Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="404" width="404"]]
3
4
5
6
7 **Table of Contents:**
8
9 {{toc/}}
10
11
12
13
14 = 1. Introduction =
15
16 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
17
18
19 (((
20 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
21 )))
22
23 (((
24 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
25 )))
26
27 (((
28 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
29 )))
30
31 (((
32 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
33 )))
34
35 (((
36 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
37 )))
38
39 (((
40 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
41 )))
42
43 (((
44 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
45
46
47 )))
48
49 [[image:1652953304999-717.png||height="424" width="733"]]
50
51
52 == 1.2 Specifications ==
53
54
55 (% style="color:#037691" %)**Hardware System:**
56
57 * STM32L072xxxx MCU
58 * SX1276/78 Wireless Chip 
59 * Power Consumption (exclude RS485 device):
60 ** Idle: 6uA@3.3v
61 ** 20dB Transmit: 130mA@3.3v
62 * 5V sampling maximum current:500mA
63
64 (% style="color:#037691" %)**Interface for Model:**
65
66 * 1 x RS485 Interface
67 * 1 x TTL Serial , 3.3v or 5v.
68 * 1 x I2C Interface, 3.3v or 5v.
69 * 1 x one wire interface
70 * 1 x Interrupt Interface
71 * 1 x Controllable 5V output, max
72
73 (% style="color:#037691" %)**LoRa Spec:**
74
75 * Frequency Range:
76 ** Band 1 (HF): 862 ~~ 1020 Mhz
77 ** Band 2 (LF): 410 ~~ 528 Mhz
78 * 168 dB maximum link budget.
79 * +20 dBm - 100 mW constant RF output vs.
80 * Programmable bit rate up to 300 kbps.
81 * High sensitivity: down to -148 dBm.
82 * Bullet-proof front end: IIP3 = -12.5 dBm.
83 * Excellent blocking immunity.
84 * Fully integrated synthesizer with a resolution of 61 Hz.
85 * LoRa modulation.
86 * Built-in bit synchronizer for clock recovery.
87 * Preamble detection.
88 * 127 dB Dynamic Range RSSI.
89 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
90
91
92
93 == 1.3 Features ==
94
95
96 * LoRaWAN Class A & Class C protocol (default Class A)
97 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864/MA869
98 * AT Commands to change parameters
99 * Remote configure parameters via LoRaWAN Downlink
100 * Firmware upgradable via program port
101 * Support multiply RS485 devices by flexible rules
102 * Support Modbus protocol
103 * Support Interrupt uplink
104
105
106
107 == 1.4 Applications ==
108
109
110 * Smart Buildings & Home Automation
111 * Logistics and Supply Chain Management
112 * Smart Metering
113 * Smart Agriculture
114 * Smart Cities
115 * Smart Factory
116
117
118
119 == 1.5 Firmware Change log ==
120
121
122 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
123
124
125 == 1.6 Hardware Change log ==
126
127 (((
128
129
130 (((
131 **v1.4**
132 )))
133 )))
134
135 (((
136 (((
137 ~1. Change Power IC to TPS22916
138 )))
139 )))
140
141 (((
142
143 )))
144
145 (((
146 (((
147 **v1.3**
148 )))
149 )))
150
151 (((
152 (((
153 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
154 )))
155 )))
156
157 (((
158
159 )))
160
161 (((
162 (((
163 **v1.2**
164 )))
165 )))
166
167 (((
168 (((
169 Release version ​​​​​
170 )))
171 )))
172
173
174 = 2. Pin mapping and Power ON Device =
175
176
177 (((
178 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
179
180
181 )))
182
183 [[image:1652953055962-143.png||height="387" width="728"]]
184
185
186 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
187
188
189 = 3. Operation Mode =
190
191 == 3.1 How it works? ==
192
193
194 (((
195 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
196
197
198 )))
199
200 == 3.2 Example to join LoRaWAN network ==
201
202
203 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
204
205 [[image:1652953414711-647.png||height="337" width="723"]]
206
207
208 (((
209 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
210 )))
211
212 (((
213 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
214
215
216 )))
217
218 (((
219 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from RS485-BL.
220 )))
221
222 (((
223 Each RS485-BL is shipped with a sticker with unique device EUI:
224 )))
225
226 [[image:1652953462722-299.png]]
227
228
229 (((
230 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
231 )))
232
233 (((
234 **Add APP EUI in the application.**
235 )))
236
237
238 [[image:image-20220519174512-1.png]]
239
240 [[image:image-20220519174512-2.png||height="328" width="731"]]
241
242 [[image:image-20220519174512-3.png||height="556" width="724"]]
243
244 [[image:image-20220519174512-4.png]]
245
246
247 You can also choose to create the device manually.
248
249 [[image:1652953542269-423.png||height="710" width="723"]]
250
251
252 Add APP KEY and DEV EUI
253
254 [[image:1652953553383-907.png||height="514" width="724"]]
255
256
257
258 (((
259 (% style="color:blue" %)**Step 2**(%%): Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
260
261
262 )))
263
264 [[image:1652953568895-172.png||height="232" width="724"]]
265
266
267 == 3.3 Configure Commands to read data ==
268
269
270 (((
271 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
272
273
274 )))
275
276 === 3.3.1 Configure UART settings for RS485 or TTL communication(Since v1.3.3) ===
277
278
279 (((
280 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
281
282
283 )))
284
285 (((
286 (% style="color:blue" %)**1.  RS485-MODBUS mode:**
287
288
289 )))
290
291 (((
292 (% style="color:#037691" %)**AT+MOD=1**  (%%) ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
293
294
295
296 )))
297
298 (((
299 (% style="color:blue" %)**2.  TTL mode:**
300
301
302 )))
303
304 (((
305 (% style="color:#037691" %)**AT+MOD=2**  (%%) ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
306 )))
307
308 (((
309 RS485-BL default UART settings is (% style="color:green" %)**9600, no parity, stop bit 1**(%%). If the sensor has a different settings, user can change the RS485-BL setting to match.
310
311
312 )))
313
314 (% border="1" cellspacing="5" style="background-color:#ffffcc; color:green; width:510px" %)
315 |=(% style="width: 140px;" %)(((
316 (((
317 **AT Commands**
318 )))
319 )))|=(% style="width: 200px;" %)(((
320 (((
321 **Description**
322 )))
323 )))|=(% style="width: 170px;" %)(((
324 (((
325 **Example**
326 )))
327 )))
328 |(% style="width:122px" %)(((
329 (((
330 AT+BAUDR
331 )))
332 )))|(% style="width:112px" %)(((
333 (((
334 Set the baud rate (for RS485 connection).
335
336 Default Value is: 9600.
337 )))
338 )))|(% style="width:152px" %)(((
339 (((
340 (((
341 AT+BAUDR=9600
342 )))
343 )))
344
345 (((
346 (((
347 Options: (1200,2400,4800,14400,19200,115200)
348 )))
349 )))
350 )))
351 |(% style="width:122px" %)(((
352 (((
353 AT+PARITY
354 )))
355 )))|(% style="width:112px" %)(((
356 (((
357 (((
358 Set UART parity (for RS485 connection)
359 )))
360 )))
361
362 (((
363 (((
364 Default Value is: no parity.
365 )))
366 )))
367 )))|(% style="width:152px" %)(((
368 (((
369 (((
370 AT+PARITY=0
371 )))
372 )))
373
374 (((
375 (((
376 Option: 0: no parity, 1: odd parity, 2: even parity
377 )))
378 )))
379 )))
380 |(% style="width:122px" %)(((
381 (((
382 AT+STOPBIT
383 )))
384 )))|(% style="width:112px" %)(((
385 (((
386 (((
387 Set serial stopbit (for RS485 connection)
388 )))
389 )))
390
391 (((
392 (((
393 Default Value is: 1bit.
394 )))
395 )))
396 )))|(% style="width:152px" %)(((
397 (((
398 (((
399 AT+STOPBIT=0 for 1bit
400 )))
401 )))
402
403 (((
404 (((
405 AT+STOPBIT=1 for 1.5 bit
406 )))
407 )))
408
409 (((
410 (((
411 AT+STOPBIT=2 for 2 bits
412 )))
413 )))
414 )))
415
416
417
418 === 3.3.2 Configure sensors ===
419
420
421 (((
422 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
423 )))
424
425 (((
426 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won't run during each sampling.
427
428
429 )))
430
431 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
432 |=(% style="width: 80px;" %)**AT Commands**|=(% style="width: 210px;" %)**Description**|=(% style="width: 210px;" %)**Example**
433 |AT+CFGDEV|(% style="width:80px" %)(((
434 (((
435 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
436 )))
437
438 (((
439 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
440 )))
441
442 (((
443 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
444 )))
445 )))|(% style="width:210px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
446
447 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
448
449
450 === 3.3.3 Configure read commands for each sampling ===
451
452
453 (((
454 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
455 )))
456
457 (((
458 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
459 )))
460
461 (((
462 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
463 )))
464
465 (((
466 This section describes how to achieve above goals.
467 )))
468
469 (((
470 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
471
472
473 )))
474
475 (((
476 (% style="color:blue" %)**Command from RS485-BL to Sensor:**
477 )))
478
479 (((
480 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
481
482
483 )))
484
485 (((
486 (% style="color:blue" %)**Handle return from sensors to RS485-BL**:
487 )))
488
489 (((
490 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
491 )))
492
493 * (((
494 (% style="color:blue" %)**AT+DATACUT**
495 )))
496
497 (((
498 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
499
500
501 )))
502
503 * (((
504 (% style="color:blue" %)**AT+SEARCH**
505 )))
506
507 (((
508 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
509 )))
510
511 (((
512
513
514 (% style="color:blue" %)**Define wait timeout:**
515 )))
516
517 (((
518 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
519 )))
520
521 (((
522 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
523 )))
524
525 (((
526
527
528 **Examples:**
529 )))
530
531 (((
532 Below are examples for the how above AT Commands works.
533 )))
534
535 (((
536 (% style="color:blue" %)**AT+COMMANDx **(%%)**: **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
537
538
539 )))
540
541 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:497px" %)
542 |(% style="width:494px" %)(((
543 (((
544 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
545 )))
546
547 (((
548 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
549 )))
550
551 (((
552 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
553 )))
554 )))
555
556 (((
557 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
558 )))
559
560 (((
561 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
562 )))
563
564 (((
565
566 )))
567
568 (((
569 (% style="color:blue" %)**AT+SEARCHx**(%%): This command defines how to handle the return from AT+COMMANDx.
570
571
572 )))
573
574 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:473px" %)
575 |(% style="width:470px" %)(((
576 (((
577 **AT+SEARCHx=aa,xx xx xx xx xx**
578 )))
579
580 * (((
581 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
582 )))
583 * (((
584 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
585 )))
586 )))
587
588 (((
589
590
591 **Examples:**
592
593
594 )))
595
596 (((
597 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
598 )))
599
600 (((
601 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
602 )))
603
604 (((
605 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
606
607
608 )))
609
610 (((
611 [[image:1653271044481-711.png]]
612
613
614 )))
615
616 (((
617 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
618 )))
619
620 (((
621 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
622 )))
623
624 (((
625 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
626
627
628 )))
629
630 (((
631 [[image:1653271276735-972.png]]
632
633
634 )))
635
636 (((
637 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 100 bytes.(Since 1.4.0)
638 )))
639
640 (% style="background-color:#4f81bd; color:white; width:496px" %)
641 |(% style="width:493px" %)(((
642 (((
643 **AT+DATACUTx=a,b,c**
644 )))
645
646 * (((
647 **a: length for the return of AT+COMMAND**
648 )))
649 * (((
650 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
651 )))
652 * (((
653 **c: define the position for valid value.  **
654 )))
655 )))
656
657 (((
658
659
660
661 **Examples:**
662 )))
663
664 * (((
665 (% style="color:blue" %)**Grab bytes:**
666 )))
667
668 (((
669 [[image:1653271581490-837.png||height="313" width="722"]]
670 )))
671
672 (((
673
674
675
676 )))
677
678 * (((
679 (% style="color:blue" %)**Grab a section.**
680 )))
681
682 (((
683 [[image:1653271648378-342.png||height="326" width="720"]]
684 )))
685
686 (((
687
688
689
690 )))
691
692 * (((
693 (% style="color:blue" %)**Grab different sections.**
694 )))
695
696 (((
697 [[image:1653271657255-576.png||height="305" width="730"]]
698
699
700 )))
701
702 (((
703 (((
704 (% style="color:red" %)**Note:**
705 )))
706 )))
707
708 (((
709 (((
710 (% style="color:#037691" %)**AT+SEARCHx** (%%)and (% style="color:#037691" %)**AT+DATACUTx**(%%) can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format** AT+DATACUTx=0,xx,xx** where the return bytes set to **0**.
711
712
713 )))
714 )))
715
716 (((
717 (((
718 **Example:**
719 )))
720 )))
721
722 (((
723 (((
724 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
725 )))
726 )))
727
728 (((
729 (((
730 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
731 )))
732 )))
733
734 (((
735 (((
736 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
737 )))
738 )))
739
740 (((
741 (((
742 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
743 )))
744 )))
745
746 (((
747 (((
748 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
749 )))
750 )))
751
752 (((
753 (((
754 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
755
756
757 )))
758 )))
759
760 (((
761 [[image:1653271763403-806.png]]
762 )))
763
764
765 === 3.3.4 Compose the uplink payload ===
766
767
768 (((
769 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
770
771
772 )))
773
774 (((
775 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
776
777
778 )))
779
780 (((
781 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
782 )))
783
784 (((
785 Final Payload is
786 )))
787
788 (((
789 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
790 )))
791
792 (((
793 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
794 )))
795
796 [[image:1653272787040-634.png||height="515" width="719"]]
797
798
799
800 (((
801 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
802
803
804 )))
805
806 (((
807 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
808 )))
809
810 (((
811 Final Payload is
812 )))
813
814 (((
815 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
816 )))
817
818 1. (((
819 Battery Info (2 bytes): Battery voltage
820 )))
821 1. (((
822 PAYVER (1 byte): Defined by AT+PAYVER
823 )))
824 1. (((
825 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
826 )))
827 1. (((
828 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
829 )))
830 1. (((
831 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
832
833
834 )))
835
836 [[image:1653272817147-600.png||height="437" width="717"]]
837
838 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
839
840
841 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
842
843 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% _mstmutation="1" style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
844
845 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% _mstmutation="1" style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
846
847
848 Below are the uplink payloads:
849
850 [[image:1653272901032-107.png]]
851
852
853 (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
854
855 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
856
857 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
858
859 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
860
861 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
862
863 *(% style="color:red" %)** When AT+DATAUP=1, the maximum number of segments is 15, and the maximum total number of bytes is 1500;**
864
865 (% style="color:red" %)** When AT+DATAUP=1 and AT+ADR=0, the maximum number of bytes of each payload is determined by the DR value. (Since v1.4.0)**
866
867 (((
868
869 )))
870
871 * (((
872 (% style="color:blue" %)**If the data is empty, return to the display(Since v1.4.0)**
873
874
875
876 )))
877
878 (% class="wikigeneratedid" %)
879 **1) ** When (% style="color:blue" %)**AT+MOD=1**(%%), if the data intercepted by (% style="color:#037691" %)** AT+DATACUT**(%%) or (% style="color:#037691" %)** AT+MBFUN **(%%)is empty, it will display **NULL**, and the payload will be filled with **n FFs**.
880
881
882 (% class="wikigeneratedid" %)
883 [[image:image-20220824114359-3.png||height="297" width="1106"]]
884
885
886
887 **2)**  When** (% style="color:blue" %)AT+MOD=2(%%)**, if the data intercepted by (% style="color:#037691" %)** AT+DATACUT** (%%)or (% style="color:#037691" %)** AT+MBFUN**(%%) is empty, it will display **NULL**, and the payload will be filled with **n 00s**.
888
889
890 [[image:image-20220824114330-2.png]]
891
892
893 === 3.3.5 Uplink on demand ===
894
895
896 (((
897 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
898
899
900 )))
901
902 (((
903 (% style="color:blue" %)** Downlink control command:**
904 )))
905
906 (((
907 (% style="color:#4472c4" %)** 0x08 command**(%%): Poll an uplink with current command set in RS485-BL.
908 )))
909
910 (((
911 (% style="color:#4472c4" %)** 0xA8 command**(%%): Send a command to RS485-BL and uplink the output from sensors.
912 )))
913
914
915 === 3.3.6 Uplink on Interrupt ===
916
917
918 Put the interrupt sensor between 3.3v_out and GPIO ext.
919
920 [[image:1653273818896-432.png]]
921
922
923 (((
924 (% style="color:#4472c4" %)**AT+INTMOD=0**(%%)  Disable Interrupt
925 )))
926
927 (((
928 (% style="color:#4472c4" %)**AT+INTMOD=1**(%%)  Interrupt trigger by rising or falling edge.
929 )))
930
931 (((
932 (% style="color:#4472c4" %)**AT+INTMOD=2** (%%) Interrupt trigger by falling edge. ( Default Value)
933 )))
934
935 (((
936 (% style="color:#4472c4" %)**AT+INTMOD=3**(%%)  Interrupt trigger by rising edge.
937 )))
938
939
940 == 3.4 Uplink Payload ==
941
942
943 [[image:image-20220606105412-1.png]]
944
945
946 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
947
948
949 (((
950 {{{function Decoder(bytes, port) {}}}
951 )))
952
953 (((
954 {{{//Payload Formats of RS485-BL Deceive}}}
955 )))
956
957 (((
958 {{{return {}}}
959 )))
960
961 (((
962 {{{ //Battery,units:V}}}
963 )))
964
965 (((
966 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
967 )))
968
969 (((
970 {{{ //GPIO_EXTI }}}
971 )))
972
973 (((
974 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
975 )))
976
977 (((
978 {{{ //payload of version}}}
979 )))
980
981 (((
982 {{{ Pay_ver:bytes[2],}}}
983 )))
984
985 (((
986 {{{ }; }}}
987 )))
988
989 (((
990 **}**
991
992
993 )))
994
995 (((
996 TTN V3 uplink screen shot.
997 )))
998
999 [[image:1653274001211-372.png||height="192" width="732"]]
1000
1001
1002 == 3.5 Configure RS485-BL via AT or Downlink ==
1003
1004
1005 (((
1006 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
1007 )))
1008
1009 (((
1010 There are two kinds of Commands:
1011 )))
1012
1013 * (((
1014 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1015 )))
1016
1017 * (((
1018 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
1019
1020
1021
1022 )))
1023
1024 === 3.5.1 Common Commands: ===
1025
1026
1027 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1028
1029
1030 === 3.5.2 Sensor related commands: ===
1031
1032
1033
1034 ==== (% style="color:blue" %)**Choose Device Type (RS485 or TTL)(Since v1.3.3)**(%%) ====
1035
1036
1037 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
1038
1039 * (% style="color:#037691" %)**AT Command**
1040
1041 (% style="color:#4472c4" %)** AT+MOD=1** (%%) ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
1042
1043 (% style="color:#4472c4" %)** AT+MOD=2** (%%) ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
1044
1045
1046 * (% style="color:#037691" %)**Downlink Payload**
1047
1048 (% style="color:#4472c4" %)** 0A aa** (%%) ~-~->  same as AT+MOD=aa
1049
1050
1051
1052 ==== (% style="color:blue" %)**RS485 Debug Command (AT+CFGDEV)**(%%) ====
1053
1054
1055 (((
1056 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling. Max Length of AT+CFGDEV is **40 bytes**.
1057 )))
1058
1059 (((
1060 * (% style="color:#037691" %)**AT Command**
1061
1062 (((
1063 (% style="color:#4472c4" %)** AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**  (%%) m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
1064 )))
1065 )))
1066
1067 (((
1068
1069 )))
1070
1071 * (((
1072 (% style="color:#037691" %)**Downlink Payload**
1073 )))
1074
1075 (((
1076 Format:  (% style="color:#4472c4" %)** A8 MM NN XX XX XX XX YY**
1077 )))
1078
1079 (((
1080 Where:
1081 )))
1082
1083 * (((
1084 MM: 1: add CRC-16/MODBUS ; 0: no CRC
1085 )))
1086 * (((
1087 NN: The length of RS485 command
1088 )))
1089 * (((
1090 XX XX XX XX: RS485 command total NN bytes
1091 )))
1092 * (((
1093 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
1094
1095
1096
1097 )))
1098
1099 (((
1100 (% style="color:blue" %)**Example 1:**
1101 )))
1102
1103 (((
1104 To connect a Modbus Alarm with below commands.
1105 )))
1106
1107 * (((
1108 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
1109 )))
1110
1111 * (((
1112 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1113 )))
1114
1115 (((
1116 So if user want to use downlink command to control to RS485 Alarm, he can use:
1117 )))
1118
1119 (((
1120 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1121 )))
1122
1123 (((
1124 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1125 )))
1126
1127 (((
1128 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
1129 )))
1130
1131 (((
1132
1133
1134
1135 )))
1136
1137 (((
1138 (% style="color:blue" %)**Example 2:**
1139 )))
1140
1141 (((
1142 Check TTL Sensor return:
1143 )))
1144
1145 (((
1146 [[image:1654132684752-193.png]]
1147 )))
1148
1149
1150
1151 ==== (% style="color:blue" %)**Set Payload version**(%%) ====
1152
1153
1154 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1155
1156 * (% style="color:#037691" %)**AT Command:**
1157
1158 (% style="color:#4472c4" %)** AT+PAYVER:   **(%%)Set PAYVER field = 1
1159
1160
1161 * (% style="color:#037691" %)**Downlink Payload:**
1162
1163 (% style="color:#4472c4" %)** 0xAE 01** (%%) ~-~-> Set PAYVER field =  0x01
1164
1165 (% style="color:#4472c4" %)** 0xAE 0F** (%%) ~-~-> Set PAYVER field =  0x0F
1166
1167
1168
1169 ==== (% style="color:blue" %)**Set RS485 Sampling Commands**(%%) ====
1170
1171
1172 (((
1173 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1174 )))
1175
1176 (((
1177 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1178 )))
1179
1180 (((
1181
1182 )))
1183
1184 * (((
1185 (% style="color:#037691" %)**AT Command:**
1186 )))
1187
1188 (% style="color:#4472c4" %)** AT+COMMANDx: **(%%)** Configure RS485 read command to sensor.**
1189
1190 (% style="color:#4472c4" %)** AT+DATACUTx: **(%%)** Configure how to handle return from RS485 devices.**
1191
1192 (% style="color:#4472c4" %)** AT+SEARCHx:  **(%%)** Configure search command**
1193
1194
1195 * (((
1196 (% style="color:#037691" %)**Downlink Payload:**
1197 )))
1198
1199 (((
1200 (% style="color:#4472c4" %)** 0xAF**(%%) downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1201 )))
1202
1203 (((
1204 (% style="color:red" %)**Note : if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.**
1205 )))
1206
1207 (((
1208 Format: AF MM NN LL XX XX XX XX YY
1209 )))
1210
1211 (((
1212 Where:
1213 )))
1214
1215 * (((
1216 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1217 )))
1218 * (((
1219 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1220 )))
1221 * (((
1222 LL:  The length of AT+COMMAND or AT+DATACUT command
1223 )))
1224 * (((
1225 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1226 )))
1227 * (((
1228 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1229 )))
1230
1231 (((
1232
1233
1234
1235 **Example:**
1236 )))
1237
1238 (((
1239 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1240 )))
1241
1242 (((
1243 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1244 )))
1245
1246 (((
1247 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1248 )))
1249
1250 (((
1251
1252 )))
1253
1254 (((
1255 (% style="color:#4472c4" %)** 0xAB**(%%) downlink command can be used for set AT+SEARCHx
1256 )))
1257
1258 (((
1259
1260
1261 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1262 )))
1263
1264 * (((
1265 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1266 )))
1267 * (((
1268 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1269 )))
1270
1271 (((
1272 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1273 )))
1274
1275
1276
1277 ==== (% style="color:blue" %)**Fast command to handle MODBUS device**(%%) ====
1278
1279
1280 (((
1281 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1282 )))
1283
1284 (((
1285 This command is valid since v1.3 firmware version
1286 )))
1287
1288 (((
1289
1290 )))
1291
1292 (((
1293 (% style="color:#037691" %)**AT+MBFUN has only two value:**
1294 )))
1295
1296 * (((
1297 (% style="color:#4472c4" %)** AT+MBFUN=1**(%%): Enable Modbus reading. And get response base on the MODBUS return
1298 )))
1299
1300 (((
1301 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1302 )))
1303
1304 * (((
1305 (% style="color:#4472c4" %)**AT+MBFUN=0**(%%): Disable Modbus fast reading.
1306 )))
1307
1308 (((
1309
1310
1311 **Example:**
1312 )))
1313
1314 * (((
1315 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1316 )))
1317 * (((
1318 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1319 )))
1320 * (((
1321 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1322 )))
1323
1324 [[image:1654133913295-597.png]]
1325
1326
1327 [[image:1654133954153-643.png]]
1328
1329
1330 * (((
1331 (% style="color:#037691" %)**Downlink Commands:**
1332 )))
1333
1334 (((
1335 (% style="color:#4472c4" %)** A9 aa** (%%)~-~-> Same as AT+MBFUN=aa
1336 )))
1337
1338
1339
1340 ==== (% style="color:blue" %)**RS485 command timeout**(%%) ====
1341
1342
1343 (((
1344 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1345 )))
1346
1347 (((
1348 Default value: 0, range:  0 ~~ 5 seconds
1349 )))
1350
1351 (((
1352
1353 )))
1354
1355 (((
1356 * (% style="color:#037691" %)**AT Command:**
1357
1358 (% style="color:#4472c4" %)**AT+CMDDLaa=hex(bb cc)**
1359
1360
1361 )))
1362
1363 (((
1364 **Example:**
1365 )))
1366
1367 (((
1368 **AT+CMDDL1=1000** to send the open time to 1000ms
1369 )))
1370
1371 (((
1372
1373 )))
1374
1375 * (((
1376 (% style="color:#037691" %)**Downlink Payload:**
1377 )))
1378
1379 (((
1380 (% style="color:#4472c4" %) **0x AA aa bb cc**(%%)  Same as:** AT+CMDDLaa=hex(bb cc)**
1381 )))
1382
1383 (((
1384
1385
1386 **Example:**
1387 )))
1388
1389 (((
1390 (% style="color:#4472c4" %)** 0xAA 01 03 E8**(%%)  ~-~-> Same as (% _mstmutation="1" %)**AT+CMDDL1=1000 ms**
1391 )))
1392
1393
1394
1395 ==== (% style="color:blue" %)**Uplink payload mode**(%%) ====
1396
1397
1398 (((
1399 Define to use one uplink or multiple uplinks for the sampling.
1400 )))
1401
1402 (((
1403 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1404 )))
1405
1406 (((
1407 * (% style="color:#037691" %)**AT Command:**
1408
1409 (% style="color:#4472c4" %)** AT+DATAUP=0**
1410
1411 (% style="color:#4472c4" %)** AT+DATAUP=1**
1412 )))
1413
1414 (((
1415
1416 )))
1417
1418 * (((
1419 (% style="color:#037691" %)**Downlink Payload:**
1420 )))
1421
1422 (((
1423 (% style="color:#4472c4" %)** 0xAD 00**  (%%) **~-~->** Same as AT+DATAUP=0
1424 )))
1425
1426 (((
1427 (% style="color:#4472c4" %)** 0xAD 01**   (%%)**~-~->** Same as AT+DATAUP=1  ~/~/Each uplink is sent to the server one after the other as it is segmented.
1428
1429
1430 )))
1431
1432 (((
1433 * (% style="color:#037691" %)**AT Command:**
1434
1435 (% style="color:#4472c4" %)**AT+DATAUP=1,Timeout**
1436 )))
1437
1438 (((
1439
1440 )))
1441
1442 * (((
1443 (% style="color:#037691" %)**Downlink Payload:**
1444 )))
1445
1446 (((
1447 (% style="color:#4472c4" %)** 0xAD 01 00 00 14** (%%) **~-~->** Same as AT+DATAUP=1,20000 ~/~/(00 00 14 is 20 seconds)
1448 )))
1449
1450 (((
1451 Each uplink is sent to the server at 20-second intervals when segmented.
1452 )))
1453
1454
1455
1456 ==== (% style="color:blue" %)**Manually trigger an Uplink**(%%) ====
1457
1458
1459 Ask device to send an uplink immediately.
1460
1461 * (% style="color:#037691" %)**Downlink Payload:**
1462
1463 (% style="color:#4472c4" %)** 0x08 FF**(%%), RS485-BL will immediately send an uplink.
1464
1465
1466
1467 ==== (% style="color:blue" %)**Clear RS485 Command**(%%) ====
1468
1469
1470 (((
1471 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1472 )))
1473
1474 (((
1475
1476 )))
1477
1478 * (((
1479 (% style="color:#037691" %)**AT Command:**
1480 )))
1481
1482 (((
1483 (% style="color:#4472c4" %) **AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1484 )))
1485
1486 (((
1487 Example screen shot after clear all RS485 commands. 
1488 )))
1489
1490 (((
1491
1492 )))
1493
1494 (((
1495 The uplink screen shot is:
1496 )))
1497
1498 (((
1499 [[image:1654134704555-320.png]]
1500 )))
1501
1502 (((
1503
1504 )))
1505
1506 * (((
1507 (% style="color:#037691" %)**Downlink Payload:**
1508 )))
1509
1510 (((
1511 (% style="color:#4472c4" %)** 0x09 aa bb**(%%) same as AT+CMDEAR=aa,bb
1512 )))
1513
1514
1515
1516 ==== (% style="color:blue" %)**Set Serial Communication Parameters**(%%) ====
1517
1518
1519 (((
1520 Set the Rs485 serial communication parameters:
1521 )))
1522
1523 * (((
1524 (% style="color:#037691" %)**AT Command:**
1525 )))
1526
1527 (((
1528
1529
1530 * **Set Baud Rate:**
1531 )))
1532
1533 (% style="color:#4472c4" %)** AT+BAUDR=9600** (%%) ~/~/ Options: (200~~115200),When using low baud rate or receiving multiple bytes, you need to use AT+CMDDL to increase the receive timeout (the default receive timeout is 300ms), otherwise data will be lost
1534
1535
1536 * **Set UART Parity**
1537
1538 (% style="color:#4472c4" %)** AT+PARITY=0**  (%%) ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1539
1540
1541 * **Set STOPBIT**
1542
1543 (% style="color:#4472c4" %)** AT+STOPBIT=0** (%%) ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1544
1545
1546 * (((
1547 (% style="color:#037691" %)**Downlink Payload:**
1548 )))
1549
1550 (((
1551 (% style="color:#4472c4" %)** A7 01 aa bb**(%%): Same  AT+BAUDR=hex(aa bb)*100
1552 )))
1553
1554 (((
1555
1556
1557 **Example:**
1558 )))
1559
1560 * (((
1561 A7 01 00 60   same as AT+BAUDR=9600
1562 )))
1563 * (((
1564 A7 01 04 80  same as AT+BAUDR=115200
1565 )))
1566
1567 (((
1568 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1569 )))
1570
1571 (((
1572 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1573 )))
1574
1575
1576
1577 ==== (% style="color:blue" %)**Configure Databit(Since version 1.4.0)**(%%) ====
1578
1579 * (((
1580 (% style="color:#037691" %)**AT Command:**
1581 )))
1582
1583 **~ AT+DATABIT=7  **~/~/ Set the data bits to 7
1584
1585 **~ AT+DATABIT=8  **~/~/Set the data bits to 8
1586
1587
1588 * (((
1589 (% style="color:#037691" %)**Downlink Payload:**
1590 )))
1591
1592 **~ A7 04 07**: Same as  AT+DATABIT=7
1593
1594 **~ A7 04 08**: Same as  AT+DATABIT=8
1595
1596
1597
1598 ==== (% style="color:blue" %)**Encrypted payload**(%%) ====
1599
1600 (((
1601
1602 )))
1603
1604 * (((
1605 (% style="color:#037691" %)**AT Command:**
1606 )))
1607
1608 (% style="color:#4472c4" %)** AT+DECRYPT=1 **(%%)** **~/~/ The payload is uploaded without encryption
1609
1610 (% style="color:#4472c4" %)** AT+DECRYPT=0   **(%%)~/~/  Encrypt when uploading payload (default)
1611
1612
1613
1614 ==== (% style="color:blue" %)**Get sensor value**(%%) ====
1615
1616 (((
1617
1618 )))
1619
1620 * (((
1621 (% style="color:#037691" %)**AT Command:**
1622 )))
1623
1624 (% style="color:#4472c4" %)** AT+GETSENSORVALUE=0 **(%%)** **~/~/ The serial port gets the reading of the current sensor
1625
1626 (% style="color:#4472c4" %)** AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1627
1628
1629
1630 ==== (% style="color:blue" %)**Resets the downlink packet count**(%%) ====
1631
1632 (((
1633
1634 )))
1635
1636 * (((
1637 (% style="color:#037691" %)**AT Command:**
1638 )))
1639
1640 (% style="color:#4472c4" %)** AT+DISFCNTCHECK=0    **(%%) ~/~/  When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1641
1642 (% style="color:#4472c4" %)** AT+DISFCNTCHECK=1    **(%%) ~/~/  When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1643
1644
1645
1646 ==== (% style="color:blue" %)**When the limit bytes are exceeded, upload in batches**(%%) ====
1647
1648 (((
1649
1650 )))
1651
1652 * (((
1653 (% style="color:#037691" %)**AT Command:**
1654 )))
1655
1656 (% style="color:#4472c4" %)** AT+DISMACANS=0**  (%%) ~/~/  When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1657
1658 (% style="color:#4472c4" %)** AT+DISMACANS=1**  (%%) ~/~/  When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1659
1660
1661 * (((
1662 (% style="color:#037691" %)**Downlink Payload**
1663 )))
1664
1665 (% style="color:#4472c4" %)** 0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1666
1667
1668
1669 ==== (% style="color:blue" %)**Copy downlink to uplink **(%%) ====
1670
1671 (((
1672
1673 )))
1674
1675 * (((
1676 (% style="color:#037691" %)**AT Command:**
1677 )))
1678
1679 (% style="color:#4472c4" %)** AT+RPL=5** (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1680
1681
1682 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1683
1684
1685 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1686
1687
1688
1689 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1690
1691
1692 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1693
1694
1695 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1696
1697
1698
1699 ==== (% style="color:blue" %)**Query version number and frequency band 、TDC**(%%) ====
1700
1701
1702 * (((
1703 (% style="color:#037691" %)**Downlink Payload: 26 01  **(%%) ~/~/ Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1704 )))
1705
1706 **Example:**
1707
1708
1709 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1710
1711
1712
1713 ==== (% style="color:blue" %)**Control output power duration**(%%) ====
1714
1715
1716 (((
1717 User can set the output power duration before each sampling.
1718 )))
1719
1720 * (((
1721 (% style="color:#037691" %)**AT Command:**
1722 )))
1723
1724 (((
1725 **Example:**
1726 )))
1727
1728 (((
1729 (% style="color:#4472c4" %)** AT+3V3T=1000**(%%)  ~/~/ 3V3 output power will open 1s before each sampling.
1730 )))
1731
1732 (((
1733 (% style="color:#4472c4" %)** AT+5VT=1000**  (%%) ~/~/ +5V output power will open 1s before each sampling.
1734 )))
1735
1736 (((
1737
1738 )))
1739
1740 * (((
1741 (% style="color:#037691" %)**LoRaWAN Downlink Command:**
1742 )))
1743
1744 (((
1745 (% style="color:#4472c4" %)** 07 01 aa bb** (%%) Same as AT+5VT=(aa bb)
1746 )))
1747
1748 (((
1749 (% style="color:#4472c4" %)** 07 02 aa bb** (%%) Same as AT+3V3T=(aa bb)
1750 )))
1751
1752
1753 == 3.6 Buttons ==
1754
1755
1756 (% border="1" cellspacing="5" style="background-color:#ffffcc; color:green; width:233px" %)
1757 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1758 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1759
1760
1761
1762 == 3.7 +3V3 Output(Since v1.3.3) ==
1763
1764
1765 (((
1766 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1767 )))
1768
1769 (((
1770 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1771 )))
1772
1773 (((
1774 The +3V3 output time can be controlled by AT Command.
1775 )))
1776
1777 (((
1778
1779 )))
1780
1781 (((
1782 (% style="color:#037691" %)**AT+3V3T=1000**
1783 )))
1784
1785 (((
1786
1787 )))
1788
1789 (((
1790 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1791 )))
1792
1793 (((
1794 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1795 )))
1796
1797
1798 == 3.8 +5V Output(Since v1.3.3) ==
1799
1800
1801 (((
1802 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1803 )))
1804
1805 (((
1806 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1807 )))
1808
1809 (((
1810 The 5V output time can be controlled by AT Command.
1811 )))
1812
1813 (((
1814 (% style="color:red" %)**(AT+5VT increased from the maximum 5000ms to 65000ms.Since v1.4.0)**
1815 )))
1816
1817 (((
1818 (% style="color:#037691" %)**AT+5VT=1000**
1819 )))
1820
1821 (((
1822
1823 )))
1824
1825 (((
1826 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1827 )))
1828
1829 (((
1830 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1831 )))
1832
1833
1834 == 3.9 LEDs ==
1835
1836
1837 (% border="1" cellspacing="5" style="background-color:#ffffcc; color:green; width:332px" %)
1838 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1839 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1840
1841
1842
1843 == 3.10 Switch Jumper ==
1844
1845
1846 (% border="1" cellspacing="5" style="background-color:#ffffcc; color:green; width:463px" %)
1847 |=(% style="width: 123px;" %)**Switch Jumper**|=(% style="width: 336px;" %)**Feature**
1848 |(% style="width:123px" %)**SW1**|(% style="width:336px" %)ISP position: Upgrade firmware via UART
1849 Flash position: Configure device, check running status.
1850 |(% style="width:123px" %)**SW2**|(% style="width:336px" %)5V position: set to compatible with 5v I/O.
1851 3.3v position: set to compatible with 3.3v I/O.,
1852
1853 (((
1854 (% style="color:blue" %)** +3.3V**(%%): is always ON
1855 )))
1856
1857 (((
1858 (% style="color:blue" %)** +5V**(%%): Only open before every sampling. The time is by default, it is (% style="color:#4472c4" %)** AT+5VT=0**(%%).  Max open time. 65000 ms.(Since v1.4.0)
1859 )))
1860
1861
1862 = 4. Case Study =
1863
1864
1865 User can check this URL for some case studies:  [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1866
1867
1868 = 5. Use AT Command =
1869
1870 == 5.1 Access AT Command ==
1871
1872
1873 (((
1874 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1875
1876
1877 )))
1878
1879 [[image:1654135840598-282.png]]
1880
1881
1882 (((
1883 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1884
1885
1886 )))
1887
1888 [[image:1654136105500-922.png]]
1889
1890
1891 (((
1892 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1893 )))
1894
1895
1896 == 5.2 Common AT Command Sequence ==
1897
1898 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1899
1900
1901 If device has not joined network yet:
1902
1903 * (% style="color:#037691" %)**AT+FDR**
1904 * (% style="color:#037691" %)**AT+NJM=0**
1905 * (% style="color:#037691" %)**ATZ**
1906
1907 (((
1908
1909
1910 If device already joined network:
1911
1912 * (% style="color:#037691" %)**AT+NJM=0**
1913 * (% style="color:#037691" %)**ATZ**
1914 )))
1915
1916
1917
1918 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1919
1920
1921 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1922
1923 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%) Set to ABP mode
1924
1925 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) Set the Adaptive Data Rate Off
1926
1927 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%) Set Data Rate
1928
1929 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1930
1931 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%)  Set transmit frequency to 868.4Mhz
1932
1933 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1934
1935 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1936
1937 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1938
1939 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1940
1941
1942 (% style="color:red" %)**Note:**
1943
1944 (((
1945 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1946 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1947 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1948 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1949
1950
1951 )))
1952
1953 [[image:1654136435598-589.png]]
1954
1955
1956
1957 = 6. FAQ =
1958
1959 == 6.1 How to upgrade the image? ==
1960
1961
1962 (((
1963 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1964 )))
1965
1966 * (((
1967 Support new features
1968 )))
1969 * (((
1970 For bug fix
1971 )))
1972 * (((
1973 Change LoRaWAN bands.
1974 )))
1975
1976 (((
1977 Below shows the hardware connection for how to upload an image to RS485-BL:
1978 )))
1979
1980 [[image:1654136646995-976.png]]
1981
1982
1983 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1984
1985
1986 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACc1xfL4lk-ZKECY3_JaUeVa/RS485-BL/Firmware?dl=0&subfolder_nav_tracking=1]].
1987
1988
1989 (% style="color:blue" %)**Step3**(%%)**: **Open flashloader; choose the correct COM port to update.
1990
1991
1992 [[image:image-20220602102605-1.png]]
1993
1994
1995 [[image:image-20220602102637-2.png]]
1996
1997
1998 [[image:image-20220602102715-3.png]]
1999
2000
2001 == 6.2 How to change the LoRa Frequency Bands/Region? ==
2002
2003
2004 (((
2005 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2006 )))
2007
2008
2009 == 6.3 How many RS485-Slave can RS485-BL connects? ==
2010
2011
2012 (((
2013 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
2014 )))
2015
2016
2017 == 6.4 How to Use RS485-BL  to connect to RS232 devices? ==
2018
2019
2020 [[Use RS485-BL or RS485-LN to connect to RS232 devices. - DRAGINO>>url:http://8.211.40.43:8080/xwiki/bin/view/Main/RS485%20to%20RS232/]]
2021
2022
2023 == 6.5 How to judge whether there is a problem with the set COMMAND ==
2024
2025 === 6.5.1 Introduce: ===
2026
2027
2028 Users can use below the structure to fast debug the communication between RS485BL and RS485-LN. The principle is to put the PC in the RS485 network and sniff the packet between Modbus MTU and RS485-BL/LN. We can (% style="color:blue" %)**use this way to:**
2029
2030 1. Test if Modbus-MTU works with PC commands.
2031 1. Check if RS485-LN sent the expected command to Mobus-MTU
2032 1. Check if Modbus-MTU return back the expected result to RS485-LN.
2033 1. If both b) and c) has issue, we can compare PC’s output and RS485-LN output.
2034
2035 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-1.png?width=680&height=380&rev=1.1||alt="image-20221130104310-1.png" height="380" width="680"]]
2036
2037
2038 (% style="color:blue" %)**Example Connection: **
2039
2040 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-2.png?rev=1.1||alt="image-20221130104310-2.png"]]
2041
2042
2043 === 6.5.2 Set up PC to monitor RS485 network With Serial tool ===
2044
2045
2046 (% style="color:red" %)**Note: Receive and send set to hex mode**
2047
2048 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-3.png?width=714&height=616&rev=1.1||alt="image-20221130104310-3.png" height="616" width="714"]]
2049
2050
2051 === 6.5.3 With ModRSsim2: ===
2052
2053
2054 (% style="color:blue" %)**(1) Select serial port MODBUS RS-232**
2055
2056 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-4.png?width=865&height=390&rev=1.1||alt="image-20221130104310-4.png" height="390" width="865"]]
2057
2058
2059 (% style="color:blue" %)**(2) Click the serial port icon**
2060
2061 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-5.png?width=870&height=392&rev=1.1||alt="image-20221130104310-5.png" height="392" width="870"]]
2062
2063
2064 (% style="color:blue" %)**(3) After selecting the correct serial port and baud rate, click ok**
2065
2066 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-6.png?rev=1.1||alt="image-20221130104310-6.png"]]
2067
2068
2069 (% style="color:blue" %)**(4) Click the comms.**
2070
2071 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-7.png?width=835&height=376&rev=1.1||alt="image-20221130104310-7.png" height="376" width="835"]]
2072
2073 Run RS485-LN/BL command and monitor if it is correct.
2074
2075
2076 === 6.5.4 Example – Test the CFGDEV command ===
2077
2078
2079 RS485-LN sent below command:
2080
2081 (% style="color:blue" %)**AT+CFGDEV=01 03 20 00 01 85 c0,1**(%%) to RS485 network, and PC is able to get this command and return commands from MTU to show in the serial tool.
2082
2083 We can see the output from the Serial port tool to analyze. And check if they are expected result.
2084
2085 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-8.png?width=797&height=214&rev=1.1||alt="image-20221130104310-8.png" height="214" width="797"]]
2086
2087
2088 We can also use ModRSsim2 to see the output.
2089
2090 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-9.png?width=729&height=531&rev=1.1||alt="image-20221130104310-9.png" height="531" width="729"]]
2091
2092
2093 === 6.5.5 Example – Test CMD command sets. ===
2094
2095
2096 Run (% style="color:blue" %)**AT+SENSORVALUE=1**(%%) to test the CMD commands set in RS485-LN.
2097
2098 (% style="color:blue" %)**Serial port tool:**
2099
2100 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-10.png?width=844&height=339&rev=1.1||alt="image-20221130104310-10.png" height="339" width="844"]]
2101
2102
2103 (% style="color:blue" %)**ModRSsim2:**
2104
2105 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-11.png?width=962&height=281&rev=1.1||alt="image-20221130104310-11.png" height="281" width="962"]]
2106
2107
2108 === 6.5.6 Test with PC ===
2109
2110
2111 If there is still have problem to set up correctly the commands between RS485-LN and MTU. User can test the correct RS485 command set in PC and compare with the RS485 command sent out via RS485-LN. as long as both commands are the same, the MTU should return correct result.
2112
2113 Or User can send the working commands set in PC serial tool to Dragino Support to check what should be configured in RS485-LN.
2114
2115 (% style="color:blue" %)**Connection method:**
2116
2117 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-12.png?rev=1.1||alt="image-20221130104310-12.png"]]
2118
2119
2120 (% style="color:blue" %)**Link situation:**
2121
2122 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-13.png?width=486&height=458&rev=1.1||alt="image-20221130104310-13.png" height="458" width="486"]]
2123
2124
2125 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-14.png?width=823&height=371&rev=1.1||alt="image-20221130104310-14.png" height="371" width="823"]]
2126
2127
2128 == 6.6 Where to get the decoder for RS485-BL? ==
2129
2130
2131 The decoder for RS485-BL needs to be written by yourself. Because the sensor to which the user is connected is custom, the read device data bytes also need custom parsing, so there is no universal decoder. We can only provide [[templates>>https://github.com/dragino/dragino-end-node-decoder/tree/main/RS485-BL]] for decoders (no intermediate data parsing part involved)
2132
2133
2134 = 7. Trouble Shooting =
2135
2136 == 7.1 Downlink doesn't work, how to solve it? ==
2137
2138
2139 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
2140
2141
2142 == 7.2 Why I can't join TTN V3 in US915 /AU915 bands? ==
2143
2144
2145 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2146
2147
2148 = 8. Order Info =
2149
2150
2151 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
2152
2153 (% style="color:blue" %)**XXX:**
2154
2155 * (% style="color:red" %)**EU433**(%%):  frequency bands EU433
2156 * (% style="color:red" %)**EU868**(%%):  frequency bands EU868
2157 * (% style="color:red" %)**KR920**(%%):  frequency bands KR920
2158 * (% style="color:red" %)**CN470**(%%):  frequency bands CN470
2159 * (% style="color:red" %)**AS923**(%%):  frequency bands AS923
2160 * (% style="color:red" %)**AU915**(%%):  frequency bands AU915
2161 * (% style="color:red" %)**US915**(%%):  frequency bands US915
2162 * (% style="color:red" %)**IN865**(%%):  frequency bands IN865
2163 * (% style="color:red" %)**RU864**(%%):  frequency bands RU864
2164 * (% style="color:red" %)**KZ865**(%%):  frequency bands KZ865
2165
2166
2167
2168 = 9. Packing Info =
2169
2170
2171 (((
2172 **Package Includes**:
2173 )))
2174
2175 * (((
2176 RS485-BL x 1
2177 )))
2178 * (((
2179 Stick Antenna for LoRa RF part x 1
2180 )))
2181 * (((
2182 Program cable x 1
2183 )))
2184
2185 (((
2186 **Dimension and weight**:
2187 )))
2188
2189 * (((
2190 Device Size: 13.5 x 7 x 3 cm
2191 )))
2192 * (((
2193 Device Weight: 105g
2194 )))
2195 * (((
2196 Package Size / pcs : 14.5 x 8 x 5 cm
2197 )))
2198 * (((
2199 Weight / pcs : 170g
2200
2201
2202
2203 )))
2204
2205 = 10. Support =
2206
2207
2208 * (((
2209 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2210 )))
2211 * (((
2212 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2213
2214
2215
2216 )))
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0