Version 70.1 by Bei Jinggeng on 2022/11/30 10:56

Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="404" width="404"]]
3
4
5
6
7 **Table of Contents:**
8
9 {{toc/}}
10
11
12
13
14 = 1.Introduction =
15
16
17 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
18
19
20 (((
21 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
22 )))
23
24 (((
25 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
26 )))
27
28 (((
29 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
30 )))
31
32 (((
33 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
34 )))
35
36 (((
37 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
38 )))
39
40 (((
41 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
42 )))
43
44 (((
45 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
46
47
48 )))
49
50 [[image:1652953304999-717.png||height="424" width="733"]]
51
52
53
54 == 1.2 Specifications ==
55
56
57 (% style="color:#037691" %)**Hardware System:**
58
59 * STM32L072xxxx MCU
60 * SX1276/78 Wireless Chip 
61 * Power Consumption (exclude RS485 device):
62 ** Idle: 6uA@3.3v
63 ** 20dB Transmit: 130mA@3.3v
64 * 5V sampling maximum current:500mA
65
66 (% style="color:#037691" %)**Interface for Model:**
67
68 * 1 x RS485 Interface
69 * 1 x TTL Serial , 3.3v or 5v.
70 * 1 x I2C Interface, 3.3v or 5v.
71 * 1 x one wire interface
72 * 1 x Interrupt Interface
73 * 1 x Controllable 5V output, max
74
75 (% style="color:#037691" %)**LoRa Spec:**
76
77 * Frequency Range:
78 ** Band 1 (HF): 862 ~~ 1020 Mhz
79 ** Band 2 (LF): 410 ~~ 528 Mhz
80 * 168 dB maximum link budget.
81 * +20 dBm - 100 mW constant RF output vs.
82 * Programmable bit rate up to 300 kbps.
83 * High sensitivity: down to -148 dBm.
84 * Bullet-proof front end: IIP3 = -12.5 dBm.
85 * Excellent blocking immunity.
86 * Fully integrated synthesizer with a resolution of 61 Hz.
87 * LoRa modulation.
88 * Built-in bit synchronizer for clock recovery.
89 * Preamble detection.
90 * 127 dB Dynamic Range RSSI.
91 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
92
93 == 1.3 Features ==
94
95
96 * LoRaWAN Class A & Class C protocol (default Class A)
97 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864/MA869
98 * AT Commands to change parameters
99 * Remote configure parameters via LoRaWAN Downlink
100 * Firmware upgradable via program port
101 * Support multiply RS485 devices by flexible rules
102 * Support Modbus protocol
103 * Support Interrupt uplink
104
105 == 1.4 Applications ==
106
107
108 * Smart Buildings & Home Automation
109 * Logistics and Supply Chain Management
110 * Smart Metering
111 * Smart Agriculture
112 * Smart Cities
113 * Smart Factory
114
115 == 1.5 Firmware Change log ==
116
117
118 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
119
120
121
122 == 1.6 Hardware Change log ==
123
124 (((
125
126
127 (((
128 **v1.4**
129 )))
130 )))
131
132 (((
133 (((
134 ~1. Change Power IC to TPS22916
135 )))
136 )))
137
138 (((
139
140 )))
141
142 (((
143 (((
144 **v1.3**
145 )))
146 )))
147
148 (((
149 (((
150 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
151 )))
152 )))
153
154 (((
155
156 )))
157
158 (((
159 (((
160 **v1.2**
161 )))
162 )))
163
164 (((
165 (((
166 Release version ​​​​​
167 )))
168
169
170 )))
171
172
173 = 2. Pin mapping and Power ON Device =
174
175
176 (((
177 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
178
179
180 )))
181
182 [[image:1652953055962-143.png||height="387" width="728"]]
183
184
185 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
186
187
188
189 = 3. Operation Mode =
190
191
192 == 3.1 How it works? ==
193
194
195 (((
196 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
197
198
199
200 )))
201
202 == 3.2 Example to join LoRaWAN network ==
203
204
205 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
206
207 [[image:1652953414711-647.png||height="337" width="723"]]
208
209
210 (((
211 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
212 )))
213
214 (((
215 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
216
217
218 )))
219
220 (((
221 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from RS485-BL.
222 )))
223
224 (((
225 Each RS485-BL is shipped with a sticker with unique device EUI:
226 )))
227
228 [[image:1652953462722-299.png]]
229
230
231 (((
232 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
233 )))
234
235 (((
236 **Add APP EUI in the application.**
237 )))
238
239
240 [[image:image-20220519174512-1.png]]
241
242 [[image:image-20220519174512-2.png||height="328" width="731"]]
243
244 [[image:image-20220519174512-3.png||height="556" width="724"]]
245
246 [[image:image-20220519174512-4.png]]
247
248
249 You can also choose to create the device manually.
250
251 [[image:1652953542269-423.png||height="710" width="723"]]
252
253
254 Add APP KEY and DEV EUI
255
256 [[image:1652953553383-907.png||height="514" width="724"]]
257
258
259
260 (((
261 (% style="color:blue" %)**Step 2**(%%): Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
262
263
264 )))
265
266 [[image:1652953568895-172.png||height="232" width="724"]]
267
268
269
270 == 3.3 Configure Commands to read data ==
271
272
273 (((
274 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
275
276
277
278 )))
279
280 === 3.3.1 Configure UART settings for RS485 or TTL communication(Since v1.3.3) ===
281
282
283 (((
284 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
285
286
287 )))
288
289 (((
290 (% style="color:blue" %)**1.  RS485-MODBUS mode:**
291
292
293 )))
294
295 (((
296 (% style="color:#037691" %)**AT+MOD=1**  (%%) ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
297
298
299
300 )))
301
302 (((
303 (% style="color:blue" %)**2.  TTL mode:**
304
305
306 )))
307
308 (((
309 (% style="color:#037691" %)**AT+MOD=2**  (%%) ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
310 )))
311
312 (((
313 RS485-BL default UART settings is (% style="color:green" %)**9600, no parity, stop bit 1**(%%). If the sensor has a different settings, user can change the RS485-BL setting to match.
314
315
316 )))
317
318 (% border="1" cellspacing="5" style="background-color:#ffffcc; color:green; width:510px" %)
319 |=(% style="width: 140px;" %)(((
320 (((
321 **AT Commands**
322 )))
323 )))|=(% style="width: 200px;" %)(((
324 (((
325 **Description**
326 )))
327 )))|=(% style="width: 170px;" %)(((
328 (((
329 **Example**
330 )))
331 )))
332 |(% style="width:122px" %)(((
333 (((
334 AT+BAUDR
335 )))
336 )))|(% style="width:112px" %)(((
337 (((
338 Set the baud rate (for RS485 connection).
339
340 Default Value is: 9600.
341 )))
342 )))|(% style="width:152px" %)(((
343 (((
344 (((
345 AT+BAUDR=9600
346 )))
347 )))
348
349 (((
350 (((
351 Options: (1200,2400,4800,14400,19200,115200)
352 )))
353 )))
354 )))
355 |(% style="width:122px" %)(((
356 (((
357 AT+PARITY
358 )))
359 )))|(% style="width:112px" %)(((
360 (((
361 (((
362 Set UART parity (for RS485 connection)
363 )))
364 )))
365
366 (((
367 (((
368 Default Value is: no parity.
369 )))
370 )))
371 )))|(% style="width:152px" %)(((
372 (((
373 (((
374 AT+PARITY=0
375 )))
376 )))
377
378 (((
379 (((
380 Option: 0: no parity, 1: odd parity, 2: even parity
381 )))
382 )))
383 )))
384 |(% style="width:122px" %)(((
385 (((
386 AT+STOPBIT
387 )))
388 )))|(% style="width:112px" %)(((
389 (((
390 (((
391 Set serial stopbit (for RS485 connection)
392 )))
393 )))
394
395 (((
396 (((
397 Default Value is: 1bit.
398 )))
399 )))
400 )))|(% style="width:152px" %)(((
401 (((
402 (((
403 AT+STOPBIT=0 for 1bit
404 )))
405 )))
406
407 (((
408 (((
409 AT+STOPBIT=1 for 1.5 bit
410 )))
411 )))
412
413 (((
414 (((
415 AT+STOPBIT=2 for 2 bits
416 )))
417 )))
418 )))
419
420 === 3.3.2 Configure sensors ===
421
422
423 (((
424 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
425 )))
426
427 (((
428 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won't run during each sampling.
429
430
431 )))
432
433 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
434 |=(% style="width: 80px;" %)**AT Commands**|=(% style="width: 210px;" %)**Description**|=(% style="width: 210px;" %)**Example**
435 |AT+CFGDEV|(% style="width:80px" %)(((
436 (((
437 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
438 )))
439
440 (((
441 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
442 )))
443
444 (((
445 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
446 )))
447 )))|(% style="width:210px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
448
449 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
450
451
452
453 === 3.3.3 Configure read commands for each sampling ===
454
455
456 (((
457 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
458 )))
459
460 (((
461 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
462 )))
463
464 (((
465 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
466 )))
467
468 (((
469 This section describes how to achieve above goals.
470 )))
471
472 (((
473 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
474
475
476 )))
477
478 (((
479 (% style="color:blue" %)**Command from RS485-BL to Sensor:**
480 )))
481
482 (((
483 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
484
485
486 )))
487
488 (((
489 (% style="color:blue" %)**Handle return from sensors to RS485-BL**:
490 )))
491
492 (((
493 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
494 )))
495
496 * (((
497 (% style="color:blue" %)**AT+DATACUT**
498 )))
499
500 (((
501 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
502
503
504 )))
505
506 * (((
507 (% style="color:blue" %)**AT+SEARCH**
508 )))
509
510 (((
511 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
512 )))
513
514 (((
515
516
517 (% style="color:blue" %)**Define wait timeout:**
518 )))
519
520 (((
521 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
522 )))
523
524 (((
525 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
526 )))
527
528 (((
529
530
531 **Examples:**
532 )))
533
534 (((
535 Below are examples for the how above AT Commands works.
536 )))
537
538 (((
539 (% style="color:blue" %)**AT+COMMANDx **(%%)**: **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
540
541
542 )))
543
544 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:497px" %)
545 |(% style="width:494px" %)(((
546 (((
547 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
548 )))
549
550 (((
551 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
552 )))
553
554 (((
555 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
556 )))
557 )))
558
559 (((
560 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
561 )))
562
563 (((
564 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
565 )))
566
567 (((
568
569 )))
570
571 (((
572 (% style="color:blue" %)**AT+SEARCHx**(%%): This command defines how to handle the return from AT+COMMANDx.
573
574
575 )))
576
577 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:473px" %)
578 |(% style="width:470px" %)(((
579 (((
580 **AT+SEARCHx=aa,xx xx xx xx xx**
581 )))
582
583 * (((
584 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
585 )))
586 * (((
587 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
588 )))
589 )))
590
591 (((
592
593
594 **Examples:**
595
596
597 )))
598
599 (((
600 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
601 )))
602
603 (((
604 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
605 )))
606
607 (((
608 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
609
610
611 )))
612
613 (((
614 [[image:1653271044481-711.png]]
615
616
617 )))
618
619 (((
620 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
621 )))
622
623 (((
624 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
625 )))
626
627 (((
628 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
629
630
631 )))
632
633 (((
634 [[image:1653271276735-972.png]]
635
636
637 )))
638
639 (((
640 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 100 bytes.(Since 1.4.0)
641 )))
642
643 (% style="background-color:#4f81bd; color:white; width:496px" %)
644 |(% style="width:493px" %)(((
645 (((
646 **AT+DATACUTx=a,b,c**
647 )))
648
649 * (((
650 **a: length for the return of AT+COMMAND**
651 )))
652 * (((
653 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
654 )))
655 * (((
656 **c: define the position for valid value.  **
657 )))
658 )))
659
660 (((
661
662
663
664 **Examples:**
665 )))
666
667 * (((
668 (% style="color:blue" %)**Grab bytes:**
669 )))
670
671 (((
672 [[image:1653271581490-837.png||height="313" width="722"]]
673 )))
674
675 (((
676
677
678
679 )))
680
681 * (((
682 (% style="color:blue" %)**Grab a section.**
683 )))
684
685 (((
686 [[image:1653271648378-342.png||height="326" width="720"]]
687 )))
688
689 (((
690
691
692
693 )))
694
695 * (((
696 (% style="color:blue" %)**Grab different sections.**
697 )))
698
699 (((
700 [[image:1653271657255-576.png||height="305" width="730"]]
701
702
703 )))
704
705 (((
706 (((
707 (% style="color:red" %)**Note:**
708 )))
709 )))
710
711 (((
712 (((
713 (% style="color:#037691" %)**AT+SEARCHx** (%%)and (% style="color:#037691" %)**AT+DATACUTx**(%%) can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format** AT+DATACUTx=0,xx,xx** where the return bytes set to **0**.
714
715
716 )))
717 )))
718
719 (((
720 (((
721 **Example:**
722 )))
723 )))
724
725 (((
726 (((
727 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
728 )))
729 )))
730
731 (((
732 (((
733 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
734 )))
735 )))
736
737 (((
738 (((
739 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
740 )))
741 )))
742
743 (((
744 (((
745 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
746 )))
747 )))
748
749 (((
750 (((
751 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
752 )))
753 )))
754
755 (((
756 (((
757 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
758
759
760 )))
761 )))
762
763 (((
764 [[image:1653271763403-806.png]]
765 )))
766
767
768
769 === 3.3.4 Compose the uplink payload ===
770
771
772 (((
773 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
774
775
776 )))
777
778 (((
779 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
780
781
782 )))
783
784 (((
785 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
786 )))
787
788 (((
789 Final Payload is
790 )))
791
792 (((
793 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
794 )))
795
796 (((
797 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
798 )))
799
800 [[image:1653272787040-634.png||height="515" width="719"]]
801
802
803
804 (((
805 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
806
807
808 )))
809
810 (((
811 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
812 )))
813
814 (((
815 Final Payload is
816 )))
817
818 (((
819 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
820 )))
821
822 1. (((
823 Battery Info (2 bytes): Battery voltage
824 )))
825 1. (((
826 PAYVER (1 byte): Defined by AT+PAYVER
827 )))
828 1. (((
829 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
830 )))
831 1. (((
832 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
833 )))
834 1. (((
835 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
836
837
838 )))
839
840 [[image:1653272817147-600.png||height="437" width="717"]]
841
842 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
843
844
845 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
846
847 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% _mstmutation="1" style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
848
849 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% _mstmutation="1" style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
850
851
852 Below are the uplink payloads:
853
854 [[image:1653272901032-107.png]]
855
856
857 (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
858
859 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
860
861 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
862
863 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
864
865 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
866
867 *(% style="color:red" %)** When AT+DATAUP=1, the maximum number of segments is 15, and the maximum total number of bytes is 1500;**
868
869 (% style="color:red" %)** When AT+DATAUP=1 and AT+ADR=0, the maximum number of bytes of each payload is determined by the DR value. (Since v1.4.0)**
870
871 (((
872
873 )))
874
875 * (((
876 (% style="color:blue" %)**If the data is empty, return to the display(Since v1.4.0)**
877
878
879
880 )))
881
882 (% class="wikigeneratedid" %)
883 **1) ** When (% style="color:blue" %)**AT+MOD=1**(%%), if the data intercepted by (% style="color:#037691" %)** AT+DATACUT**(%%) or (% style="color:#037691" %)** AT+MBFUN **(%%)is empty, it will display **NULL**, and the payload will be filled with **n FFs**.
884
885
886 (% class="wikigeneratedid" %)
887 [[image:image-20220824114359-3.png||height="297" width="1106"]]
888
889
890
891 **2)**  When** (% style="color:blue" %)AT+MOD=2(%%)**, if the data intercepted by (% style="color:#037691" %)** AT+DATACUT** (%%)or (% style="color:#037691" %)** AT+MBFUN**(%%) is empty, it will display **NULL**, and the payload will be filled with **n 00s**.
892
893
894 [[image:image-20220824114330-2.png]]
895
896
897
898 === 3.3.5 Uplink on demand ===
899
900
901 (((
902 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
903
904
905 )))
906
907 (((
908 (% style="color:blue" %)** Downlink control command:**
909 )))
910
911 (((
912 (% style="color:#4472c4" %)** 0x08 command**(%%): Poll an uplink with current command set in RS485-BL.
913 )))
914
915 (((
916 (% style="color:#4472c4" %)** 0xA8 command**(%%): Send a command to RS485-BL and uplink the output from sensors.
917
918
919 )))
920
921
922 === 3.3.6 Uplink on Interrupt ===
923
924
925 Put the interrupt sensor between 3.3v_out and GPIO ext.
926
927 [[image:1653273818896-432.png]]
928
929
930 (((
931 (% style="color:#4472c4" %)**AT+INTMOD=0**(%%)  Disable Interrupt
932 )))
933
934 (((
935 (% style="color:#4472c4" %)**AT+INTMOD=1**(%%)  Interrupt trigger by rising or falling edge.
936 )))
937
938 (((
939 (% style="color:#4472c4" %)**AT+INTMOD=2** (%%) Interrupt trigger by falling edge. ( Default Value)
940 )))
941
942 (((
943 (% style="color:#4472c4" %)**AT+INTMOD=3**(%%)  Interrupt trigger by rising edge.
944
945
946 )))
947
948
949 == 3.4 Uplink Payload ==
950
951
952 [[image:image-20220606105412-1.png]]
953
954
955 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
956
957
958 (((
959 {{{function Decoder(bytes, port) {}}}
960 )))
961
962 (((
963 {{{//Payload Formats of RS485-BL Deceive}}}
964 )))
965
966 (((
967 {{{return {}}}
968 )))
969
970 (((
971 {{{ //Battery,units:V}}}
972 )))
973
974 (((
975 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
976 )))
977
978 (((
979 {{{ //GPIO_EXTI }}}
980 )))
981
982 (((
983 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
984 )))
985
986 (((
987 {{{ //payload of version}}}
988 )))
989
990 (((
991 {{{ Pay_ver:bytes[2],}}}
992 )))
993
994 (((
995 {{{ }; }}}
996 )))
997
998 (((
999 **}**
1000
1001
1002 )))
1003
1004 (((
1005 TTN V3 uplink screen shot.
1006 )))
1007
1008 [[image:1653274001211-372.png||height="192" width="732"]]
1009
1010
1011
1012 == 3.5 Configure RS485-BL via AT or Downlink ==
1013
1014
1015 (((
1016 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
1017 )))
1018
1019 (((
1020 There are two kinds of Commands:
1021 )))
1022
1023 * (((
1024 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1025 )))
1026
1027 * (((
1028 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
1029
1030
1031
1032
1033 )))
1034
1035 === 3.5.1 Common Commands: ===
1036
1037
1038 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1039
1040
1041
1042 === 3.5.2 Sensor related commands: ===
1043
1044
1045
1046 ==== (% style="color:blue" %)**Choose Device Type (RS485 or TTL)(Since v1.3.3)**(%%) ====
1047
1048
1049 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
1050
1051 * (% style="color:#037691" %)**AT Command**
1052
1053 (% style="color:#4472c4" %)** AT+MOD=1** (%%) ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
1054
1055 (% style="color:#4472c4" %)** AT+MOD=2** (%%) ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
1056
1057
1058 * (% style="color:#037691" %)**Downlink Payload**
1059
1060 (% style="color:#4472c4" %)** 0A aa** (%%) ~-~->  same as AT+MOD=aa
1061
1062
1063
1064
1065 ==== (% style="color:blue" %)**RS485 Debug Command (AT+CFGDEV)**(%%) ====
1066
1067
1068 (((
1069 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling. Max Length of AT+CFGDEV is **40 bytes**.
1070 )))
1071
1072 (((
1073 * (% style="color:#037691" %)**AT Command**
1074
1075 (((
1076 (% style="color:#4472c4" %)** AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**  (%%) m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
1077 )))
1078 )))
1079
1080 (((
1081
1082 )))
1083
1084 * (((
1085 (% style="color:#037691" %)**Downlink Payload**
1086 )))
1087
1088 (((
1089 Format:  (% style="color:#4472c4" %)** A8 MM NN XX XX XX XX YY**
1090 )))
1091
1092 (((
1093 Where:
1094 )))
1095
1096 * (((
1097 MM: 1: add CRC-16/MODBUS ; 0: no CRC
1098 )))
1099 * (((
1100 NN: The length of RS485 command
1101 )))
1102 * (((
1103 XX XX XX XX: RS485 command total NN bytes
1104 )))
1105 * (((
1106 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
1107
1108
1109
1110 )))
1111
1112 (((
1113 (% style="color:blue" %)**Example 1:**
1114 )))
1115
1116 (((
1117 To connect a Modbus Alarm with below commands.
1118 )))
1119
1120 * (((
1121 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
1122 )))
1123
1124 * (((
1125 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1126 )))
1127
1128 (((
1129 So if user want to use downlink command to control to RS485 Alarm, he can use:
1130 )))
1131
1132 (((
1133 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1134 )))
1135
1136 (((
1137 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1138 )))
1139
1140 (((
1141 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
1142 )))
1143
1144 (((
1145
1146
1147
1148 )))
1149
1150 (((
1151 (% style="color:blue" %)**Example 2:**
1152 )))
1153
1154 (((
1155 Check TTL Sensor return:
1156 )))
1157
1158 (((
1159 [[image:1654132684752-193.png]]
1160 )))
1161
1162
1163
1164
1165 ==== (% style="color:blue" %)**Set Payload version**(%%) ====
1166
1167
1168 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1169
1170 * (% style="color:#037691" %)**AT Command:**
1171
1172 (% style="color:#4472c4" %)** AT+PAYVER:   **(%%)Set PAYVER field = 1
1173
1174
1175 * (% style="color:#037691" %)**Downlink Payload:**
1176
1177 (% style="color:#4472c4" %)** 0xAE 01** (%%) ~-~-> Set PAYVER field =  0x01
1178
1179 (% style="color:#4472c4" %)** 0xAE 0F** (%%) ~-~-> Set PAYVER field =  0x0F
1180
1181
1182
1183
1184 ==== (% style="color:blue" %)**Set RS485 Sampling Commands**(%%) ====
1185
1186
1187 (((
1188 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1189 )))
1190
1191 (((
1192 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1193 )))
1194
1195 (((
1196
1197 )))
1198
1199 * (((
1200 (% style="color:#037691" %)**AT Command:**
1201 )))
1202
1203 (% style="color:#4472c4" %)** AT+COMMANDx: **(%%)** Configure RS485 read command to sensor.**
1204
1205 (% style="color:#4472c4" %)** AT+DATACUTx: **(%%)** Configure how to handle return from RS485 devices.**
1206
1207 (% style="color:#4472c4" %)** AT+SEARCHx:  **(%%)** Configure search command**
1208
1209
1210 * (((
1211 (% style="color:#037691" %)**Downlink Payload:**
1212 )))
1213
1214 (((
1215 (% style="color:#4472c4" %)** 0xAF**(%%) downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1216 )))
1217
1218 (((
1219 (% style="color:red" %)**Note : if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.**
1220 )))
1221
1222 (((
1223 Format: AF MM NN LL XX XX XX XX YY
1224 )))
1225
1226 (((
1227 Where:
1228 )))
1229
1230 * (((
1231 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1232 )))
1233 * (((
1234 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1235 )))
1236 * (((
1237 LL:  The length of AT+COMMAND or AT+DATACUT command
1238 )))
1239 * (((
1240 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1241 )))
1242 * (((
1243 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1244 )))
1245
1246 (((
1247
1248
1249
1250 **Example:**
1251 )))
1252
1253 (((
1254 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1255 )))
1256
1257 (((
1258 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1259 )))
1260
1261 (((
1262 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1263 )))
1264
1265 (((
1266
1267 )))
1268
1269 (((
1270 (% style="color:#4472c4" %)** 0xAB**(%%) downlink command can be used for set AT+SEARCHx
1271 )))
1272
1273 (((
1274
1275
1276 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1277 )))
1278
1279 * (((
1280 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1281 )))
1282 * (((
1283 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1284 )))
1285
1286 (((
1287 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1288 )))
1289
1290
1291
1292
1293 ==== (% style="color:blue" %)**Fast command to handle MODBUS device**(%%) ====
1294
1295
1296 (((
1297 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1298 )))
1299
1300 (((
1301 This command is valid since v1.3 firmware version
1302 )))
1303
1304 (((
1305
1306 )))
1307
1308 (((
1309 (% style="color:#037691" %)**AT+MBFUN has only two value:**
1310 )))
1311
1312 * (((
1313 (% style="color:#4472c4" %)** AT+MBFUN=1**(%%): Enable Modbus reading. And get response base on the MODBUS return
1314 )))
1315
1316 (((
1317 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1318 )))
1319
1320 * (((
1321 (% style="color:#4472c4" %)**AT+MBFUN=0**(%%): Disable Modbus fast reading.
1322 )))
1323
1324 (((
1325
1326
1327 **Example:**
1328 )))
1329
1330 * (((
1331 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1332 )))
1333 * (((
1334 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1335 )))
1336 * (((
1337 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1338 )))
1339
1340 [[image:1654133913295-597.png]]
1341
1342
1343 [[image:1654133954153-643.png]]
1344
1345
1346 * (((
1347 (% style="color:#037691" %)**Downlink Commands:**
1348 )))
1349
1350 (((
1351 (% style="color:#4472c4" %)** A9 aa** (%%)~-~-> Same as AT+MBFUN=aa
1352 )))
1353
1354
1355
1356
1357 ==== (% style="color:blue" %)**RS485 command timeout**(%%) ====
1358
1359
1360 (((
1361 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1362 )))
1363
1364 (((
1365 Default value: 0, range:  0 ~~ 5 seconds
1366 )))
1367
1368 (((
1369
1370 )))
1371
1372 (((
1373 * (% style="color:#037691" %)**AT Command:**
1374
1375 (% style="color:#4472c4" %)**AT+CMDDLaa=hex(bb cc)**
1376
1377
1378 )))
1379
1380 (((
1381 **Example:**
1382 )))
1383
1384 (((
1385 **AT+CMDDL1=1000** to send the open time to 1000ms
1386 )))
1387
1388 (((
1389
1390 )))
1391
1392 * (((
1393 (% style="color:#037691" %)**Downlink Payload:**
1394 )))
1395
1396 (((
1397 (% style="color:#4472c4" %) **0x AA aa bb cc**(%%)  Same as:** AT+CMDDLaa=hex(bb cc)**
1398 )))
1399
1400 (((
1401
1402
1403 **Example:**
1404 )))
1405
1406 (((
1407 (% style="color:#4472c4" %)** 0xAA 01 03 E8**(%%)  ~-~-> Same as (% _mstmutation="1" %)**AT+CMDDL1=1000 ms**
1408 )))
1409
1410
1411
1412
1413 ==== (% style="color:blue" %)**Uplink payload mode**(%%) ====
1414
1415
1416 (((
1417 Define to use one uplink or multiple uplinks for the sampling.
1418 )))
1419
1420 (((
1421 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1422 )))
1423
1424 (((
1425 * (% style="color:#037691" %)**AT Command:**
1426
1427 (% style="color:#4472c4" %)** AT+DATAUP=0**
1428
1429 (% style="color:#4472c4" %)** AT+DATAUP=1**
1430 )))
1431
1432 (((
1433
1434 )))
1435
1436 * (((
1437 (% style="color:#037691" %)**Downlink Payload:**
1438 )))
1439
1440 (((
1441 (% style="color:#4472c4" %)** 0xAD 00**  (%%) **~-~->** Same as AT+DATAUP=0
1442 )))
1443
1444 (((
1445 (% style="color:#4472c4" %)** 0xAD 01**   (%%)**~-~->** Same as AT+DATAUP=1  ~/~/Each uplink is sent to the server one after the other as it is segmented.
1446
1447
1448 )))
1449
1450 (((
1451 * (% style="color:#037691" %)**AT Command:**
1452
1453 (% style="color:#4472c4" %)**AT+DATAUP=1,Timeout**
1454 )))
1455
1456 (((
1457
1458 )))
1459
1460 * (((
1461 (% style="color:#037691" %)**Downlink Payload:**
1462 )))
1463
1464 (((
1465 (% style="color:#4472c4" %)** 0xAD 01 00 00 14** (%%) **~-~->** Same as AT+DATAUP=1,20000 ~/~/(00 00 14 is 20 seconds)
1466 )))
1467
1468 (((
1469 Each uplink is sent to the server at 20-second intervals when segmented.
1470 )))
1471
1472
1473
1474
1475 ==== (% style="color:blue" %)**Manually trigger an Uplink**(%%) ====
1476
1477
1478 Ask device to send an uplink immediately.
1479
1480 * (% style="color:#037691" %)**Downlink Payload:**
1481
1482 (% style="color:#4472c4" %)** 0x08 FF**(%%), RS485-BL will immediately send an uplink.
1483
1484
1485
1486
1487 ==== (% style="color:blue" %)**Clear RS485 Command**(%%) ====
1488
1489
1490 (((
1491 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1492 )))
1493
1494 (((
1495
1496 )))
1497
1498 * (((
1499 (% style="color:#037691" %)**AT Command:**
1500 )))
1501
1502 (((
1503 (% style="color:#4472c4" %) **AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1504 )))
1505
1506 (((
1507 Example screen shot after clear all RS485 commands. 
1508 )))
1509
1510 (((
1511
1512 )))
1513
1514 (((
1515 The uplink screen shot is:
1516 )))
1517
1518 (((
1519 [[image:1654134704555-320.png]]
1520 )))
1521
1522 (((
1523
1524 )))
1525
1526 * (((
1527 (% style="color:#037691" %)**Downlink Payload:**
1528 )))
1529
1530 (((
1531 (% style="color:#4472c4" %)** 0x09 aa bb**(%%) same as AT+CMDEAR=aa,bb
1532 )))
1533
1534
1535
1536
1537 ==== (% style="color:blue" %)**Set Serial Communication Parameters**(%%) ====
1538
1539
1540 (((
1541 Set the Rs485 serial communication parameters:
1542 )))
1543
1544 * (((
1545 (% style="color:#037691" %)**AT Command:**
1546 )))
1547
1548 (((
1549
1550
1551 * **Set Baud Rate:**
1552 )))
1553
1554 (% style="color:#4472c4" %)** AT+BAUDR=9600** (%%) ~/~/ Options: (200~~115200),When using low baud rate or receiving multiple bytes, you need to use AT+CMDDL to increase the receive timeout (the default receive timeout is 300ms), otherwise data will be lost
1555
1556
1557 * **Set UART Parity**
1558
1559 (% style="color:#4472c4" %)** AT+PARITY=0**  (%%) ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1560
1561
1562 * **Set STOPBIT**
1563
1564 (% style="color:#4472c4" %)** AT+STOPBIT=0** (%%) ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1565
1566
1567 * (((
1568 (% style="color:#037691" %)**Downlink Payload:**
1569 )))
1570
1571 (((
1572 (% style="color:#4472c4" %)** A7 01 aa bb**(%%): Same  AT+BAUDR=hex(aa bb)*100
1573 )))
1574
1575 (((
1576
1577
1578 **Example:**
1579 )))
1580
1581 * (((
1582 A7 01 00 60   same as AT+BAUDR=9600
1583 )))
1584 * (((
1585 A7 01 04 80  same as AT+BAUDR=115200
1586 )))
1587
1588 (((
1589 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1590 )))
1591
1592 (((
1593 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1594 )))
1595
1596
1597
1598 ==== (% style="color:blue" %)**Configure Databit(Since version 1.4.0)**(%%) ====
1599
1600 * (((
1601 (% style="color:#037691" %)**AT Command:**
1602 )))
1603
1604 **~ AT+DATABIT=7  **~/~/ Set the data bits to 7
1605
1606 **~ AT+DATABIT=8  **~/~/Set the data bits to 8
1607
1608
1609 * (((
1610 (% style="color:#037691" %)**Downlink Payload:**
1611 )))
1612
1613 **~ A7 04 07**: Same as  AT+DATABIT=7
1614
1615 **~ A7 04 08**: Same as  AT+DATABIT=8
1616
1617
1618
1619 ==== (% style="color:blue" %)**Encrypted payload**(%%) ====
1620
1621 (((
1622
1623 )))
1624
1625 * (((
1626 (% style="color:#037691" %)**AT Command:**
1627 )))
1628
1629 (% style="color:#4472c4" %)** AT+DECRYPT=1 **(%%)** **~/~/ The payload is uploaded without encryption
1630
1631 (% style="color:#4472c4" %)** AT+DECRYPT=0   **(%%)~/~/  Encrypt when uploading payload (default)
1632
1633
1634
1635 ==== (% style="color:blue" %)**Get sensor value**(%%) ====
1636
1637 (((
1638
1639 )))
1640
1641 * (((
1642 (% style="color:#037691" %)**AT Command:**
1643 )))
1644
1645 (% style="color:#4472c4" %)** AT+GETSENSORVALUE=0 **(%%)** **~/~/ The serial port gets the reading of the current sensor
1646
1647 (% style="color:#4472c4" %)** AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1648
1649
1650
1651 ==== (% style="color:blue" %)**Resets the downlink packet count**(%%) ====
1652
1653 (((
1654
1655 )))
1656
1657 * (((
1658 (% style="color:#037691" %)**AT Command:**
1659 )))
1660
1661 (% style="color:#4472c4" %)** AT+DISFCNTCHECK=0    **(%%) ~/~/  When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1662
1663 (% style="color:#4472c4" %)** AT+DISFCNTCHECK=1    **(%%) ~/~/  When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1664
1665
1666
1667 ==== (% style="color:blue" %)**When the limit bytes are exceeded, upload in batches**(%%) ====
1668
1669 (((
1670
1671 )))
1672
1673 * (((
1674 (% style="color:#037691" %)**AT Command:**
1675 )))
1676
1677 (% style="color:#4472c4" %)** AT+DISMACANS=0**  (%%) ~/~/  When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1678
1679 (% style="color:#4472c4" %)** AT+DISMACANS=1**  (%%) ~/~/  When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1680
1681
1682 * (((
1683 (% style="color:#037691" %)**Downlink Payload**
1684 )))
1685
1686 (% style="color:#4472c4" %)** 0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1687
1688
1689
1690 ==== (% style="color:blue" %)** Copy downlink to uplink **(%%) ====
1691
1692 (((
1693
1694 )))
1695
1696 * (((
1697 (% style="color:#037691" %)**AT Command:**
1698 )))
1699
1700 (% style="color:#4472c4" %)** AT+RPL=5** (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1701
1702
1703 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1704
1705
1706 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1707
1708
1709
1710 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1711
1712
1713 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1714
1715
1716 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1717
1718
1719
1720
1721 ==== (% style="color:blue" %)**Query version number and frequency band 、TDC**(%%) ====
1722
1723
1724 * (((
1725 (% style="color:#037691" %)**Downlink Payload: 26 01  **(%%) ~/~/ Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1726 )))
1727
1728 **Example:**
1729
1730
1731 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1732
1733
1734
1735
1736 ==== (% style="color:blue" %)**Control output power duration**(%%) ====
1737
1738
1739 (((
1740 User can set the output power duration before each sampling.
1741 )))
1742
1743 * (((
1744 (% style="color:#037691" %)**AT Command:**
1745 )))
1746
1747 (((
1748 **Example:**
1749 )))
1750
1751 (((
1752 (% style="color:#4472c4" %)** AT+3V3T=1000**(%%)  ~/~/ 3V3 output power will open 1s before each sampling.
1753 )))
1754
1755 (((
1756 (% style="color:#4472c4" %)** AT+5VT=1000**  (%%) ~/~/ +5V output power will open 1s before each sampling.
1757 )))
1758
1759 (((
1760
1761 )))
1762
1763 * (((
1764 (% style="color:#037691" %)**LoRaWAN Downlink Command:**
1765 )))
1766
1767 (((
1768 (% style="color:#4472c4" %)** 07 01 aa bb** (%%) Same as AT+5VT=(aa bb)
1769 )))
1770
1771 (((
1772 (% style="color:#4472c4" %)** 07 02 aa bb** (%%) Same as AT+3V3T=(aa bb)
1773 )))
1774
1775
1776
1777 == 3.6 Buttons ==
1778
1779
1780 (% border="1" cellspacing="5" style="background-color:#ffffcc; color:green; width:233px" %)
1781 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1782 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1783
1784 == 3.7 +3V3 Output(Since v1.3.3) ==
1785
1786
1787 (((
1788 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1789 )))
1790
1791 (((
1792 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1793 )))
1794
1795 (((
1796 The +3V3 output time can be controlled by AT Command.
1797 )))
1798
1799 (((
1800
1801 )))
1802
1803 (((
1804 (% style="color:#037691" %)**AT+3V3T=1000**
1805 )))
1806
1807 (((
1808
1809 )))
1810
1811 (((
1812 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1813 )))
1814
1815 (((
1816 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1817 )))
1818
1819
1820
1821 == 3.8 +5V Output(Since v1.3.3) ==
1822
1823
1824 (((
1825 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1826 )))
1827
1828 (((
1829 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1830 )))
1831
1832 (((
1833 The 5V output time can be controlled by AT Command.
1834 )))
1835
1836 (((
1837 (% style="color:red" %)**(AT+5VT increased from the maximum 5000ms to 65000ms.Since v1.4.0)**
1838 )))
1839
1840 (((
1841 (% style="color:#037691" %)**AT+5VT=1000**
1842 )))
1843
1844 (((
1845
1846 )))
1847
1848 (((
1849 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1850 )))
1851
1852 (((
1853 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1854 )))
1855
1856
1857
1858 == 3.9 LEDs ==
1859
1860
1861 (% border="1" cellspacing="5" style="background-color:#ffffcc; color:green; width:332px" %)
1862 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1863 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1864
1865 == 3.10 Switch Jumper ==
1866
1867
1868 (% border="1" cellspacing="5" style="background-color:#ffffcc; color:green; width:463px" %)
1869 |=(% style="width: 123px;" %)**Switch Jumper**|=(% style="width: 336px;" %)**Feature**
1870 |(% style="width:123px" %)**SW1**|(% style="width:336px" %)ISP position: Upgrade firmware via UART
1871 Flash position: Configure device, check running status.
1872 |(% style="width:123px" %)**SW2**|(% style="width:336px" %)5V position: set to compatible with 5v I/O.
1873 3.3v position: set to compatible with 3.3v I/O.,
1874
1875 (((
1876 (% style="color:blue" %)** +3.3V**(%%): is always ON
1877 )))
1878
1879 (((
1880 (% style="color:blue" %)** +5V**(%%): Only open before every sampling. The time is by default, it is (% style="color:#4472c4" %)** AT+5VT=0**(%%).  Max open time. 65000 ms.(Since v1.4.0)
1881 )))
1882
1883
1884
1885 = 4. Case Study =
1886
1887
1888 User can check this URL for some case studies:  [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1889
1890
1891
1892 = 5. Use AT Command =
1893
1894
1895 == 5.1 Access AT Command ==
1896
1897
1898 (((
1899 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1900
1901
1902 )))
1903
1904 [[image:1654135840598-282.png]]
1905
1906
1907
1908 (((
1909 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1910
1911
1912 )))
1913
1914 [[image:1654136105500-922.png]]
1915
1916
1917 (((
1918 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1919 )))
1920
1921
1922
1923 == 5.2 Common AT Command Sequence ==
1924
1925
1926 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1927
1928
1929 If device has not joined network yet:
1930
1931 * (% style="color:#037691" %)**AT+FDR**
1932 * (% style="color:#037691" %)**AT+NJM=0**
1933 * (% style="color:#037691" %)**ATZ**
1934
1935 (((
1936
1937
1938 If device already joined network:
1939
1940 * (% style="color:#037691" %)**AT+NJM=0**
1941 * (% style="color:#037691" %)**ATZ**
1942 )))
1943
1944
1945
1946
1947 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1948
1949
1950 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1951
1952 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%) Set to ABP mode
1953
1954 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) Set the Adaptive Data Rate Off
1955
1956 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%) Set Data Rate
1957
1958 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1959
1960 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%)  Set transmit frequency to 868.4Mhz
1961
1962 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1963
1964 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1965
1966 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1967
1968 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1969
1970
1971 (% style="color:red" %)**Note:**
1972
1973 (((
1974 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1975 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1976 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1977 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1978
1979
1980 )))
1981
1982 [[image:1654136435598-589.png]]
1983
1984
1985
1986 = 6. FAQ =
1987
1988
1989 == 6.1 How to upgrade the image? ==
1990
1991
1992 (((
1993 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1994 )))
1995
1996 * (((
1997 Support new features
1998 )))
1999 * (((
2000 For bug fix
2001 )))
2002 * (((
2003 Change LoRaWAN bands.
2004 )))
2005
2006 (((
2007 Below shows the hardware connection for how to upload an image to RS485-BL:
2008 )))
2009
2010 [[image:1654136646995-976.png]]
2011
2012
2013 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2014
2015
2016 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACc1xfL4lk-ZKECY3_JaUeVa/RS485-BL/Firmware?dl=0&subfolder_nav_tracking=1]].
2017
2018
2019 (% style="color:blue" %)**Step3**(%%)**: **Open flashloader; choose the correct COM port to update.
2020
2021
2022 [[image:image-20220602102605-1.png]]
2023
2024
2025 [[image:image-20220602102637-2.png]]
2026
2027
2028 [[image:image-20220602102715-3.png]]
2029
2030
2031
2032 == 6.2 How to change the LoRa Frequency Bands/Region? ==
2033
2034
2035 (((
2036 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2037 )))
2038
2039
2040
2041 == 6.3 How many RS485-Slave can RS485-BL connects? ==
2042
2043
2044 (((
2045 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
2046 )))
2047
2048
2049
2050 == 6.4 How to Use RS485-BL  to connect to RS232 devices? ==
2051
2052
2053 [[Use RS485-BL or RS485-LN to connect to RS232 devices. - DRAGINO>>url:http://8.211.40.43:8080/xwiki/bin/view/Main/RS485%20to%20RS232/]]
2054
2055
2056 == 6.5 How to judge whether there is a problem with the set COMMAND ==
2057
2058 === 6.7.1 Introduce: ===
2059
2060 Users can use below the structure to fast debug the communication between RS485BL and RS485-LN. The principle is to put the PC in the RS485 network and sniff the packet between Modbus MTU and RS485-BL/LN. We can use this way to:
2061
2062 1. Test if Modbus-MTU works with PC commands.
2063 1. Check if RS485-LN sent the expected command to Mobus-MTU
2064 1. Check if Modbus-MTU return back the expected result to RS485-LN.
2065 1. If both b) and c) has issue, we can compare PC’s output and RS485-LN output.
2066
2067 [[image:image-20221130104310-1.png||height="380" width="680"]]
2068
2069 Example Connection:
2070
2071 [[image:image-20221130104310-2.png]]
2072
2073 === 6.7.2 Set up PC to monitor RS485 network With Serial tool ===
2074
2075 Note: Receive and send set to hex mode
2076
2077 [[image:image-20221130104310-3.png||height="616" width="714"]]
2078
2079 === 6.7.3 With ModRSsim2: ===
2080
2081 (1)Select serial port MODBUS RS-232
2082
2083 [[image:image-20221130104310-4.png||height="390" width="865"]]
2084
2085 (2)Click the serial port icon
2086
2087 [[image:image-20221130104310-5.png||height="392" width="870"]]
2088
2089 (3)After selecting the correct serial port and baud rate, click ok
2090
2091 [[image:image-20221130104310-6.png]]
2092
2093 (4)Click the comms.
2094
2095 [[image:image-20221130104310-7.png||height="376" width="835"]]
2096
2097 Run RS485-LN/BL command and monitor if it is correct.
2098
2099 === 6.7.4 Example – Test the CFGDEV command ===
2100
2101 RS485-LN sent below command:
2102
2103 AT+CFGDEV=01 03 20 00 01 85 c0,1 to RS485 network, and PC is able to get this command and return commands from MTU to show in the serial tool.
2104
2105 We can see the output from the Serial port tool to analyze. And check if they are expected result.
2106
2107 [[image:image-20221130104310-8.png||height="214" width="797"]]
2108
2109 We can also use ModRSsim2 to see the output.
2110
2111 [[image:image-20221130104310-9.png||height="531" width="729"]]
2112
2113 === 6.7.5 Example – Test CMD command sets. ===
2114
2115 Run AT+SENSORVALUE=1 to test the CMD commands set in RS485-LN.
2116
2117 Serial port tool:
2118
2119 [[image:image-20221130104310-10.png||height="339" width="844"]]
2120
2121 ModRSsim2:
2122
2123 [[image:image-20221130104310-11.png||height="281" width="962"]]
2124
2125 === 6.7.6 Test with PC ===
2126
2127 If there is still have problem to set up correctly the commands between RS485-LN and MTU. User can test the correct RS485 command set in PC and compare with the RS485 command sent out via RS485-LN. as long as both commands are the same, the MTU should return correct result.
2128
2129 Or User can send the working commands set in PC serial tool to Dragino Support to check what should be configured in RS485-LN.
2130
2131 Connection method:
2132
2133 [[image:image-20221130104310-12.png]]
2134
2135 Link situation:
2136
2137 [[image:image-20221130104310-13.png||height="458" width="486"]]
2138
2139 [[image:image-20221130104310-14.png||height="371" width="823"]]
2140
2141
2142
2143 = 7. Trouble Shooting =
2144
2145
2146 == 7.1 Downlink doesn't work, how to solve it? ==
2147
2148
2149 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
2150
2151
2152
2153 == 7.2 Why I can't join TTN V3 in US915 /AU915 bands? ==
2154
2155
2156 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2157
2158
2159
2160 = 8. Order Info =
2161
2162
2163 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
2164
2165 (% style="color:blue" %)**XXX:**
2166
2167 * (% style="color:red" %)**EU433**(%%):  frequency bands EU433
2168 * (% style="color:red" %)**EU868**(%%):  frequency bands EU868
2169 * (% style="color:red" %)**KR920**(%%):  frequency bands KR920
2170 * (% style="color:red" %)**CN470**(%%):  frequency bands CN470
2171 * (% style="color:red" %)**AS923**(%%):  frequency bands AS923
2172 * (% style="color:red" %)**AU915**(%%):  frequency bands AU915
2173 * (% style="color:red" %)**US915**(%%):  frequency bands US915
2174 * (% style="color:red" %)**IN865**(%%):  frequency bands IN865
2175 * (% style="color:red" %)**RU864**(%%):  frequency bands RU864
2176 * (% style="color:red" %)**KZ865**(%%):  frequency bands KZ865
2177
2178 = 9. Packing Info =
2179
2180
2181 (((
2182 **Package Includes**:
2183 )))
2184
2185 * (((
2186 RS485-BL x 1
2187 )))
2188 * (((
2189 Stick Antenna for LoRa RF part x 1
2190 )))
2191 * (((
2192 Program cable x 1
2193 )))
2194
2195 (((
2196 **Dimension and weight**:
2197 )))
2198
2199 * (((
2200 Device Size: 13.5 x 7 x 3 cm
2201 )))
2202 * (((
2203 Device Weight: 105g
2204 )))
2205 * (((
2206 Package Size / pcs : 14.5 x 8 x 5 cm
2207 )))
2208 * (((
2209 Weight / pcs : 170g
2210
2211
2212
2213
2214 )))
2215
2216 = 10. Support =
2217
2218
2219 * (((
2220 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2221 )))
2222 * (((
2223 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2224
2225
2226
2227 )))