,50 @@ 37 37 == 1.5 Installation == 38 38 39 39 40 - Do not powern whileconnectthe cables. Double checkthe wiringbefore power on.49 +**Electrode installation form:** 41 41 42 - InstallationPhoto as reference:51 +A: Side wall installation 43 43 44 - **~Submergedinstallation:**53 +B: Top flange installation 45 45 46 - Thelead wire of the equipment passes through the waterproof pipe, and the3/4 thread onthe top of the equipment is connectedto the 3/4 thread of the waterproof pipe with raw tape. Ensurethat the top of the equipmentandthe equipment wire are not flooded.55 +C: Pipeline bend installation 47 47 48 - [[image:image-20240715181933-4.png||height="281"width="258"]]57 +D: Pipeline bend installation 49 49 50 - **~Pipelineinstallation:**59 +E: Flow-through installation 51 51 52 - Connectthe equipment to thepipelinethrough the 3/4 thread.61 +F: Submerged installation 53 53 54 -[[image:image-2024071 5182122-6.png||height="291" width="408"]]63 +[[image:image-20240718190121-1.png||height="350" width="520"]] 55 55 56 -**Sam pling:**65 +**Several common installation methods of electrodes** 57 57 58 - Takerepresentativewatersamplesaccordingto samplingrequirements.Ifitis inconvenienttake samples, youcan also put the electrodeintothesolution to betested andreadtheoutput data. After a periodof time,take out the electrodeandcleanit.67 +When installing the sensor on site, you should strictly follow the correct installation method shown in the following picture. Incorrect installation method will cause data deviation. 59 59 60 - **Measurethe pHofthewatersample:**69 +A. Several common incorrect installation methods 61 61 62 - First rinse the electrode with distilled water, then rinse it with the water sample, thenimmerse theelectrodein the sample, carefully shakethetest cup or stir it to accelerate the electrode balance, letit stand, and record the pH value when the reading is stable.71 +[[image:image-20240718190204-2.png||height="262" width="487"]] 63 63 73 +**Error cause:** The electrode joint is too long, the extension part is too short, the sensor is easy to form a dead cavity, resulting in measurement error. 64 64 65 - == 1.6 Maintain ==75 +[[image:image-20240718190221-3.png||height="292" width="500"]] 66 66 77 +**Error cause: **Measurement error or instability may occur due to water flow not being able to fill the pipe or air accumulation at high altitudes. 67 67 68 -* The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself. Contact us as soon as possible! 69 -* There is an appropriate amount of soaking solution in the protective bottle at the front end of the electrode. The electrode head is soaked in it to keep the glass bulb and the liquid junction activated. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use. 70 -* Preparation of electrode soaking solution: Take a packet of PH4.00 buffer, dissolve it in 250 ml of pure water, and soak it in 3M potassium chloride solution. The preparation is as follows: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water. 71 -* The glass bulb at the front end of the electrode cannot come into contact with hard objects. Any damage and scratches will make the electrode ineffective. 72 -* Before measurement, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response. 73 -* The electrode should be cleaned with deionized water before and after measurement to ensure accuracy. 74 -* After long-term use, the pH electrode will become passivated, which is characterized by a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the bulb at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours. If the pH electrode is seriously passivated and soaking in 0.1M hydrochloric acid has no effect, the pH electrode bulb can be soaked in 4% HF (hydrofluoric acid) for 3-5 seconds, washed with pure water, and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance. 75 -* Glass bulb contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant. 76 -* ((( 77 -The equipment should be calibrated before each use. For long-term use, it is recommended to calibrate once every 3 months. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time. 78 -))) 79 +B. Correct installation method 79 79 81 +[[image:image-20240718190249-4.png||height="287" width="515"]] 80 80 83 + 84 +== 1.6 Maintenance == 85 + 86 + 87 +* The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible. 88 +* If the electrode is not used for a long time, it can generally be stored in a dry place, but it must be placed (stored) in distilled water for several hours before use to activate the electrode. Electrodes that are frequently used can be placed (stored) in distilled water. 89 +* Cleaning of conductivity electrodes: Organic stains on the electrode can be cleaned with warm water containing detergent, or with alcohol. Calcium and magnesium precipitates are best cleaned with 10% citric acid. The electrode plate or pole can only be cleaned by chemical methods or by shaking in water. Wiping the electrode plate will damage the coating (platinum black) on the electrode surface. 90 +* The equipment should be calibrated before each use. It is recommended to calibrate it every 3 months for long-term use. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). 91 + 92 + 81 81 == 1.7 RS485 Commands == 82 82 83 83 ... ... @@ -85,23 +85,103 @@ 85 85 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1 86 86 87 87 88 -=== 1.7.1 Query data===100 +=== 1.7.1 Query address === 89 89 102 + 103 +**send** 104 + 105 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 106 +|=(% style="width: 74px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 60px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 107 +|(% style="width:99px" %)0XFE |(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:64px" %)0X50|(% style="width:60px" %)0X00|(% style="width:60px" %)0X00|(% style="width:56px" %)0X51|(% style="width:56px" %)0XD4 108 + 109 +If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query. 110 + 111 + 112 +**response** 113 + 114 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %) 115 +|=(% style="width: 100px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 110px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 116 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0 117 + 118 + 119 +=== 1.7.2 Change address === 120 + 121 + 122 +For example: Change the address of the sensor with address 1 to 2, master → slave 123 + 124 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 125 +|=(% style="width: 69px; background-color: rgb(79, 129, 189); color: white;" %)Original address|=(% style="width: 76px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 67px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 73px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 73px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 57px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 126 +|(% style="width:69px" %)0X01|(% style="width:76px" %)0X06|(% style="width:67px" %)0X00|(% style="width:68px" %)0X50|(% style="width:73px" %)0X00|(% style="width:73px" %)0X02|(% style="width:57px" %)0X08|(% style="width:56px" %)0X1A 127 + 128 +If the sensor receives correctly, the data is returned along the original path. 129 +Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query. 130 + 131 + 132 +=== 1.7.3 Modify intercept === 133 + 134 + 135 +send 136 + 137 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 138 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 139 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X23|(% style="width:85px" %)0X00|(% style="width:1px" %)0X01|(% style="width:1px" %)0XF8|(% style="width:1px" %)((( 140 +0X07 141 +))) 142 + 143 +Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command. 144 + 145 +response 146 + 147 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 148 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 149 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)((( 150 +0X02 151 +)))|(% style="width:126px" %)0X00|(% style="width:85px" %)0X00|(% style="width:1px" %)0X0A|(% style="width:1px" %)0X38|(% style="width:1px" %)((( 152 +0X8F 153 +))) 154 + 155 +=== 1.7.4 Query data === 156 + 157 + 158 +Query the data (EC,temperature) of the sensor (address 11), host → slave 159 + 160 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 161 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 162 +|(% style="width:99px" %)0X11|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XC6|(% style="width:56px" %)0X9B 163 + 164 +If the sensor receives correctly, the following data will be returned, slave → host 165 + 166 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 167 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 168 +|(% style="width:99px" %)0X11|(% style="width:72px" %)0X03|(% style="width:68px" %)0X04|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X01|(% style="width:56px" %)0X64|(% style="width:56px" %)0X8B|(% style="width:56px" %)0XD0 169 + 90 90 The address of the EC K10 sensor is 11 91 91 92 92 The query data command is 11 03 00 00 00 02 C6 9B 93 93 94 -For example, the returned data is 11 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 8B D0. 02 AE is converted to decimal 686, K=10, EC: 6860uS/cm 174 +For example, the returned data is 11 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 8B D0. 02 AE is converted to decimal 686, K=10, EC: 6860uS/cm,temperature: 35.6℃ Convert the returned data to decimal and divide by 10. 95 95 96 96 177 +Query the data (EC,temperature) of the sensor (address 11), host → slave 178 + 179 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 180 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 181 +|(% style="width:99px" %)0X12|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XC6|(% style="width:56px" %)0XA8 182 + 183 +If the sensor receives correctly, the following data will be returned, slave → host 184 + 185 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 186 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 187 +|(% style="width:99px" %)0X12|(% style="width:72px" %)0X03|(% style="width:68px" %)0X04|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X01|(% style="width:56px" %)0X64|(% style="width:56px" %)0XB8|(% style="width:56px" %)0XD0 188 + 97 97 The address of the EC K1 sensor is 12 98 98 99 99 The query data command is 12 03 00 00 00 02 C6 A8 100 100 101 -For example, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686, K=1, EC: 686uS/cm. 193 +For example, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686, K=1, EC: 686uS/cm,temperature: 35.6℃ Convert the returned data to decimal and divide by 10. 102 102 103 103 104 -=== 1.7. 2Calibration Method ===196 +=== 1.7.5 Calibration Method === 105 105 106 106 107 107 This device uses one-point calibration, and you need to prepare a known E standard solution. When mileage K=1, 1~~2000 uses 1413μS/cm standard solution, and when mileage K=10, 10~~20000 uses 12.88mS/cm standard solution. ... ... @@ -109,7 +109,7 @@ 109 109 The calibration steps are as follows: 110 110 (1) Place the electrode in distilled water and clean it. When mileage 1~~2000 uses 1413μS/cm standard solution, enter the following calibration command after the data is stable. 111 111 112 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width: 676.25px" %)204 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 113 113 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 114 114 |(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)((( 115 115 0X00 ... ... @@ -123,16 +123,15 @@ 123 123 124 124 1413*10 gives 0X00003732 125 125 126 - Return218 +response 127 127 128 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width: 676.25px" %)220 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 129 129 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 130 130 |(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XA2|(% style="width:1px" %)0XA0 131 131 132 - 133 133 (2) Place the electrode in distilled water to clean it. Use 12.88mS/cm standard solution for the range of 10~~20000. After the data is stable, enter the following calibration command 134 134 135 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width: 676.25px" %)226 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 136 136 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 137 137 |(% style="width:99px" %)0X11|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)((( 138 138 0X00 ... ... @@ -146,16 +146,91 @@ 146 146 147 147 12880*10 gives 0X01F720 148 148 149 - Return240 +response 150 150 151 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width: 676.25px" %)242 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 152 152 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 153 153 |(% style="width:99px" %)0X11|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XEB|(% style="width:1px" %)0X50 154 154 155 155 156 -=== 1.7.3 Query address === 157 157 248 += 2. DR-PH01 Water PH Sensor = 158 158 250 +== 2.1 Specification == 251 + 252 + 253 +* **Power Input**: DC7~~30 254 +* **Power Consumption** : < 0.5W 255 +* **Interface**: RS485. 9600 Baud Rate 256 +* **pH measurement range**: 0~~14.00pH; resolution: 0.01pH 257 +* **pH measurement error**:±0.15pH 258 +* **Repeatability error**:±0.02pH 259 +* **Temperature measurement range**:0~~60℃; resolution: 0.1℃ (set temperature for manual temperature compensation, default 25℃) 260 +* **Temperature measurement error**: ±0.5℃ 261 +* **Temperature Measure Range**: -20 ~~ 60 °C 262 +* **Temperature Accuracy: **±0.5 °C 263 +* **IP Rated**: IP68 264 +* **Max Pressure**: 0.6MPa 265 + 266 +== 2.2 Wiring == 267 + 268 +[[image:image-20240720172548-2.png||height="348" width="571"]] 269 + 270 + 271 +== (% style="color:inherit; font-family:inherit" %)2.3 (% style="color:inherit; font-family:inherit; font-size:26px" %)Mechinical Drawing(%%) == 272 + 273 +[[image:image-20240714174241-2.png]] 274 + 275 + 276 +== 2.4 Installation Notice == 277 + 278 +Do not power on while connect the cables. Double check the wiring before power on. 279 + 280 +Installation Photo as reference: 281 + 282 +**~ Submerged installation:** 283 + 284 +The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded. 285 + 286 +[[image:image-20240718191348-6.png]] 287 + 288 +**~ Pipeline installation:** 289 + 290 +Connect the equipment to the pipeline through the 3/4 thread. 291 + 292 +[[image:image-20240718191336-5.png||height="239" width="326"]] 293 + 294 +**Sampling:** 295 + 296 +Take representative water samples according to sampling requirements. If it is inconvenient to take samples, you can also put the electrode into the solution to be tested and read the output data. After a period of time, take out the electrode and clean it. 297 + 298 +**Measure the pH of the water sample:** 299 + 300 +First rinse the electrode with distilled water, then rinse it with the water sample, then immerse the electrode in the sample, carefully shake the test cup or stir it to accelerate the electrode balance, let it stand, and record the pH value when the reading is stable. 301 + 302 + 303 +== 2.5 Maintenance == 304 + 305 + 306 +* The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself. Contact us as soon as possible! 307 +* There is an appropriate amount of soaking solution in the protective bottle at the front end of the electrode. The electrode head is soaked in it to keep the glass bulb and the liquid junction activated. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use. 308 +* Preparation of electrode soaking solution: Take a packet of PH4.00 buffer, dissolve it in 250 ml of pure water, and soak it in 3M potassium chloride solution. The preparation is as follows: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water. 309 +* The glass bulb at the front end of the electrode cannot come into contact with hard objects. Any damage and scratches will make the electrode ineffective. 310 +* Before measurement, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response. 311 +* The electrode should be cleaned with deionized water before and after measurement to ensure accuracy. 312 +* After long-term use, the pH electrode will become passivated, which is characterized by a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the bulb at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours. If the pH electrode is seriously passivated and soaking in 0.1M hydrochloric acid has no effect, the pH electrode bulb can be soaked in 4% HF (hydrofluoric acid) for 3-5 seconds, washed with pure water, and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance. 313 +* Glass bulb contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant. 314 +* ((( 315 +The equipment should be calibrated before each use. For long-term use, it is recommended to calibrate once every 3 months. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time. 316 +))) 317 + 318 +== 2.6 RS485 Commands == 319 + 320 +RS485 signaldefault address 0x10 321 +Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1 322 + 323 +=== 2.6.1 Query address === 324 + 159 159 send 160 160 161 161 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) ... ... @@ -162,32 +162,62 @@ 162 162 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 163 163 |(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4 164 164 165 - If you forget the original addressof the sensor, you can usethe broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.331 +response 166 166 333 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %) 334 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 335 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0 167 167 168 - return337 +=== 2.6.2 Change address === 169 169 339 +For example: Change the address of the sensor with address 1 to 2, master → slave 340 + 170 170 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 171 171 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 172 -|(% style="width:99px" %)0X0 XFE|(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4343 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A 173 173 345 +If the sensor receives correctly, the data is returned along the original path. 346 +Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query. 174 174 175 175 349 +=== 2.6.3 Modify intercept === 176 176 177 177 352 +send 178 178 354 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:570.333px" %) 355 +|=(% style="width: 71px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 74px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 67px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 69px; background-color: rgb(79, 129, 189); color: white;" %)Register Length high|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Register Length low|=(% style="width: 57px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 57px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 356 +|(% style="width:71px" %)0X10|(% style="width:74px" %)0X06|(% style="width:67px" %)0X00|(% style="width:68px" %)0X10|(% style="width:69px" %)0X00|(% style="width:66px" %)0X64|(% style="width:57px" %)0X8A|(% style="width:57px" %)((( 357 +0XA5 358 +))) 179 179 360 +Change the intercept of the sensor at address 10 to 1 (default is 0). You need to pass the intercept 1*100 =100 into the command 0x006. 180 180 362 +response 181 181 364 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 365 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 366 +|(% style="width:99px" %)0X10|(% style="width:112px" %)0X06|(% style="width:135px" %)((( 367 +0X00 368 +)))|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)((( 369 +0XA5 370 +))) 182 182 372 +=== 2.6.4 Query data === 183 183 184 -= 2. DR-PH01 Water PH Sensor = 185 185 186 - ==2.7RS485Commands==375 +Query the data (PH) of the sensor (address 10), host → slave 187 187 377 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 378 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 379 +|(% style="width:99px" %)0X10|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X4B 188 188 189 - TheaddressofthepHsensoris10381 +If the sensor receives correctly, the following data will be returned, slave → host 190 190 383 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 384 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 385 +|(% style="width:99px" %)0X10|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0XC4|(% style="width:56px" %)0X9B 386 + 191 191 The query data command is 10 03 00 00 00 01 87 4B. After the query, 7 bytes will be returned. 192 192 193 193 For example, the returned data is 10 03 02 (% style="color:red" %)**02 AE**(%%) C4 9B. ... ... @@ -195,13 +195,177 @@ 195 195 02 AE is the pH value, which is converted into decimal to get 686, and then two decimal places are added to get the actual value. 02 AE means the current pH value is 6.86. 196 196 197 197 394 +=== 2.6.5 Calibration Method === 395 + 396 + 397 +This device uses three-point calibration, and three known pH standard solutions need to be prepared. 398 +The calibration steps are as follows: 399 +(1) Place the electrode in distilled water to clean it, and then place it in 9.18 standard buffer solution. After the data stabilizes, enter the following calibration command, and the 9.18 calibration is completed. 400 + 401 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %) 402 +|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 403 +|(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)((( 404 +0X00 405 +)))|(% style="width:68px" %)0X20|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X8A|(% style="width:55px" %)((( 406 +0XF1 407 +))) 408 + 409 +(2) Wash the electrode in distilled water and place it in 6.86 standard buffer. After the data stabilizes, enter the following calibration command. The 6.86 calibration is completed. 410 + 411 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %) 412 +|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 413 +|(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)((( 414 +0X00 415 +)))|(% style="width:68px" %)0X21|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0XDB|(% style="width:55px" %)((( 416 +0X31 417 +))) 418 + 419 +(3) Wash the electrode in distilled water and place it in 4.01 standard buffer. After the data stabilizes, enter the following calibration command, and the 4.00 calibration is completed. 420 + 421 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %) 422 +|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 423 +|(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)((( 424 +0X00 425 +)))|(% style="width:68px" %)0X22|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X2B|(% style="width:55px" %)((( 426 +0X31 427 +))) 428 + 429 +After the above three steps are completed, the calibration is successful. The advantage of three-point calibration compared to two-point calibration is that the electrode is calibrated separately in the acid and alkali parts, thereby achieving accurate calibration of the full range and making the measurement data more accurate. 430 + 431 + 198 198 = 3. DR-ORP1 Water ORP Sensor = 199 199 200 -== 3.7 RS485 Commands == 201 201 435 +== 3.1 Specification == 202 202 203 -The address of the ORP sensor is 13 437 +* **Power Input**: DC7~~30 438 +* **Measuring range**:** **-1999~~1999mV 439 +**Resolution**: 1mV 440 +* **Interface**: RS485. 9600 Baud Rate 441 +* **Measurement error**: ±3mV 442 +* **Stability**: ≤2mv/24 hours 443 +* **Equipment working conditions**: Ambient temperature: 0-60℃ Relative humidity: <85%RH 444 +* **IP Rated**: IP68 445 +* **Max Pressure**: 0.6MPa 204 204 447 +== 3.2 Wiring == 448 + 449 +[[image:image-20240720172620-3.png||height="378" width="620"]] 450 + 451 + 452 +== 3.3 Mechinical Drawing == 453 + 454 +[[image:image-20240714174241-2.png]] 455 + 456 +== 3.4 Installation Notice == 457 + 458 +Do not power on while connect the cables. Double check the wiring before power on. 459 + 460 +Installation Photo as reference: 461 + 462 +**~ Submerged installation:** 463 + 464 +The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded. 465 + 466 +[[image:image-20240718191348-6.png]] 467 + 468 +**~ Pipeline installation:** 469 + 470 +Connect the equipment to the pipeline through the 3/4 thread. 471 + 472 +[[image:image-20240718191336-5.png||height="239" width="326"]] 473 + 474 + 475 +== 3.5 Maintenance == 476 + 477 + 478 +(1) The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible. 479 + 480 +(2) In general, ORP electrodes do not need to be calibrated and can be used directly. When there is doubt about the quality and test results of the ORP electrode, the electrode potential can be checked with an ORP standard solution to determine whether the ORP electrode meets the measurement requirements, and the electrode can be recalibrated or replaced with a new ORP electrode. The frequency of calibration or inspection of the measuring electrode depends on different application conditions (the degree of dirt in the application, the deposition of chemical substances, etc.). 481 + 482 +(3) There is an appropriate soaking solution in the protective bottle at the front end of the electrode, and the electrode head is soaked in it to ensure the activation of the platinum sheet and the liquid junction. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use. 483 + 484 +(4) Preparation of electrode soaking solution: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water to prepare a 3.3M potassium chloride solution. 485 + 486 +(5) Before measuring, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response. 487 + 488 +(6) The electrode should be cleaned with deionized water before and after the measurement to ensure the measurement accuracy. 489 + 490 +(7) After long-term use, the ORP electrode will be passivated, which is manifested as a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the platinum sheet at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance. 491 + 492 +(8) Electrode contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant. If the platinum of the electrode is severely contaminated and an oxide film is formed, toothpaste can be applied to the platinum surface and then gently scrubbed to restore the platinum's luster. 493 + 494 +(9) The equipment should be calibrated before each use. It is recommended to calibrate once every 3 months for long-term use. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time. 495 + 496 +== 3.6 RS485 Commands == 497 + 498 + 499 +RS485 signaldefault address 0x13 500 +Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1 501 + 502 +=== 3.6.1 Query address === 503 + 504 +send 505 + 506 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 507 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 508 +|(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4 509 + 510 +response 511 + 512 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %) 513 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 514 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0 515 + 516 +=== 3.6.2 Change address === 517 + 518 +For example: Change the address of the sensor with address 1 to 2, master → slave 519 + 520 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 521 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 522 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A 523 + 524 +If the sensor receives correctly, the data is returned along the original path. 525 +Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query. 526 + 527 + 528 +=== 3.6.3 Modify intercept === 529 + 530 +send 531 + 532 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 533 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 67px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 69px; background-color: rgb(79, 129, 189); color: white;" %)Register Length high|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Register Length low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 534 +|(% style="width:99px" %)0X13|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)((( 535 +0X96 536 +))) 537 + 538 +Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command. 539 + 540 +response 541 + 542 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 543 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 544 +|(% style="width:99px" %)0X13|(% style="width:112px" %)0X06|(% style="width:135px" %)((( 545 +0X00 546 +)))|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)((( 547 +0X96 548 +))) 549 + 550 +=== 3.6.4 Query data === 551 + 552 + 553 +Query the data (ORP) of the sensor (address 13), host → slave 554 + 555 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 556 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 557 +|(% style="width:99px" %)0X13|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X78 558 + 559 +If the sensor receives correctly, the following data will be returned, slave → host 560 + 561 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 562 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 563 +|(% style="width:99px" %)0X13|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X80|(% style="width:56px" %)0X9B 564 + 205 205 The query data command is 13 03 00 00 00 01 87 78 206 206 207 207 For example, the returned data is 13 03 02 (% style="color:red" %)**02 AE**(%%) 80 9B. ... ... @@ -209,31 +209,229 @@ 209 209 02 AE is the ORP value, converted to decimal, the actual value is 686, 02 AE means the current ORP value is 686mV 210 210 211 211 572 +=== 3.6.5 Calibration Method === 573 + 574 +This device uses two-point calibration, and two known ORP standard solutions need to be prepared. The calibration steps are as follows: 575 +(1) Place the electrode in distilled water to clean it, and then place it in 86mV standard buffer solution. After the data stabilizes, 576 +enter the following calibration command, and the 86mV point calibration is completed; 577 + 578 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %) 579 +|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 580 +|(% style="width:64px" %)0X13|(% style="width:72px" %)0X06|(% style="width:66px" %)((( 581 +0X00 582 +)))|(% style="width:68px" %)0X24|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0XCB|(% style="width:55px" %)((( 583 +0X03 584 +))) 585 + 586 +Wash the electrode in distilled water and place it in 256mV standard buffer. After the data is stable, enter the following calibration command to complete the 256mV point calibration. 587 + 588 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %) 589 +|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 590 +|(% style="width:64px" %)0X13|(% style="width:72px" %)0X06|(% style="width:66px" %)((( 591 +0X00 592 +)))|(% style="width:68px" %)0X25|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X9A|(% style="width:55px" %)((( 593 +0XC3 594 +))) 595 + 212 212 = 4. DR-DO1 Dissolved Oxygen Sensor = 213 213 214 -== 4.7 RS485 Commands == 215 215 216 216 217 - Theaddressofhe dissolved oxygensensor is 14600 +== 4.1 Specification == 218 218 219 -The query data command is 14 03 00 14 00 01 C6 CB 220 220 603 +* **Measuring range**: 0-20mg/L, 0-50℃ 604 +* **Accuracy**: 3%, ±0.5℃ 605 +* **Resolution**: 0.01 mg/L, 0.01℃ 606 +* **Maximum operating pressure**: 6 bar 607 +* **Output signal**: A: 4-20mA (current loop)B: RS485 (standard Modbus-RTU protocol, device default address: 01) 608 +* **Power supply voltage**: 5-24V DC 609 +* **Working environment**: temperature 0-60℃; humidity <95%RH 610 +* **Power consumption**: ≤0.5W 611 + 612 +== 4.2 wiring == 613 + 614 +[[image:image-20240720172632-4.png||height="390" width="640"]] 615 + 616 + 617 +== (% id="cke_bm_224234S" style="display:none" %) (%%)4.3 Impedance requirements for current signals == 618 + 619 +[[image:image-20240718195414-8.png||height="100" width="575"]] 620 + 621 + 622 +== 4.4 Mechinical Drawing == 623 + 624 + 625 +[[image:image-20240719155308-1.png||height="226" width="527"]] 626 + 627 + 628 +== 4.5 Instructions for use and maintenance == 629 + 630 +* It can be directly put into water without adding a protective tube, ensuring the long-term stability, reliability and accuracy of the sensor. 631 +* If the water conditions are complex and you want accurate data, you need to wipe the sensor probe frequently. 632 + 633 +== 4.6 RS485 Commands == 634 + 635 +RS485 signaldefault address 0x14 636 +Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1 637 + 638 +=== 4.6.1 Query address === 639 + 640 +send 641 + 642 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 643 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 644 +|(% style="width:99px" %)0XFF|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XF1|(% style="width:56px" %)0XD7 645 + 646 +If you forget the original address of the sensor, you can use the broadcast address 0XFF instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query. 647 + 648 + 649 +response 650 + 651 +Register 0 data high and register 0 data low indicate the actual address of the sensor: 1 652 +Register 1 data high and register 1 data low indicate the sensor version 653 + 654 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 655 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 656 +|(% style="width:99px" %)0XFF|(% style="width:72px" %)0X03|(% style="width:64px" %)0X04|(% style="width:68px" %)0X00|(% style="width:70px" %)0X01|(% style="width:72px" %)0X00|(% style="width:56px" %)0X00|(% style="width:56px" %)0XB4|(% style="width:56px" %)0X3C 657 + 658 +=== 4.6.2 Change address === 659 + 660 +For example: Change the address of the sensor with address 1 to 2(address range: 1-119), master → slave 661 + 662 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:907.333px" %) 663 +|=(% style="width: 67px; background-color: rgb(79, 129, 189); color: white;" %)Original address|=(% style="width: 71px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 65px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 65px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Start address high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Start address low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Sensor version|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Sensor version|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low 664 +|(% style="width:67px" %)0X01|(% style="width:71px" %)0X10|(% style="width:65px" %)0X00|(% style="width:65px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:53px" %)0X04|(% style="width:53px" %)0X00|(% style="width:72px" %)0X02|(% style="width:53px" %)0X00|(% style="width:53px" %)0X00|(% style="width:56px" %)0XD2|(% style="width:53px" %)0X10 665 + 666 +response 667 + 668 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 669 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 670 +|(% style="width:99px" %)0X01|(% style="width:72px" %)0X10|(% style="width:64px" %)0X00|(% style="width:68px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0X61|(% style="width:56px" %)0XCA 671 + 672 +=== 4.6.3 Query data === 673 + 674 + 675 +Query the data (dissolved oxygen) of the sensor (address 14), host → slave 676 + 677 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 678 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 679 +|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X14|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0XC6|(% style="width:56px" %)0XCB 680 + 681 +If the sensor receives correctly, the following data will be returned, slave → host 682 + 683 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 684 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 685 +|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X03|(% style="width:72px" %)0X78|(% style="width:56px" %)0XB5|(% style="width:56px" %)0X55 686 + 221 221 After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**03 78**(%%) B5 55. 03 78 is the value of dissolved oxygen. 222 222 223 223 Converted to decimal, it is 888. Add two decimal places to get the actual value. 03 78 means the current dissolved oxygen is 8.88mg/L 224 224 225 225 692 +Query the data (temperature) of the sensor (address 14), host → slave 693 + 694 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 695 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 696 +|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X11|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0XD6|(% style="width:56px" %)0XCA 697 + 698 +If the sensor receives correctly, the following data will be returned, slave → host 699 + 700 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 701 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 702 +|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X09|(% style="width:72px" %)0XA4|(% style="width:56px" %)0XB2|(% style="width:56px" %)0X6C 703 + 704 +After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**09 A4**(%%) B2 6C. 03 78 is the value of dissolved oxygen temperature. 705 + 706 +Converted to decimal, it is 2468. Add two decimal places to get the actual value. 09 A4 means the current dissolved oxygen temperature is 24.68℃ 707 + 708 + 226 226 = 5. DR-TS1 Water Turbidity Sensor = 227 227 228 -== 5.7 RS485 Commands == 229 229 230 230 231 - Theaddressofthesolved oxygensensoris15713 +== (% id="cke_bm_81470S" style="display:none" %) (%%)5.1 Specification == 232 232 715 +* **Measuring range**: 0.1~1000.0NTU 716 +* **Accuracy**: ±5% 717 +* **Resolution**: 0.1NTU 718 +* **Stability**: ≤3mV/24 hours 719 +* **Output signal**: A: 4~20 mA (current loop)B: RS485 (standard Modbus-RTU protocol, device default address: 01) 720 +* **Power supply voltage**: 5~24V DC (when output signal is RS485)12~24V DC (when output signal is 4~20mA) 721 +* **Working environment**: temperature 0~60℃; humidity ≤95%RH 722 +* **Power consumption**: ≤0.5W 723 + 724 +== 5.2 wiring == 725 + 726 +[[image:image-20240720172640-5.png||height="387" width="635"]] 727 + 728 + 729 +== 5.3 Impedance requirements for current signals == 730 + 731 +[[image:image-20240718195414-8.png||height="100" width="575"]] 732 + 733 + 734 +== 5.4 Mechinical Drawing == 735 + 736 +[[image:image-20240718195058-7.png||height="305" width="593"]] 737 + 738 + 739 +== 5.5 Instructions for use and maintenance == 740 + 741 +* It can be directly put into water without adding a protective tube, ensuring the long-term stability, reliability and accuracy of the sensor. 742 +* If the water conditions are complex and you want accurate data, you need to wipe the sensor probe frequently. 743 + 744 +== 5.6 RS485 Commands == 745 + 746 + 747 +RS485 signaldefault address 0x15 748 +Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1 749 + 750 +=== 5.6.1 Query address === 751 + 752 +send 753 + 754 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 755 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 756 +|(% style="width:99px" %)0XFE |(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X50|(% style="width:70px" %)0X00|(% style="width:72px" %)0X00|(% style="width:56px" %)0X51|(% style="width:56px" %)0XD4 757 + 758 +If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query. 759 + 760 + 761 +response 762 + 763 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %) 764 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 765 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0 766 + 767 +=== 5.6.2 Change address === 768 + 769 +For example: Change the address of the sensor with address 1 to 2, master → slave 770 + 771 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 772 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 773 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A 774 + 775 +If the sensor receives correctly, the data is returned along the original path. 776 +Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query. 777 + 778 +=== 5.6.3 Query data === 779 + 780 + 781 +Query the data (turbidity) of the sensor (address 15), host → slave 782 + 783 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 784 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 785 +|(% style="width:99px" %)0X15|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X1E 786 + 787 +If the sensor receives correctly, the following data will be returned, slave → host 788 + 789 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 790 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 791 +|(% style="width:99px" %)0X15|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0X9A|(% style="width:56px" %)0X09|(% style="width:56px" %)0X4C 792 + 233 233 The query data command is 15 03 00 00 00 01 87 1E 234 234 235 235 For example, the returned data is 15 03 02 (% style="color:red" %)**02 9A**(%%) 09 4C 236 236 237 237 02 9A is the turbidity value, converted to decimal, it is 666, and then divided by 10, the actual value is 66.6, 02 9A means the current turbidity value is 66.6 NTU 238 - 239 -
- image-20240718190121-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +281.1 KB - Content
- image-20240718190204-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +111.8 KB - Content
- image-20240718190221-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +140.2 KB - Content
- image-20240718190249-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +111.6 KB - Content
- image-20240718191336-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +46.6 KB - Content
- image-20240718191348-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +91.2 KB - Content
- image-20240718195058-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +97.6 KB - Content
- image-20240718195414-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +13.5 KB - Content
- image-20240719155308-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +57.4 KB - Content
- image-20240720172533-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.5 MB - Content
- image-20240720172548-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.5 MB - Content
- image-20240720172620-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.5 MB - Content
- image-20240720172632-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.5 MB - Content
- image-20240720172640-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.5 MB - Content