Version 68.10 by Xiaoling on 2022/11/17 13:51

Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="404" width="404"]]
3
4
5
6
7 **Table of Contents:**
8
9 {{toc/}}
10
11
12
13
14 = 1.Introduction =
15
16
17 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
18
19
20 (((
21 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
22 )))
23
24 (((
25 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
26 )))
27
28 (((
29 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
30 )))
31
32 (((
33 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
34 )))
35
36 (((
37 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
38 )))
39
40 (((
41 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
42 )))
43
44 (((
45 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
46
47
48 )))
49
50 [[image:1652953304999-717.png||height="424" width="733"]]
51
52
53
54 == 1.2 Specifications ==
55
56
57 (% style="color:#037691" %)**Hardware System:**
58
59 * STM32L072xxxx MCU
60 * SX1276/78 Wireless Chip 
61 * Power Consumption (exclude RS485 device):
62 ** Idle: 6uA@3.3v
63 ** 20dB Transmit: 130mA@3.3v
64 * 5V sampling maximum current:500mA
65
66 (% style="color:#037691" %)**Interface for Model:**
67
68 * 1 x RS485 Interface
69 * 1 x TTL Serial , 3.3v or 5v.
70 * 1 x I2C Interface, 3.3v or 5v.
71 * 1 x one wire interface
72 * 1 x Interrupt Interface
73 * 1 x Controllable 5V output, max
74
75 (% style="color:#037691" %)**LoRa Spec:**
76
77 * Frequency Range:
78 ** Band 1 (HF): 862 ~~ 1020 Mhz
79 ** Band 2 (LF): 410 ~~ 528 Mhz
80 * 168 dB maximum link budget.
81 * +20 dBm - 100 mW constant RF output vs.
82 * Programmable bit rate up to 300 kbps.
83 * High sensitivity: down to -148 dBm.
84 * Bullet-proof front end: IIP3 = -12.5 dBm.
85 * Excellent blocking immunity.
86 * Fully integrated synthesizer with a resolution of 61 Hz.
87 * LoRa modulation.
88 * Built-in bit synchronizer for clock recovery.
89 * Preamble detection.
90 * 127 dB Dynamic Range RSSI.
91 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
92
93
94
95 == 1.3 Features ==
96
97
98 * LoRaWAN Class A & Class C protocol (default Class A)
99 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864/MA869
100 * AT Commands to change parameters
101 * Remote configure parameters via LoRaWAN Downlink
102 * Firmware upgradable via program port
103 * Support multiply RS485 devices by flexible rules
104 * Support Modbus protocol
105 * Support Interrupt uplink
106
107
108
109 == 1.4 Applications ==
110
111
112 * Smart Buildings & Home Automation
113 * Logistics and Supply Chain Management
114 * Smart Metering
115 * Smart Agriculture
116 * Smart Cities
117 * Smart Factory
118
119
120 == 1.5 Firmware Change log ==
121
122
123 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
124
125
126
127 == 1.6 Hardware Change log ==
128
129 (((
130
131
132 (((
133 **v1.4**
134 )))
135 )))
136
137 (((
138 (((
139 ~1. Change Power IC to TPS22916
140 )))
141 )))
142
143 (((
144
145 )))
146
147 (((
148 (((
149 **v1.3**
150 )))
151 )))
152
153 (((
154 (((
155 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
156 )))
157 )))
158
159 (((
160
161 )))
162
163 (((
164 (((
165 **v1.2**
166 )))
167 )))
168
169 (((
170 (((
171 Release version ​​​​​
172 )))
173
174
175 )))
176
177
178 = 2. Pin mapping and Power ON Device =
179
180
181 (((
182 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
183
184
185 )))
186
187 [[image:1652953055962-143.png||height="387" width="728"]]
188
189
190 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
191
192
193
194 = 3. Operation Mode =
195
196
197 == 3.1 How it works? ==
198
199
200 (((
201 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
202
203
204
205 )))
206
207 == 3.2 Example to join LoRaWAN network ==
208
209
210 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
211
212 [[image:1652953414711-647.png||height="337" width="723"]]
213
214
215 (((
216 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
217 )))
218
219 (((
220 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
221
222
223 )))
224
225 (((
226 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from RS485-BL.
227 )))
228
229 (((
230 Each RS485-BL is shipped with a sticker with unique device EUI:
231 )))
232
233 [[image:1652953462722-299.png]]
234
235
236 (((
237 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
238 )))
239
240 (((
241 **Add APP EUI in the application.**
242 )))
243
244
245 [[image:image-20220519174512-1.png]]
246
247 [[image:image-20220519174512-2.png||height="328" width="731"]]
248
249 [[image:image-20220519174512-3.png||height="556" width="724"]]
250
251 [[image:image-20220519174512-4.png]]
252
253
254 You can also choose to create the device manually.
255
256 [[image:1652953542269-423.png||height="710" width="723"]]
257
258
259 Add APP KEY and DEV EUI
260
261 [[image:1652953553383-907.png||height="514" width="724"]]
262
263
264
265 (((
266 (% style="color:blue" %)**Step 2**(%%): Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
267
268
269 )))
270
271 [[image:1652953568895-172.png||height="232" width="724"]]
272
273
274
275 == 3.3 Configure Commands to read data ==
276
277
278 (((
279 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
280
281
282
283 )))
284
285 === 3.3.1 Configure UART settings for RS485 or TTL communication(Since v1.3.3) ===
286
287
288 (((
289 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
290
291
292 )))
293
294 (((
295 (% style="color:blue" %)**1.  RS485-MODBUS mode:**
296
297
298 )))
299
300 (((
301 (% style="color:#037691" %)**AT+MOD=1**  (%%) ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
302
303
304
305 )))
306
307 (((
308 (% style="color:blue" %)**2.  TTL mode:**
309
310
311 )))
312
313 (((
314 (% style="color:#037691" %)**AT+MOD=2**  (%%) ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
315 )))
316
317 (((
318 RS485-BL default UART settings is (% style="color:green" %)**9600, no parity, stop bit 1**(%%). If the sensor has a different settings, user can change the RS485-BL setting to match.
319
320
321 )))
322
323 (% border="1" cellspacing="5" style="background-color:#ffffcc; color:green; width:510px" %)
324 |=(% style="width: 140px;" %)(((
325 (((
326 **AT Commands**
327 )))
328 )))|=(% style="width: 200px;" %)(((
329 (((
330 **Description**
331 )))
332 )))|=(% style="width: 170px;" %)(((
333 (((
334 **Example**
335 )))
336 )))
337 |(% style="width:122px" %)(((
338 (((
339 AT+BAUDR
340 )))
341 )))|(% style="width:112px" %)(((
342 (((
343 Set the baud rate (for RS485 connection).
344
345 Default Value is: 9600.
346 )))
347 )))|(% style="width:152px" %)(((
348 (((
349 (((
350 AT+BAUDR=9600
351 )))
352 )))
353
354 (((
355 (((
356 Options: (1200,2400,4800,14400,19200,115200)
357 )))
358 )))
359 )))
360 |(% style="width:122px" %)(((
361 (((
362 AT+PARITY
363 )))
364 )))|(% style="width:112px" %)(((
365 (((
366 (((
367 Set UART parity (for RS485 connection)
368 )))
369 )))
370
371 (((
372 (((
373 Default Value is: no parity.
374 )))
375 )))
376 )))|(% style="width:152px" %)(((
377 (((
378 (((
379 AT+PARITY=0
380 )))
381 )))
382
383 (((
384 (((
385 Option: 0: no parity, 1: odd parity, 2: even parity
386 )))
387 )))
388 )))
389 |(% style="width:122px" %)(((
390 (((
391 AT+STOPBIT
392 )))
393 )))|(% style="width:112px" %)(((
394 (((
395 (((
396 Set serial stopbit (for RS485 connection)
397 )))
398 )))
399
400 (((
401 (((
402 Default Value is: 1bit.
403 )))
404 )))
405 )))|(% style="width:152px" %)(((
406 (((
407 (((
408 AT+STOPBIT=0 for 1bit
409 )))
410 )))
411
412 (((
413 (((
414 AT+STOPBIT=1 for 1.5 bit
415 )))
416 )))
417
418 (((
419 (((
420 AT+STOPBIT=2 for 2 bits
421 )))
422 )))
423 )))
424
425
426 === 3.3.2 Configure sensors ===
427
428
429 (((
430 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
431 )))
432
433 (((
434 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won't run during each sampling.
435
436
437 )))
438
439 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
440 |=(% style="width: 80px;" %)**AT Commands**|=(% style="width: 210px;" %)**Description**|=(% style="width: 210px;" %)**Example**
441 |AT+CFGDEV|(% style="width:80px" %)(((
442 (((
443 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
444 )))
445
446 (((
447 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
448 )))
449
450 (((
451 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
452 )))
453 )))|(% style="width:210px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
454
455 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
456
457
458
459 === 3.3.3 Configure read commands for each sampling ===
460
461
462 (((
463 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
464 )))
465
466 (((
467 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
468 )))
469
470 (((
471 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
472 )))
473
474 (((
475 This section describes how to achieve above goals.
476 )))
477
478 (((
479 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
480
481
482 )))
483
484 (((
485 (% style="color:blue" %)**Command from RS485-BL to Sensor:**
486 )))
487
488 (((
489 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
490
491
492 )))
493
494 (((
495 (% style="color:blue" %)**Handle return from sensors to RS485-BL**:
496 )))
497
498 (((
499 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
500 )))
501
502 * (((
503 (% style="color:blue" %)**AT+DATACUT**
504 )))
505
506 (((
507 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
508
509
510 )))
511
512 * (((
513 (% style="color:blue" %)**AT+SEARCH**
514 )))
515
516 (((
517 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
518 )))
519
520 (((
521
522
523 (% style="color:blue" %)**Define wait timeout:**
524 )))
525
526 (((
527 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
528 )))
529
530 (((
531 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
532 )))
533
534 (((
535
536
537 **Examples:**
538 )))
539
540 (((
541 Below are examples for the how above AT Commands works.
542 )))
543
544 (((
545 (% style="color:blue" %)**AT+COMMANDx **(%%)**: **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
546
547
548 )))
549
550 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:497px" %)
551 |(% style="width:494px" %)(((
552 (((
553 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
554 )))
555
556 (((
557 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
558 )))
559
560 (((
561 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
562 )))
563 )))
564
565 (((
566 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
567 )))
568
569 (((
570 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
571 )))
572
573 (((
574
575 )))
576
577 (((
578 (% style="color:blue" %)**AT+SEARCHx**(%%): This command defines how to handle the return from AT+COMMANDx.
579
580
581 )))
582
583 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:473px" %)
584 |(% style="width:470px" %)(((
585 (((
586 **AT+SEARCHx=aa,xx xx xx xx xx**
587 )))
588
589 * (((
590 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
591 )))
592 * (((
593 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
594 )))
595 )))
596
597 (((
598
599
600 **Examples:**
601
602
603 )))
604
605 (((
606 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
607 )))
608
609 (((
610 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
611 )))
612
613 (((
614 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
615
616
617 )))
618
619 (((
620 [[image:1653271044481-711.png]]
621
622
623 )))
624
625 (((
626 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
627 )))
628
629 (((
630 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
631 )))
632
633 (((
634 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
635
636
637 )))
638
639 (((
640 [[image:1653271276735-972.png]]
641
642
643 )))
644
645 (((
646 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 100 bytes.(Since 1.4.0)
647 )))
648
649 (% style="background-color:#4f81bd; color:white; width:496px" %)
650 |(% style="width:493px" %)(((
651 (((
652 **AT+DATACUTx=a,b,c**
653 )))
654
655 * (((
656 **a: length for the return of AT+COMMAND**
657 )))
658 * (((
659 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
660 )))
661 * (((
662 **c: define the position for valid value.  **
663 )))
664 )))
665
666 (((
667
668
669
670 **Examples:**
671 )))
672
673 * (((
674 (% style="color:blue" %)**Grab bytes:**
675 )))
676
677 (((
678 [[image:1653271581490-837.png||height="313" width="722"]]
679 )))
680
681 (((
682
683
684
685 )))
686
687 * (((
688 (% style="color:blue" %)**Grab a section.**
689 )))
690
691 (((
692 [[image:1653271648378-342.png||height="326" width="720"]]
693 )))
694
695 (((
696
697
698
699 )))
700
701 * (((
702 (% style="color:blue" %)**Grab different sections.**
703 )))
704
705 (((
706 [[image:1653271657255-576.png||height="305" width="730"]]
707
708
709 )))
710
711 (((
712 (((
713 (% style="color:red" %)**Note:**
714 )))
715 )))
716
717 (((
718 (((
719 (% style="color:#037691" %)**AT+SEARCHx** (%%)and (% style="color:#037691" %)**AT+DATACUTx**(%%) can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format** AT+DATACUTx=0,xx,xx** where the return bytes set to **0**.
720
721
722 )))
723 )))
724
725 (((
726 (((
727 **Example:**
728 )))
729 )))
730
731 (((
732 (((
733 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
734 )))
735 )))
736
737 (((
738 (((
739 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
740 )))
741 )))
742
743 (((
744 (((
745 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
746 )))
747 )))
748
749 (((
750 (((
751 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
752 )))
753 )))
754
755 (((
756 (((
757 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
758 )))
759 )))
760
761 (((
762 (((
763 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
764
765
766 )))
767 )))
768
769 (((
770 [[image:1653271763403-806.png]]
771 )))
772
773
774
775 === 3.3.4 Compose the uplink payload ===
776
777
778 (((
779 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
780
781
782 )))
783
784 (((
785 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
786
787
788 )))
789
790 (((
791 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
792 )))
793
794 (((
795 Final Payload is
796 )))
797
798 (((
799 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
800 )))
801
802 (((
803 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
804 )))
805
806 [[image:1653272787040-634.png||height="515" width="719"]]
807
808
809
810 (((
811 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
812
813
814 )))
815
816 (((
817 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
818 )))
819
820 (((
821 Final Payload is
822 )))
823
824 (((
825 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
826 )))
827
828 1. (((
829 Battery Info (2 bytes): Battery voltage
830 )))
831 1. (((
832 PAYVER (1 byte): Defined by AT+PAYVER
833 )))
834 1. (((
835 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
836 )))
837 1. (((
838 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
839 )))
840 1. (((
841 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
842
843
844 )))
845
846 [[image:1653272817147-600.png||height="437" width="717"]]
847
848 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
849
850
851 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
852
853 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% _mstmutation="1" style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
854
855 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% _mstmutation="1" style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
856
857
858 Below are the uplink payloads:
859
860 [[image:1653272901032-107.png]]
861
862
863 (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
864
865 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
866
867 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
868
869 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
870
871 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
872
873 *(% style="color:red" %)** When AT+DATAUP=1, the maximum number of segments is 15, and the maximum total number of bytes is 1500;**
874
875 (% style="color:red" %)** When AT+DATAUP=1 and AT+ADR=0, the maximum number of bytes of each payload is determined by the DR value. (Since v1.4.0)**
876
877 (((
878
879 )))
880
881 * (((
882 (% style="color:blue" %)**If the data is empty, return to the display(Since v1.4.0)**
883
884
885
886 )))
887
888 (% class="wikigeneratedid" %)
889 **1) ** When (% style="color:blue" %)**AT+MOD=1**(%%), if the data intercepted by (% style="color:#037691" %)** AT+DATACUT**(%%) or (% style="color:#037691" %)** AT+MBFUN **(%%)is empty, it will display **NULL**, and the payload will be filled with **n FFs**.
890
891
892 (% class="wikigeneratedid" %)
893 [[image:image-20220824114359-3.png||height="297" width="1106"]]
894
895
896
897 **2)**  When** (% style="color:blue" %)AT+MOD=2(%%)**, if the data intercepted by (% style="color:#037691" %)** AT+DATACUT** (%%)or (% style="color:#037691" %)** AT+MBFUN**(%%) is empty, it will display **NULL**, and the payload will be filled with **n 00s**.
898
899
900 [[image:image-20220824114330-2.png]]
901
902
903
904 === 3.3.5 Uplink on demand ===
905
906
907 (((
908 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
909
910
911 )))
912
913 (((
914 (% style="color:blue" %)** Downlink control command:**
915 )))
916
917 (((
918 (% style="color:#4472c4" %)** 0x08 command**(%%): Poll an uplink with current command set in RS485-BL.
919 )))
920
921 (((
922 (% style="color:#4472c4" %)** 0xA8 command**(%%): Send a command to RS485-BL and uplink the output from sensors.
923
924
925 )))
926
927
928 === 3.3.6 Uplink on Interrupt ===
929
930
931 Put the interrupt sensor between 3.3v_out and GPIO ext.
932
933 [[image:1653273818896-432.png]]
934
935
936 (((
937 (% style="color:#4472c4" %)**AT+INTMOD=0**(%%)  Disable Interrupt
938 )))
939
940 (((
941 (% style="color:#4472c4" %)**AT+INTMOD=1**(%%)  Interrupt trigger by rising or falling edge.
942 )))
943
944 (((
945 (% style="color:#4472c4" %)**AT+INTMOD=2** (%%) Interrupt trigger by falling edge. ( Default Value)
946 )))
947
948 (((
949 (% style="color:#4472c4" %)**AT+INTMOD=3**(%%)  Interrupt trigger by rising edge.
950
951
952 )))
953
954
955 == 3.4 Uplink Payload ==
956
957
958 [[image:image-20220606105412-1.png]]
959
960
961 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
962
963
964 (((
965 {{{function Decoder(bytes, port) {}}}
966 )))
967
968 (((
969 {{{//Payload Formats of RS485-BL Deceive}}}
970 )))
971
972 (((
973 {{{return {}}}
974 )))
975
976 (((
977 {{{ //Battery,units:V}}}
978 )))
979
980 (((
981 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
982 )))
983
984 (((
985 {{{ //GPIO_EXTI }}}
986 )))
987
988 (((
989 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
990 )))
991
992 (((
993 {{{ //payload of version}}}
994 )))
995
996 (((
997 {{{ Pay_ver:bytes[2],}}}
998 )))
999
1000 (((
1001 {{{ }; }}}
1002 )))
1003
1004 (((
1005 **}**
1006
1007
1008 )))
1009
1010 (((
1011 TTN V3 uplink screen shot.
1012 )))
1013
1014 [[image:1653274001211-372.png||height="192" width="732"]]
1015
1016
1017
1018 == 3.5 Configure RS485-BL via AT or Downlink ==
1019
1020
1021 (((
1022 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
1023 )))
1024
1025 (((
1026 There are two kinds of Commands:
1027 )))
1028
1029 * (((
1030 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1031 )))
1032
1033 * (((
1034 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
1035
1036
1037
1038
1039 )))
1040
1041 === 3.5.1 Common Commands: ===
1042
1043
1044 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1045
1046
1047
1048 === 3.5.2 Sensor related commands: ===
1049
1050
1051
1052 ==== (% style="color:blue" %)**Choose Device Type (RS485 or TTL)(Since v1.3.3)**(%%) ====
1053
1054
1055 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
1056
1057 * (% style="color:#037691" %)**AT Command**
1058
1059 (% style="color:#4472c4" %)** AT+MOD=1** (%%) ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
1060
1061 (% style="color:#4472c4" %)** AT+MOD=2** (%%) ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
1062
1063
1064 * (% style="color:#037691" %)**Downlink Payload**
1065
1066 (% style="color:#4472c4" %)** 0A aa** (%%) ~-~->  same as AT+MOD=aa
1067
1068
1069
1070
1071 ==== (% style="color:blue" %)**RS485 Debug Command (AT+CFGDEV)**(%%) ====
1072
1073
1074 (((
1075 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling. Max Length of AT+CFGDEV is **40 bytes**.
1076 )))
1077
1078 (((
1079 * (% style="color:#037691" %)**AT Command**
1080
1081 (((
1082 (% style="color:#4472c4" %)** AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**  (%%) m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
1083 )))
1084 )))
1085
1086 (((
1087
1088 )))
1089
1090 * (((
1091 (% style="color:#037691" %)**Downlink Payload**
1092 )))
1093
1094 (((
1095 Format:  (% style="color:#4472c4" %)** A8 MM NN XX XX XX XX YY**
1096 )))
1097
1098 (((
1099 Where:
1100 )))
1101
1102 * (((
1103 MM: 1: add CRC-16/MODBUS ; 0: no CRC
1104 )))
1105 * (((
1106 NN: The length of RS485 command
1107 )))
1108 * (((
1109 XX XX XX XX: RS485 command total NN bytes
1110 )))
1111 * (((
1112 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
1113
1114
1115
1116 )))
1117
1118 (((
1119 (% style="color:blue" %)**Example 1:**
1120 )))
1121
1122 (((
1123 To connect a Modbus Alarm with below commands.
1124 )))
1125
1126 * (((
1127 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
1128 )))
1129
1130 * (((
1131 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1132 )))
1133
1134 (((
1135 So if user want to use downlink command to control to RS485 Alarm, he can use:
1136 )))
1137
1138 (((
1139 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1140 )))
1141
1142 (((
1143 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1144 )))
1145
1146 (((
1147 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
1148 )))
1149
1150 (((
1151
1152
1153
1154 )))
1155
1156 (((
1157 (% style="color:blue" %)**Example 2:**
1158 )))
1159
1160 (((
1161 Check TTL Sensor return:
1162 )))
1163
1164 (((
1165 [[image:1654132684752-193.png]]
1166 )))
1167
1168
1169
1170
1171 ==== (% style="color:blue" %)**Set Payload version**(%%) ====
1172
1173
1174 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1175
1176 * (% style="color:#037691" %)**AT Command:**
1177
1178 (% style="color:#4472c4" %)** AT+PAYVER:   **(%%)Set PAYVER field = 1
1179
1180
1181 * (% style="color:#037691" %)**Downlink Payload:**
1182
1183 (% style="color:#4472c4" %)** 0xAE 01** (%%) ~-~-> Set PAYVER field =  0x01
1184
1185 (% style="color:#4472c4" %)** 0xAE 0F** (%%) ~-~-> Set PAYVER field =  0x0F
1186
1187
1188
1189
1190 ==== (% style="color:blue" %)**Set RS485 Sampling Commands**(%%) ====
1191
1192
1193 (((
1194 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1195 )))
1196
1197 (((
1198 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1199 )))
1200
1201 (((
1202
1203 )))
1204
1205 * (((
1206 (% style="color:#037691" %)**AT Command:**
1207 )))
1208
1209 (% style="color:#4472c4" %)** AT+COMMANDx: **(%%)** Configure RS485 read command to sensor.**
1210
1211 (% style="color:#4472c4" %)** AT+DATACUTx: **(%%)** Configure how to handle return from RS485 devices.**
1212
1213 (% style="color:#4472c4" %)** AT+SEARCHx:  **(%%)** Configure search command**
1214
1215
1216 * (((
1217 (% style="color:#037691" %)**Downlink Payload:**
1218 )))
1219
1220 (((
1221 (% style="color:#4472c4" %)** 0xAF**(%%) downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1222 )))
1223
1224 (((
1225 (% style="color:red" %)**Note : if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.**
1226 )))
1227
1228 (((
1229 Format: AF MM NN LL XX XX XX XX YY
1230 )))
1231
1232 (((
1233 Where:
1234 )))
1235
1236 * (((
1237 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1238 )))
1239 * (((
1240 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1241 )))
1242 * (((
1243 LL:  The length of AT+COMMAND or AT+DATACUT command
1244 )))
1245 * (((
1246 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1247 )))
1248 * (((
1249 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1250 )))
1251
1252 (((
1253
1254
1255
1256 **Example:**
1257 )))
1258
1259 (((
1260 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1261 )))
1262
1263 (((
1264 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1265 )))
1266
1267 (((
1268 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1269 )))
1270
1271 (((
1272
1273 )))
1274
1275 (((
1276 (% style="color:#4472c4" %)** 0xAB**(%%) downlink command can be used for set AT+SEARCHx
1277 )))
1278
1279 (((
1280
1281
1282 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1283 )))
1284
1285 * (((
1286 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1287 )))
1288 * (((
1289 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1290 )))
1291
1292 (((
1293 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1294 )))
1295
1296
1297
1298
1299 ==== (% style="color:blue" %)**Fast command to handle MODBUS device**(%%) ====
1300
1301
1302 (((
1303 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1304 )))
1305
1306 (((
1307 This command is valid since v1.3 firmware version
1308 )))
1309
1310 (((
1311
1312 )))
1313
1314 (((
1315 (% style="color:#037691" %)**AT+MBFUN has only two value:**
1316 )))
1317
1318 * (((
1319 (% style="color:#4472c4" %)** AT+MBFUN=1**(%%): Enable Modbus reading. And get response base on the MODBUS return
1320 )))
1321
1322 (((
1323 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1324 )))
1325
1326 * (((
1327 (% style="color:#4472c4" %)**AT+MBFUN=0**(%%): Disable Modbus fast reading.
1328 )))
1329
1330 (((
1331
1332
1333 **Example:**
1334 )))
1335
1336 * (((
1337 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1338 )))
1339 * (((
1340 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1341 )))
1342 * (((
1343 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1344 )))
1345
1346 [[image:1654133913295-597.png]]
1347
1348
1349 [[image:1654133954153-643.png]]
1350
1351
1352 * (((
1353 (% style="color:#037691" %)**Downlink Commands:**
1354 )))
1355
1356 (((
1357 (% style="color:#4472c4" %)** A9 aa** (%%)~-~-> Same as AT+MBFUN=aa
1358 )))
1359
1360
1361
1362
1363 ==== (% style="color:blue" %)**RS485 command timeout**(%%) ====
1364
1365
1366 (((
1367 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1368 )))
1369
1370 (((
1371 Default value: 0, range:  0 ~~ 5 seconds
1372 )))
1373
1374 (((
1375
1376 )))
1377
1378 (((
1379 * (% style="color:#037691" %)**AT Command:**
1380
1381 (% style="color:#4472c4" %)**AT+CMDDLaa=hex(bb cc)**
1382
1383
1384 )))
1385
1386 (((
1387 **Example:**
1388 )))
1389
1390 (((
1391 **AT+CMDDL1=1000** to send the open time to 1000ms
1392 )))
1393
1394 (((
1395
1396 )))
1397
1398 * (((
1399 (% style="color:#037691" %)**Downlink Payload:**
1400 )))
1401
1402 (((
1403 (% style="color:#4472c4" %) **0x AA aa bb cc**(%%)  Same as:** AT+CMDDLaa=hex(bb cc)**
1404 )))
1405
1406 (((
1407
1408
1409 **Example:**
1410 )))
1411
1412 (((
1413 (% style="color:#4472c4" %)** 0xAA 01 03 E8**(%%)  ~-~-> Same as (% _mstmutation="1" %)**AT+CMDDL1=1000 ms**
1414 )))
1415
1416
1417
1418
1419 ==== (% style="color:blue" %)**Uplink payload mode**(%%) ====
1420
1421
1422 (((
1423 Define to use one uplink or multiple uplinks for the sampling.
1424 )))
1425
1426 (((
1427 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1428 )))
1429
1430 (((
1431 * (% style="color:#037691" %)**AT Command:**
1432
1433 (% style="color:#4472c4" %)** AT+DATAUP=0**
1434
1435 (% style="color:#4472c4" %)** AT+DATAUP=1**
1436 )))
1437
1438 (((
1439
1440 )))
1441
1442 * (((
1443 (% style="color:#037691" %)**Downlink Payload:**
1444 )))
1445
1446 (((
1447 (% style="color:#4472c4" %)** 0xAD 00**  (%%) **~-~->** Same as AT+DATAUP=0
1448 )))
1449
1450 (((
1451 (% style="color:#4472c4" %)** 0xAD 01**   (%%)**~-~->** Same as AT+DATAUP=1  ~/~/Each uplink is sent to the server one after the other as it is segmented.
1452
1453
1454 )))
1455
1456 (((
1457 * (% style="color:#037691" %)**AT Command:**
1458
1459 (% style="color:#4472c4" %)**AT+DATAUP=1,Timeout**
1460 )))
1461
1462 (((
1463
1464 )))
1465
1466 * (((
1467 (% style="color:#037691" %)**Downlink Payload:**
1468 )))
1469
1470 (((
1471 (% style="color:#4472c4" %)** 0xAD 01 00 00 14** (%%) **~-~->** Same as AT+DATAUP=1,20000 ~/~/(00 00 14 is 20 seconds)
1472 )))
1473
1474 (((
1475 Each uplink is sent to the server at 20-second intervals when segmented.
1476 )))
1477
1478
1479
1480
1481 ==== (% style="color:blue" %)**Manually trigger an Uplink**(%%) ====
1482
1483
1484 Ask device to send an uplink immediately.
1485
1486 * (% style="color:#037691" %)**Downlink Payload:**
1487
1488 (% style="color:#4472c4" %)** 0x08 FF**(%%), RS485-BL will immediately send an uplink.
1489
1490
1491
1492
1493 ==== (% style="color:blue" %)**Clear RS485 Command**(%%) ====
1494
1495
1496 (((
1497 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1498 )))
1499
1500 (((
1501
1502 )))
1503
1504 * (((
1505 (% style="color:#037691" %)**AT Command:**
1506 )))
1507
1508 (((
1509 (% style="color:#4472c4" %) **AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1510 )))
1511
1512 (((
1513 Example screen shot after clear all RS485 commands. 
1514 )))
1515
1516 (((
1517
1518 )))
1519
1520 (((
1521 The uplink screen shot is:
1522 )))
1523
1524 (((
1525 [[image:1654134704555-320.png]]
1526 )))
1527
1528 (((
1529
1530 )))
1531
1532 * (((
1533 (% style="color:#037691" %)**Downlink Payload:**
1534 )))
1535
1536 (((
1537 (% style="color:#4472c4" %)** 0x09 aa bb**(%%) same as AT+CMDEAR=aa,bb
1538 )))
1539
1540
1541
1542
1543 ==== (% style="color:blue" %)**Set Serial Communication Parameters**(%%) ====
1544
1545
1546 (((
1547 Set the Rs485 serial communication parameters:
1548 )))
1549
1550 * (((
1551 (% style="color:#037691" %)**AT Command:**
1552 )))
1553
1554 (((
1555
1556
1557 * **Set Baud Rate:**
1558 )))
1559
1560 (% style="color:#4472c4" %)** AT+BAUDR=9600** (%%) ~/~/ Options: (200~~115200),When using low baud rate or receiving multiple bytes, you need to use AT+CMDDL to increase the receive timeout (the default receive timeout is 300ms), otherwise data will be lost
1561
1562
1563 * **Set UART Parity**
1564
1565 (% style="color:#4472c4" %)** AT+PARITY=0**  (%%) ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1566
1567
1568 * **Set STOPBIT**
1569
1570 (% style="color:#4472c4" %)** AT+STOPBIT=0** (%%) ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1571
1572
1573 * (((
1574 (% style="color:#037691" %)**Downlink Payload:**
1575 )))
1576
1577 (((
1578 (% style="color:#4472c4" %)** A7 01 aa bb**(%%): Same  AT+BAUDR=hex(aa bb)*100
1579 )))
1580
1581 (((
1582
1583
1584 **Example:**
1585 )))
1586
1587 * (((
1588 A7 01 00 60   same as AT+BAUDR=9600
1589 )))
1590 * (((
1591 A7 01 04 80  same as AT+BAUDR=115200
1592 )))
1593
1594 (((
1595 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1596 )))
1597
1598 (((
1599 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1600 )))
1601
1602
1603
1604 ==== (% style="color:blue" %)**Configure Databit(Since version 1.4.0)**(%%) ====
1605
1606 * (((
1607 (% style="color:#037691" %)**AT Command:**
1608 )))
1609
1610 **~ AT+DATABIT=7  **~/~/ Set the data bits to 7
1611
1612 **~ AT+DATABIT=8  **~/~/Set the data bits to 8
1613
1614
1615 * (((
1616 (% style="color:#037691" %)**Downlink Payload:**
1617 )))
1618
1619 **~ A7 04 07**: Same as  AT+DATABIT=7
1620
1621 **~ A7 04 08**: Same as  AT+DATABIT=8
1622
1623
1624
1625 ==== (% style="color:blue" %)**Encrypted payload**(%%) ====
1626
1627 (((
1628
1629 )))
1630
1631 * (((
1632 (% style="color:#037691" %)**AT Command:**
1633 )))
1634
1635 (% style="color:#4472c4" %)** AT+DECRYPT=1 **(%%)** **~/~/ The payload is uploaded without encryption
1636
1637 (% style="color:#4472c4" %)** AT+DECRYPT=0   **(%%)~/~/  Encrypt when uploading payload (default)
1638
1639
1640
1641 ==== (% style="color:blue" %)**Get sensor value**(%%) ====
1642
1643 (((
1644
1645 )))
1646
1647 * (((
1648 (% style="color:#037691" %)**AT Command:**
1649 )))
1650
1651 (% style="color:#4472c4" %)** AT+GETSENSORVALUE=0 **(%%)** **~/~/ The serial port gets the reading of the current sensor
1652
1653 (% style="color:#4472c4" %)** AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1654
1655
1656
1657 ==== (% style="color:blue" %)**Resets the downlink packet count**(%%) ====
1658
1659 (((
1660
1661 )))
1662
1663 * (((
1664 (% style="color:#037691" %)**AT Command:**
1665 )))
1666
1667 (% style="color:#4472c4" %)** AT+DISFCNTCHECK=0    **(%%) ~/~/  When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1668
1669 (% style="color:#4472c4" %)** AT+DISFCNTCHECK=1    **(%%) ~/~/  When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1670
1671
1672
1673 ==== (% style="color:blue" %)**When the limit bytes are exceeded, upload in batches**(%%) ====
1674
1675 (((
1676
1677 )))
1678
1679 * (((
1680 (% style="color:#037691" %)**AT Command:**
1681 )))
1682
1683 (% style="color:#4472c4" %)** AT+DISMACANS=0**  (%%) ~/~/  When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1684
1685 (% style="color:#4472c4" %)** AT+DISMACANS=1**  (%%) ~/~/  When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1686
1687
1688 * (((
1689 (% style="color:#037691" %)**Downlink Payload**
1690 )))
1691
1692 (% style="color:#4472c4" %)** 0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1693
1694
1695
1696 ==== (% style="color:blue" %)** Copy downlink to uplink **(%%) ====
1697
1698 (((
1699
1700 )))
1701
1702 * (((
1703 (% style="color:#037691" %)**AT Command:**
1704 )))
1705
1706 (% style="color:#4472c4" %)** AT+RPL=5** (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1707
1708
1709 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1710
1711
1712 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1713
1714
1715
1716 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1717
1718
1719 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1720
1721
1722 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1723
1724
1725
1726
1727 ==== (% style="color:blue" %)**Query version number and frequency band 、TDC**(%%) ====
1728
1729
1730 * (((
1731 (% style="color:#037691" %)**Downlink Payload: 26 01  **(%%) ~/~/ Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1732 )))
1733
1734 **Example:**
1735
1736
1737 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1738
1739
1740
1741
1742 ==== (% style="color:blue" %)**Control output power duration**(%%) ====
1743
1744
1745 (((
1746 User can set the output power duration before each sampling.
1747 )))
1748
1749 * (((
1750 (% style="color:#037691" %)**AT Command:**
1751 )))
1752
1753 (((
1754 **Example:**
1755 )))
1756
1757 (((
1758 (% style="color:#4472c4" %)** AT+3V3T=1000**(%%)  ~/~/ 3V3 output power will open 1s before each sampling.
1759 )))
1760
1761 (((
1762 (% style="color:#4472c4" %)** AT+5VT=1000**  (%%) ~/~/ +5V output power will open 1s before each sampling.
1763 )))
1764
1765 (((
1766
1767 )))
1768
1769 * (((
1770 (% style="color:#037691" %)**LoRaWAN Downlink Command:**
1771 )))
1772
1773 (((
1774 (% style="color:#4472c4" %)** 07 01 aa bb** (%%) Same as AT+5VT=(aa bb)
1775 )))
1776
1777 (((
1778 (% style="color:#4472c4" %)** 07 02 aa bb** (%%) Same as AT+3V3T=(aa bb)
1779 )))
1780
1781
1782
1783 == 3.6 Buttons ==
1784
1785
1786 (% border="1" cellspacing="5" style="background-color:#ffffcc; color:green; width:233px" %)
1787 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1788 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1789
1790
1791
1792 == 3.7 +3V3 Output(Since v1.3.3) ==
1793
1794
1795 (((
1796 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1797 )))
1798
1799 (((
1800 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1801 )))
1802
1803 (((
1804 The +3V3 output time can be controlled by AT Command.
1805 )))
1806
1807 (((
1808
1809 )))
1810
1811 (((
1812 (% style="color:#037691" %)**AT+3V3T=1000**
1813 )))
1814
1815 (((
1816
1817 )))
1818
1819 (((
1820 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1821 )))
1822
1823 (((
1824 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1825 )))
1826
1827
1828
1829 == 3.8 +5V Output(Since v1.3.3) ==
1830
1831
1832 (((
1833 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1834 )))
1835
1836 (((
1837 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1838 )))
1839
1840 (((
1841 The 5V output time can be controlled by AT Command.
1842 )))
1843
1844 (((
1845 (% style="color:red" %)**(AT+5VT increased from the maximum 5000ms to 65000ms.Since v1.4.0)**
1846 )))
1847
1848 (((
1849 (% style="color:#037691" %)**AT+5VT=1000**
1850 )))
1851
1852 (((
1853
1854 )))
1855
1856 (((
1857 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1858 )))
1859
1860 (((
1861 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1862 )))
1863
1864
1865
1866 == 3.9 LEDs ==
1867
1868
1869 (% border="1" cellspacing="5" style="background-color:#ffffcc; color:green; width:332px" %)
1870 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1871 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1872
1873
1874
1875 == 3.10 Switch Jumper ==
1876
1877
1878 (% border="1" cellspacing="5" style="background-color:#ffffcc; color:green; width:463px" %)
1879 |=(% style="width: 123px;" %)**Switch Jumper**|=(% style="width: 336px;" %)**Feature**
1880 |(% style="width:123px" %)**SW1**|(% style="width:336px" %)ISP position: Upgrade firmware via UART
1881 Flash position: Configure device, check running status.
1882 |(% style="width:123px" %)**SW2**|(% style="width:336px" %)5V position: set to compatible with 5v I/O.
1883 3.3v position: set to compatible with 3.3v I/O.,
1884
1885 (((
1886 (% style="color:blue" %)** +3.3V**(%%): is always ON
1887 )))
1888
1889 (((
1890 (% style="color:blue" %)** +5V**(%%): Only open before every sampling. The time is by default, it is (% style="color:#4472c4" %)** AT+5VT=0**(%%).  Max open time. 65000 ms.(Since v1.4.0)
1891 )))
1892
1893
1894
1895 = 4. Case Study =
1896
1897
1898 User can check this URL for some case studies:  [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1899
1900
1901
1902 = 5. Use AT Command =
1903
1904
1905 == 5.1 Access AT Command ==
1906
1907
1908 (((
1909 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1910
1911
1912 )))
1913
1914 [[image:1654135840598-282.png]]
1915
1916
1917
1918 (((
1919 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1920
1921
1922 )))
1923
1924 [[image:1654136105500-922.png]]
1925
1926
1927 (((
1928 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1929 )))
1930
1931
1932
1933 == 5.2 Common AT Command Sequence ==
1934
1935
1936 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1937
1938
1939 If device has not joined network yet:
1940
1941 * (% style="color:#037691" %)**AT+FDR**
1942 * (% style="color:#037691" %)**AT+NJM=0**
1943 * (% style="color:#037691" %)**ATZ**
1944
1945 (((
1946
1947
1948 If device already joined network:
1949
1950 * (% style="color:#037691" %)**AT+NJM=0**
1951 * (% style="color:#037691" %)**ATZ**
1952 )))
1953
1954
1955
1956
1957 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1958
1959
1960 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1961
1962 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%) Set to ABP mode
1963
1964 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) Set the Adaptive Data Rate Off
1965
1966 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%) Set Data Rate
1967
1968 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1969
1970 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%)  Set transmit frequency to 868.4Mhz
1971
1972 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1973
1974 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1975
1976 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1977
1978 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1979
1980
1981 (% style="color:red" %)**Note:**
1982
1983 (((
1984 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1985 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1986 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1987 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1988
1989
1990 )))
1991
1992 [[image:1654136435598-589.png]]
1993
1994
1995
1996 = 6. FAQ =
1997
1998
1999 == 6.1 How to upgrade the image? ==
2000
2001
2002 (((
2003 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
2004 )))
2005
2006 * (((
2007 Support new features
2008 )))
2009 * (((
2010 For bug fix
2011 )))
2012 * (((
2013 Change LoRaWAN bands.
2014 )))
2015
2016 (((
2017 Below shows the hardware connection for how to upload an image to RS485-BL:
2018 )))
2019
2020 [[image:1654136646995-976.png]]
2021
2022
2023 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2024
2025
2026 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACc1xfL4lk-ZKECY3_JaUeVa/RS485-BL/Firmware?dl=0&subfolder_nav_tracking=1]].
2027
2028
2029 (% style="color:blue" %)**Step3**(%%)**: **Open flashloader; choose the correct COM port to update.
2030
2031
2032 [[image:image-20220602102605-1.png]]
2033
2034
2035 [[image:image-20220602102637-2.png]]
2036
2037
2038 [[image:image-20220602102715-3.png]]
2039
2040
2041
2042 == 6.2 How to change the LoRa Frequency Bands/Region? ==
2043
2044
2045 (((
2046 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2047 )))
2048
2049
2050
2051 == 6.3 How many RS485-Slave can RS485-BL connects? ==
2052
2053
2054 (((
2055 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
2056 )))
2057
2058
2059
2060 == 6.4 How to Use RS485-BL  to connect to RS232 devices? ==
2061
2062
2063 [[Use RS485-BL or RS485-LN to connect to RS232 devices. - DRAGINO>>url:http://8.211.40.43:8080/xwiki/bin/view/Main/RS485%20to%20RS232/]]
2064
2065
2066
2067 = 7. Trouble Shooting =
2068
2069
2070 == 7.1 Downlink doesn't work, how to solve it? ==
2071
2072
2073 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
2074
2075
2076
2077 == 7.2 Why I can't join TTN V3 in US915 /AU915 bands? ==
2078
2079
2080 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2081
2082
2083
2084 = 8. Order Info =
2085
2086
2087 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
2088
2089 (% style="color:blue" %)**XXX:**
2090
2091 * (% style="color:red" %)**EU433**(%%):  frequency bands EU433
2092 * (% style="color:red" %)**EU868**(%%):  frequency bands EU868
2093 * (% style="color:red" %)**KR920**(%%):  frequency bands KR920
2094 * (% style="color:red" %)**CN470**(%%):  frequency bands CN470
2095 * (% style="color:red" %)**AS923**(%%):  frequency bands AS923
2096 * (% style="color:red" %)**AU915**(%%):  frequency bands AU915
2097 * (% style="color:red" %)**US915**(%%):  frequency bands US915
2098 * (% style="color:red" %)**IN865**(%%):  frequency bands IN865
2099 * (% style="color:red" %)**RU864**(%%):  frequency bands RU864
2100 * (% style="color:red" %)**KZ865**(%%):  frequency bands KZ865
2101
2102
2103 = 9. Packing Info =
2104
2105
2106 (((
2107 **Package Includes**:
2108 )))
2109
2110 * (((
2111 RS485-BL x 1
2112 )))
2113 * (((
2114 Stick Antenna for LoRa RF part x 1
2115 )))
2116 * (((
2117 Program cable x 1
2118 )))
2119
2120 (((
2121 **Dimension and weight**:
2122 )))
2123
2124 * (((
2125 Device Size: 13.5 x 7 x 3 cm
2126 )))
2127 * (((
2128 Device Weight: 105g
2129 )))
2130 * (((
2131 Package Size / pcs : 14.5 x 8 x 5 cm
2132 )))
2133 * (((
2134 Weight / pcs : 170g
2135
2136
2137
2138
2139 )))
2140
2141 = 10. Support =
2142
2143
2144 * (((
2145 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2146 )))
2147 * (((
2148 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2149
2150
2151
2152 )))