Version 65.1 by Bei Jinggeng on 2022/10/09 14:10

Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="404" width="404"]]
3
4
5
6
7 **Table of Contents:**
8
9 {{toc/}}
10
11
12
13
14 = 1.Introduction =
15
16
17 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
18
19 (((
20
21 )))
22
23 (((
24 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
25 )))
26
27 (((
28 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
29 )))
30
31 (((
32 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
33 )))
34
35 (((
36 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
37 )))
38
39 (((
40 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
41 )))
42
43 (((
44 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
45 )))
46
47 (((
48 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
49
50
51 )))
52
53 [[image:1652953304999-717.png||height="424" width="733"]]
54
55
56
57 == 1.2 Specifications ==
58
59
60 (% style="color:#037691" %)**Hardware System:**
61
62 * STM32L072CZT6 MCU
63 * SX1276/78 Wireless Chip 
64 * Power Consumption (exclude RS485 device):
65 ** Idle: 6uA@3.3v
66 ** 20dB Transmit: 130mA@3.3v
67 * 5V sampling maximum current:500mA
68
69 (% style="color:#037691" %)**Interface for Model:**
70
71 * 1 x RS485 Interface
72 * 1 x TTL Serial , 3.3v or 5v.
73 * 1 x I2C Interface, 3.3v or 5v.
74 * 1 x one wire interface
75 * 1 x Interrupt Interface
76 * 1 x Controllable 5V output, max
77
78 (% style="color:#037691" %)**LoRa Spec:**
79
80 * Frequency Range:
81 ** Band 1 (HF): 862 ~~ 1020 Mhz
82 ** Band 2 (LF): 410 ~~ 528 Mhz
83 * 168 dB maximum link budget.
84 * +20 dBm - 100 mW constant RF output vs.
85 * Programmable bit rate up to 300 kbps.
86 * High sensitivity: down to -148 dBm.
87 * Bullet-proof front end: IIP3 = -12.5 dBm.
88 * Excellent blocking immunity.
89 * Fully integrated synthesizer with a resolution of 61 Hz.
90 * LoRa modulation.
91 * Built-in bit synchronizer for clock recovery.
92 * Preamble detection.
93 * 127 dB Dynamic Range RSSI.
94 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
95
96
97 == 1.3 Features ==
98
99
100 * LoRaWAN Class A & Class C protocol (default Class A)
101 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864/MA869
102 * AT Commands to change parameters
103 * Remote configure parameters via LoRaWAN Downlink
104 * Firmware upgradable via program port
105 * Support multiply RS485 devices by flexible rules
106 * Support Modbus protocol
107 * Support Interrupt uplink
108
109
110 == 1.4 Applications ==
111
112
113 * Smart Buildings & Home Automation
114 * Logistics and Supply Chain Management
115 * Smart Metering
116 * Smart Agriculture
117 * Smart Cities
118 * Smart Factory
119
120
121 == 1.5 Firmware Change log ==
122
123
124 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
125
126
127
128 == 1.6 Hardware Change log ==
129
130 (((
131
132
133 (((
134 **v1.4**
135 )))
136 )))
137
138 (((
139 (((
140 ~1. Change Power IC to TPS22916
141 )))
142 )))
143
144 (((
145
146 )))
147
148 (((
149 (((
150 **v1.3**
151 )))
152 )))
153
154 (((
155 (((
156 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
157 )))
158 )))
159
160 (((
161
162 )))
163
164 (((
165 (((
166 **v1.2**
167 )))
168 )))
169
170 (((
171 (((
172 Release version ​​​​​
173 )))
174
175
176 )))
177
178
179 = 2. Pin mapping and Power ON Device =
180
181
182 (((
183 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
184
185
186 )))
187
188 [[image:1652953055962-143.png||height="387" width="728"]]
189
190
191 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
192
193
194
195 = 3. Operation Mode =
196
197
198 == 3.1 How it works? ==
199
200
201 (((
202 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
203
204
205
206 )))
207
208 == 3.2 Example to join LoRaWAN network ==
209
210
211 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
212
213 [[image:1652953414711-647.png||height="337" width="723"]]
214
215
216 (((
217 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
218 )))
219
220 (((
221 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
222
223
224 )))
225
226 (((
227 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from RS485-BL.
228 )))
229
230 (((
231 Each RS485-BL is shipped with a sticker with unique device EUI:
232 )))
233
234 [[image:1652953462722-299.png]]
235
236
237 (((
238 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
239 )))
240
241 (((
242 **Add APP EUI in the application.**
243 )))
244
245
246 [[image:image-20220519174512-1.png]]
247
248 [[image:image-20220519174512-2.png||height="328" width="731"]]
249
250 [[image:image-20220519174512-3.png||height="556" width="724"]]
251
252 [[image:image-20220519174512-4.png]]
253
254
255 You can also choose to create the device manually.
256
257 [[image:1652953542269-423.png||height="710" width="723"]]
258
259
260 Add APP KEY and DEV EUI
261
262 [[image:1652953553383-907.png||height="514" width="724"]]
263
264
265
266 (((
267 (% style="color:blue" %)**Step 2**(%%): Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
268
269
270 )))
271
272 [[image:1652953568895-172.png||height="232" width="724"]]
273
274
275
276 == 3.3 Configure Commands to read data ==
277
278
279 (((
280 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
281
282
283
284 )))
285
286 === 3.3.1 Configure UART settings for RS485 or TTL communication(Since v1.3.3) ===
287
288
289 (((
290 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
291
292
293 )))
294
295 (((
296 (% style="color:blue" %)**1.  RS485-MODBUS mode:**
297
298
299 )))
300
301 (((
302 (% style="color:#037691" %)**AT+MOD=1**  (%%) ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
303
304
305
306 )))
307
308 (((
309 (% style="color:blue" %)**2.  TTL mode:**
310
311
312 )))
313
314 (((
315 (% style="color:#037691" %)**AT+MOD=2**  (%%) ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
316 )))
317
318 (((
319 RS485-BL default UART settings is (% style="color:green" %)**9600, no parity, stop bit 1**(%%). If the sensor has a different settings, user can change the RS485-BL setting to match.
320
321
322 )))
323
324 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
325 |=(% style="width: 80px;" %)(((
326 (((
327 **AT Commands**
328 )))
329 )))|=(% style="width: 210px;" %)(((
330 (((
331 **Description**
332 )))
333 )))|=(% style="width: 210px;" %)(((
334 (((
335 **Example**
336 )))
337 )))
338 |(% style="width:80px" %)(((
339 (((
340 AT+BAUDR
341 )))
342 )))|(% style="width:210px" %)(((
343 (((
344 Set the baud rate (for RS485 connection). Default Value is: 9600.
345 )))
346 )))|(% style="width:210px" %)(((
347 (((
348 (((
349 AT+BAUDR=9600
350 )))
351 )))
352
353 (((
354 (((
355 Options: (1200,2400,4800,14400,19200,115200)
356 )))
357 )))
358 )))
359 |(% style="width:80px" %)(((
360 (((
361 AT+PARITY
362 )))
363 )))|(% style="width:210px" %)(((
364 (((
365 (((
366 Set UART parity (for RS485 connection)
367 )))
368 )))
369
370 (((
371 (((
372 Default Value is: no parity.
373 )))
374 )))
375 )))|(% style="width:210px" %)(((
376 (((
377 (((
378 AT+PARITY=0
379 )))
380 )))
381
382 (((
383 (((
384 Option: 0: no parity, 1: odd parity, 2: even parity
385 )))
386 )))
387 )))
388 |(% style="width:80px" %)(((
389 (((
390 AT+STOPBIT
391 )))
392 )))|(% style="width:210px" %)(((
393 (((
394 (((
395 Set serial stopbit (for RS485 connection)
396 )))
397 )))
398
399 (((
400 (((
401 Default Value is: 1bit.
402 )))
403 )))
404 )))|(% style="width:210px" %)(((
405 (((
406 (((
407 AT+STOPBIT=0 for 1bit
408 )))
409 )))
410
411 (((
412 (((
413 AT+STOPBIT=1 for 1.5 bit
414 )))
415 )))
416
417 (((
418 (((
419 AT+STOPBIT=2 for 2 bits
420 )))
421 )))
422 )))
423
424
425 === 3.3.2 Configure sensors ===
426
427
428 (((
429 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
430 )))
431
432 (((
433 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won't run during each sampling.
434
435
436 )))
437
438 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
439 |=(% style="width: 80px;" %)**AT Commands**|=(% style="width: 210px;" %)**Description**|=(% style="width: 210px;" %)**Example**
440 |AT+CFGDEV|(% style="width:80px" %)(((
441 (((
442 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
443 )))
444
445 (((
446 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
447 )))
448
449 (((
450 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
451 )))
452 )))|(% style="width:210px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
453
454 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
455
456
457
458 === 3.3.3 Configure read commands for each sampling ===
459
460
461 (((
462 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
463 )))
464
465 (((
466 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
467 )))
468
469 (((
470 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
471 )))
472
473 (((
474 This section describes how to achieve above goals.
475 )))
476
477 (((
478 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
479
480
481 )))
482
483 (((
484 (% style="color:blue" %)**Command from RS485-BL to Sensor:**
485 )))
486
487 (((
488 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
489
490
491 )))
492
493 (((
494 (% style="color:blue" %)**Handle return from sensors to RS485-BL**:
495 )))
496
497 (((
498 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
499 )))
500
501 * (((
502 (% style="color:blue" %)**AT+DATACUT**
503 )))
504
505 (((
506 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
507
508
509 )))
510
511 * (((
512 (% style="color:blue" %)**AT+SEARCH**
513 )))
514
515 (((
516 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
517 )))
518
519 (((
520
521
522 (% style="color:blue" %)**Define wait timeout:**
523 )))
524
525 (((
526 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
527 )))
528
529 (((
530 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
531 )))
532
533 (((
534
535
536 **Examples:**
537 )))
538
539 (((
540 Below are examples for the how above AT Commands works.
541 )))
542
543 (((
544 (% style="color:blue" %)**AT+COMMANDx **(%%)**: **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
545
546
547 )))
548
549 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:497px" %)
550 |(% style="width:494px" %)(((
551 (((
552 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
553 )))
554
555 (((
556 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
557 )))
558
559 (((
560 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
561 )))
562 )))
563
564 (((
565 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
566 )))
567
568 (((
569 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
570 )))
571
572 (((
573
574 )))
575
576 (((
577 (% style="color:blue" %)**AT+SEARCHx**(%%): This command defines how to handle the return from AT+COMMANDx.
578
579
580 )))
581
582 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:473px" %)
583 |(% style="width:470px" %)(((
584 (((
585 **AT+SEARCHx=aa,xx xx xx xx xx**
586 )))
587
588 * (((
589 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
590 )))
591 * (((
592 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
593 )))
594 )))
595
596 (((
597
598
599 **Examples:**
600
601
602 )))
603
604 (((
605 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
606 )))
607
608 (((
609 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
610 )))
611
612 (((
613 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
614
615
616 )))
617
618 (((
619 [[image:1653271044481-711.png]]
620
621
622 )))
623
624 (((
625 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
626 )))
627
628 (((
629 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
630 )))
631
632 (((
633 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
634
635
636 )))
637
638 (((
639 [[image:1653271276735-972.png]]
640
641
642 )))
643
644 (((
645 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 100 bytes.(Since 1.4.0)
646 )))
647
648 (% style="background-color:#4f81bd; color:white; width:496px" %)
649 |(% style="width:493px" %)(((
650 (((
651 **AT+DATACUTx=a,b,c**
652 )))
653
654 * (((
655 **a: length for the return of AT+COMMAND**
656 )))
657 * (((
658 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
659 )))
660 * (((
661 **c: define the position for valid value.  **
662 )))
663 )))
664
665 (((
666
667
668
669 **Examples:**
670 )))
671
672 * (((
673 (% style="color:blue" %)**Grab bytes:**
674 )))
675
676 (((
677 [[image:1653271581490-837.png||height="313" width="722"]]
678 )))
679
680 (((
681
682
683
684 )))
685
686 * (((
687 (% style="color:blue" %)**Grab a section.**
688 )))
689
690 (((
691 [[image:1653271648378-342.png||height="326" width="720"]]
692 )))
693
694 (((
695
696
697
698 )))
699
700 * (((
701 (% style="color:blue" %)**Grab different sections.**
702 )))
703
704 (((
705 [[image:1653271657255-576.png||height="305" width="730"]]
706
707
708 )))
709
710 (((
711 (((
712 (% style="color:red" %)**Note:**
713 )))
714 )))
715
716 (((
717 (((
718 (% style="color:#037691" %)**AT+SEARCHx** (%%)and (% style="color:#037691" %)**AT+DATACUTx**(%%) can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format** AT+DATACUTx=0,xx,xx** where the return bytes set to **0**.
719
720
721 )))
722 )))
723
724 (((
725 (((
726 **Example:**
727 )))
728 )))
729
730 (((
731 (((
732 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
733 )))
734 )))
735
736 (((
737 (((
738 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
739 )))
740 )))
741
742 (((
743 (((
744 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
745 )))
746 )))
747
748 (((
749 (((
750 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
751 )))
752 )))
753
754 (((
755 (((
756 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
757 )))
758 )))
759
760 (((
761 (((
762 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
763
764
765 )))
766 )))
767
768 (((
769 [[image:1653271763403-806.png]]
770 )))
771
772
773
774 === 3.3.4 Compose the uplink payload ===
775
776
777 (((
778 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
779
780
781 )))
782
783 (((
784 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
785
786
787 )))
788
789 (((
790 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
791 )))
792
793 (((
794 Final Payload is
795 )))
796
797 (((
798 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
799 )))
800
801 (((
802 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
803 )))
804
805 [[image:1653272787040-634.png||height="515" width="719"]]
806
807
808
809 (((
810 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
811
812
813 )))
814
815 (((
816 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
817 )))
818
819 (((
820 Final Payload is
821 )))
822
823 (((
824 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
825 )))
826
827 1. (((
828 Battery Info (2 bytes): Battery voltage
829 )))
830 1. (((
831 PAYVER (1 byte): Defined by AT+PAYVER
832 )))
833 1. (((
834 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
835 )))
836 1. (((
837 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
838 )))
839 1. (((
840 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
841
842
843 )))
844
845 [[image:1653272817147-600.png||height="437" width="717"]]
846
847 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
848
849
850 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
851
852 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% _mstmutation="1" style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
853
854 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% _mstmutation="1" style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
855
856
857 Below are the uplink payloads:
858
859 [[image:1653272901032-107.png]]
860
861
862 (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
863
864 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
865
866 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
867
868 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
869
870 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
871
872 *(% style="color:red" %)** When AT+DATAUP=1, the maximum number of segments is 15, and the maximum total number of bytes is 1500;**
873
874 (% style="color:red" %)** When AT+DATAUP=1 and AT+ADR=0, the maximum number of bytes of each payload is determined by the DR value. (Since v1.4.0)**
875
876 (((
877
878 )))
879
880 * (((
881 (% style="color:blue" %)**If the data is empty, return to the display(Since v1.4.0)**
882
883
884
885 )))
886
887 (% class="wikigeneratedid" %)
888 **1) ** When (% style="color:blue" %)**AT+MOD=1**(%%), if the data intercepted by (% style="color:#037691" %)** AT+DATACUT**(%%) or (% style="color:#037691" %)** AT+MBFUN **(%%)is empty, it will display **NULL**, and the payload will be filled with **n FFs**.
889
890
891 (% class="wikigeneratedid" %)
892 [[image:image-20220824114359-3.png||height="297" width="1106"]]
893
894
895
896 **2)**  When** (% style="color:blue" %)AT+MOD=2(%%)**, if the data intercepted by (% style="color:#037691" %)** AT+DATACUT** (%%)or (% style="color:#037691" %)** AT+MBFUN**(%%) is empty, it will display **NULL**, and the payload will be filled with **n 00s**.
897
898
899 [[image:image-20220824114330-2.png]]
900
901
902
903 === 3.3.5 Uplink on demand ===
904
905
906 (((
907 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
908
909
910 )))
911
912 (((
913 (% style="color:blue" %)** Downlink control command:**
914 )))
915
916 (((
917 (% style="color:#4472c4" %)** 0x08 command**(%%): Poll an uplink with current command set in RS485-BL.
918 )))
919
920 (((
921 (% style="color:#4472c4" %)** 0xA8 command**(%%): Send a command to RS485-BL and uplink the output from sensors.
922
923
924
925 )))
926
927
928
929
930 === 3.3.6 Uplink on Interrupt ===
931
932
933 Put the interrupt sensor between 3.3v_out and GPIO ext.
934
935 [[image:1653273818896-432.png]]
936
937
938 (((
939 (% style="color:#4472c4" %)**AT+INTMOD=0**(%%)  Disable Interrupt
940 )))
941
942 (((
943 (% style="color:#4472c4" %)**AT+INTMOD=1**(%%)  Interrupt trigger by rising or falling edge.
944 )))
945
946 (((
947 (% style="color:#4472c4" %)**AT+INTMOD=2** (%%) Interrupt trigger by falling edge. ( Default Value)
948 )))
949
950 (((
951 (% style="color:#4472c4" %)**AT+INTMOD=3**(%%)  Interrupt trigger by rising edge.
952
953
954
955 )))
956
957
958
959 == 3.4 Uplink Payload ==
960
961
962 [[image:image-20220606105412-1.png]]
963
964
965 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
966
967
968 (((
969 {{{function Decoder(bytes, port) {}}}
970 )))
971
972 (((
973 {{{//Payload Formats of RS485-BL Deceive}}}
974 )))
975
976 (((
977 {{{return {}}}
978 )))
979
980 (((
981 {{{ //Battery,units:V}}}
982 )))
983
984 (((
985 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
986 )))
987
988 (((
989 {{{ //GPIO_EXTI }}}
990 )))
991
992 (((
993 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
994 )))
995
996 (((
997 {{{ //payload of version}}}
998 )))
999
1000 (((
1001 {{{ Pay_ver:bytes[2],}}}
1002 )))
1003
1004 (((
1005 {{{ }; }}}
1006 )))
1007
1008 (((
1009 **}**
1010
1011
1012 )))
1013
1014 (((
1015 TTN V3 uplink screen shot.
1016 )))
1017
1018 [[image:1653274001211-372.png||height="192" width="732"]]
1019
1020
1021
1022 == 3.5 Configure RS485-BL via AT or Downlink ==
1023
1024
1025 (((
1026 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
1027 )))
1028
1029 (((
1030 There are two kinds of Commands:
1031 )))
1032
1033 * (((
1034 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1035 )))
1036
1037 * (((
1038 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
1039
1040
1041
1042
1043 )))
1044
1045 === 3.5.1 Common Commands: ===
1046
1047
1048 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1049
1050
1051
1052 === 3.5.2 Sensor related commands: ===
1053
1054
1055
1056 ==== (% style="color:blue" %)**Choose Device Type (RS485 or TTL)(Since v1.3.3)**(%%) ====
1057
1058
1059 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
1060
1061 * (% style="color:#037691" %)**AT Command**
1062
1063 (% style="color:#4472c4" %)** AT+MOD=1** (%%) ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
1064
1065 (% style="color:#4472c4" %)** AT+MOD=2** (%%) ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
1066
1067
1068 * (% style="color:#037691" %)**Downlink Payload**
1069
1070 (% style="color:#4472c4" %)** 0A aa** (%%) ~-~->  same as AT+MOD=aa
1071
1072
1073
1074
1075 ==== (% style="color:blue" %)**RS485 Debug Command (AT+CFGDEV)**(%%) ====
1076
1077
1078 (((
1079 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling. Max Length of AT+CFGDEV is **40 bytes**.
1080 )))
1081
1082 (((
1083 * (% style="color:#037691" %)**AT Command**
1084
1085 (((
1086 (% style="color:#4472c4" %)** AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**  (%%) m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
1087 )))
1088 )))
1089
1090 (((
1091
1092 )))
1093
1094 * (((
1095 (% style="color:#037691" %)**Downlink Payload**
1096 )))
1097
1098 (((
1099 Format:  (% style="color:#4472c4" %)** A8 MM NN XX XX XX XX YY**
1100 )))
1101
1102 (((
1103 Where:
1104 )))
1105
1106 * (((
1107 MM: 1: add CRC-16/MODBUS ; 0: no CRC
1108 )))
1109 * (((
1110 NN: The length of RS485 command
1111 )))
1112 * (((
1113 XX XX XX XX: RS485 command total NN bytes
1114 )))
1115 * (((
1116 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
1117
1118
1119
1120 )))
1121
1122 (((
1123 (% style="color:blue" %)**Example 1:**
1124 )))
1125
1126 (((
1127 To connect a Modbus Alarm with below commands.
1128 )))
1129
1130 * (((
1131 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
1132 )))
1133
1134 * (((
1135 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1136 )))
1137
1138 (((
1139 So if user want to use downlink command to control to RS485 Alarm, he can use:
1140 )))
1141
1142 (((
1143 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1144 )))
1145
1146 (((
1147 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1148 )))
1149
1150 (((
1151 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
1152 )))
1153
1154 (((
1155
1156
1157
1158 )))
1159
1160 (((
1161 (% style="color:blue" %)**Example 2:**
1162 )))
1163
1164 (((
1165 Check TTL Sensor return:
1166 )))
1167
1168 (((
1169 [[image:1654132684752-193.png]]
1170 )))
1171
1172
1173
1174
1175 ==== (% style="color:blue" %)**Set Payload version**(%%) ====
1176
1177
1178 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1179
1180 * (% style="color:#037691" %)**AT Command:**
1181
1182 (% style="color:#4472c4" %)** AT+PAYVER:   **(%%)Set PAYVER field = 1
1183
1184
1185 * (% style="color:#037691" %)**Downlink Payload:**
1186
1187 (% style="color:#4472c4" %)** 0xAE 01** (%%) ~-~-> Set PAYVER field =  0x01
1188
1189 (% style="color:#4472c4" %)** 0xAE 0F** (%%) ~-~-> Set PAYVER field =  0x0F
1190
1191
1192
1193
1194 ==== (% style="color:blue" %)**Set RS485 Sampling Commands**(%%) ====
1195
1196
1197 (((
1198 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1199 )))
1200
1201 (((
1202 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1203 )))
1204
1205 (((
1206
1207 )))
1208
1209 * (((
1210 (% style="color:#037691" %)**AT Command:**
1211 )))
1212
1213 (% style="color:#4472c4" %)** AT+COMMANDx: **(%%)** Configure RS485 read command to sensor.**
1214
1215 (% style="color:#4472c4" %)** AT+DATACUTx: **(%%)** Configure how to handle return from RS485 devices.**
1216
1217 (% style="color:#4472c4" %)** AT+SEARCHx:  **(%%)** Configure search command**
1218
1219
1220 * (((
1221 (% style="color:#037691" %)**Downlink Payload:**
1222 )))
1223
1224 (((
1225 (% style="color:#4472c4" %)** 0xAF**(%%) downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1226 )))
1227
1228 (((
1229 (% style="color:red" %)**Note : if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.**
1230 )))
1231
1232 (((
1233 Format: AF MM NN LL XX XX XX XX YY
1234 )))
1235
1236 (((
1237 Where:
1238 )))
1239
1240 * (((
1241 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1242 )))
1243 * (((
1244 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1245 )))
1246 * (((
1247 LL:  The length of AT+COMMAND or AT+DATACUT command
1248 )))
1249 * (((
1250 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1251 )))
1252 * (((
1253 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1254 )))
1255
1256 (((
1257
1258
1259
1260 **Example:**
1261 )))
1262
1263 (((
1264 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1265 )))
1266
1267 (((
1268 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1269 )))
1270
1271 (((
1272 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1273 )))
1274
1275 (((
1276
1277 )))
1278
1279 (((
1280 (% style="color:#4472c4" %)** 0xAB**(%%) downlink command can be used for set AT+SEARCHx
1281 )))
1282
1283 (((
1284
1285
1286 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1287 )))
1288
1289 * (((
1290 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1291 )))
1292 * (((
1293 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1294 )))
1295
1296 (((
1297 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1298 )))
1299
1300
1301
1302
1303 ==== (% style="color:blue" %)**Fast command to handle MODBUS device**(%%) ====
1304
1305
1306 (((
1307 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1308 )))
1309
1310 (((
1311 This command is valid since v1.3 firmware version
1312 )))
1313
1314 (((
1315
1316 )))
1317
1318 (((
1319 (% style="color:#037691" %)**AT+MBFUN has only two value:**
1320 )))
1321
1322 * (((
1323 (% style="color:#4472c4" %)** AT+MBFUN=1**(%%): Enable Modbus reading. And get response base on the MODBUS return
1324 )))
1325
1326 (((
1327 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1328 )))
1329
1330 * (((
1331 (% style="color:#4472c4" %)**AT+MBFUN=0**(%%): Disable Modbus fast reading.
1332 )))
1333
1334 (((
1335
1336
1337 **Example:**
1338 )))
1339
1340 * (((
1341 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1342 )))
1343 * (((
1344 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1345 )))
1346 * (((
1347 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1348 )))
1349
1350 [[image:1654133913295-597.png]]
1351
1352
1353 [[image:1654133954153-643.png]]
1354
1355
1356 * (((
1357 (% style="color:#037691" %)**Downlink Commands:**
1358 )))
1359
1360 (((
1361 (% style="color:#4472c4" %)** A9 aa** (%%)~-~-> Same as AT+MBFUN=aa
1362 )))
1363
1364
1365
1366
1367 ==== (% style="color:blue" %)**RS485 command timeout**(%%) ====
1368
1369
1370 (((
1371 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1372 )))
1373
1374 (((
1375 Default value: 0, range:  0 ~~ 5 seconds
1376 )))
1377
1378 (((
1379
1380 )))
1381
1382 (((
1383 * (% style="color:#037691" %)**AT Command:**
1384
1385 (% style="color:#4472c4" %)**AT+CMDDLaa=hex(bb cc)**
1386
1387
1388 )))
1389
1390 (((
1391 **Example:**
1392 )))
1393
1394 (((
1395 **AT+CMDDL1=1000** to send the open time to 1000ms
1396 )))
1397
1398 (((
1399
1400 )))
1401
1402 * (((
1403 (% style="color:#037691" %)**Downlink Payload:**
1404 )))
1405
1406 (((
1407 (% style="color:#4472c4" %) **0x AA aa bb cc**(%%)  Same as:** AT+CMDDLaa=hex(bb cc)**
1408 )))
1409
1410 (((
1411
1412
1413 **Example:**
1414 )))
1415
1416 (((
1417 (% style="color:#4472c4" %)** 0xAA 01 03 E8**(%%)  ~-~-> Same as (% _mstmutation="1" %)**AT+CMDDL1=1000 ms**
1418 )))
1419
1420
1421
1422
1423 ==== (% style="color:blue" %)**Uplink payload mode**(%%) ====
1424
1425
1426 (((
1427 Define to use one uplink or multiple uplinks for the sampling.
1428 )))
1429
1430 (((
1431 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1432 )))
1433
1434 (((
1435 * (% style="color:#037691" %)**AT Command:**
1436
1437 (% style="color:#4472c4" %)** AT+DATAUP=0**
1438
1439 (% style="color:#4472c4" %)** AT+DATAUP=1**
1440 )))
1441
1442 (((
1443
1444 )))
1445
1446 * (((
1447 (% style="color:#037691" %)**Downlink Payload:**
1448 )))
1449
1450 (((
1451 (% style="color:#4472c4" %)** 0xAD 00**  (%%) **~-~->** Same as AT+DATAUP=0
1452 )))
1453
1454 (((
1455 (% style="color:#4472c4" %)** 0xAD 01**   (%%)**~-~->** Same as AT+DATAUP=1  ~/~/Each uplink is sent to the server one after the other as it is segmented.
1456
1457
1458 )))
1459
1460 (((
1461 * (% style="color:#037691" %)**AT Command:**
1462
1463 (% style="color:#4472c4" %)**AT+DATAUP=1,Timeout**
1464 )))
1465
1466 (((
1467
1468 )))
1469
1470 * (((
1471 (% style="color:#037691" %)**Downlink Payload:**
1472 )))
1473
1474 (((
1475 (% style="color:#4472c4" %)** 0xAD 01 00 00 14** (%%) **~-~->** Same as AT+DATAUP=1,20000 ~/~/(00 00 14 is 20 seconds)
1476 )))
1477
1478 (((
1479 Each uplink is sent to the server at 20-second intervals when segmented.
1480 )))
1481
1482
1483
1484
1485 ==== (% style="color:blue" %)**Manually trigger an Uplink**(%%) ====
1486
1487
1488 Ask device to send an uplink immediately.
1489
1490 * (% style="color:#037691" %)**Downlink Payload:**
1491
1492 (% style="color:#4472c4" %)** 0x08 FF**(%%), RS485-BL will immediately send an uplink.
1493
1494
1495
1496
1497 ==== (% style="color:blue" %)**Clear RS485 Command**(%%) ====
1498
1499
1500 (((
1501 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1502 )))
1503
1504 (((
1505
1506 )))
1507
1508 * (((
1509 (% style="color:#037691" %)**AT Command:**
1510 )))
1511
1512 (((
1513 (% style="color:#4472c4" %) **AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1514 )))
1515
1516 (((
1517 Example screen shot after clear all RS485 commands. 
1518 )))
1519
1520 (((
1521
1522 )))
1523
1524 (((
1525 The uplink screen shot is:
1526 )))
1527
1528 (((
1529 [[image:1654134704555-320.png]]
1530 )))
1531
1532 (((
1533
1534 )))
1535
1536 * (((
1537 (% style="color:#037691" %)**Downlink Payload:**
1538 )))
1539
1540 (((
1541 (% style="color:#4472c4" %)** 0x09 aa bb**(%%) same as AT+CMDEAR=aa,bb
1542 )))
1543
1544
1545
1546
1547 ==== (% style="color:blue" %)**Set Serial Communication Parameters**(%%) ====
1548
1549
1550 (((
1551 Set the Rs485 serial communication parameters:
1552 )))
1553
1554 * (((
1555 (% style="color:#037691" %)**AT Command:**
1556 )))
1557
1558 (((
1559
1560
1561 * Set Baud Rate:
1562 )))
1563
1564 (% style="color:#4472c4" %)** AT+BAUDR=9600** (%%) ~/~/ Options: (200~~115200),When using low baud rate or receiving multiple bytes, you need to use AT+CMDDL to increase the receive timeout (the default receive timeout is 300ms), otherwise data will be lost
1565
1566
1567
1568 * Set UART Parity
1569
1570 (% style="color:#4472c4" %)** AT+PARITY=0**  (%%) ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1571
1572
1573 * Set STOPBIT
1574
1575 (% style="color:#4472c4" %)** AT+STOPBIT=0** (%%) ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1576
1577
1578 * (((
1579 (% style="color:#037691" %)**Downlink Payload:**
1580 )))
1581
1582 (((
1583 (% style="color:#4472c4" %)** A7 01 aa bb**(%%): Same  AT+BAUDR=hex(aa bb)*100
1584 )))
1585
1586 (((
1587
1588
1589 **Example:**
1590 )))
1591
1592 * (((
1593 A7 01 00 60   same as AT+BAUDR=9600
1594 )))
1595 * (((
1596 A7 01 04 80  same as AT+BAUDR=115200
1597 )))
1598
1599 (((
1600 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1601 )))
1602
1603 (((
1604 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1605 )))
1606
1607
1608 ==== (% style="color:blue" %)**Configure Databit**(%%) ====
1609
1610 * (((
1611 (% style="color:#037691" %)**AT Command:**
1612 )))
1613
1614 **~ AT+DATABIT=7 **~/~/ Set the data bits to 7
1615
1616 **~ AT+DATABIT=8  **~/~/Set the data bits to 8
1617
1618
1619 * (((
1620 (% style="color:#037691" %)**Downlink Payload:**
1621 )))
1622
1623 **~ A7 04 07**: Same as  AT+DATABIT=7
1624
1625 **~ A7 04 08**: Same as  AT+DATABIT=8
1626
1627
1628 ==== (% style="color:blue" %)**Encrypted payload**(%%) ====
1629
1630 (((
1631
1632 )))
1633
1634 * (((
1635 (% style="color:#037691" %)**AT Command:**
1636 )))
1637
1638 (% style="color:#4472c4" %)** AT+DECRYPT=1 **(%%)** **~/~/ The payload is uploaded without encryption
1639
1640 (% style="color:#4472c4" %)** AT+DECRYPT=0  **(%%)~/~/Encrypt when uploading payload (default)
1641
1642
1643 ==== (% style="color:blue" %)**Get sensor value**(%%) ====
1644
1645 (((
1646
1647 )))
1648
1649 * (((
1650 (% style="color:#037691" %)**AT Command:**
1651 )))
1652
1653 (% style="color:#4472c4" %)** AT+GETSENSORVALUE=0 **(%%)** **~/~/ The serial port gets the reading of the current sensor
1654
1655 (% style="color:#4472c4" %)** AT+GETSENSORVALUE=1  **(%%)~/~/The serial port gets the current sensor reading and uploads it.
1656
1657
1658
1659
1660 ==== (% style="color:blue" %)**Resets the downlink packet count**(%%) ====
1661
1662 (((
1663
1664 )))
1665
1666 * (((
1667 (% style="color:#037691" %)**AT Command:**
1668 )))
1669
1670 (% style="color:#4472c4" %)** AT+DISFCNTCHECK=0  **(%%) ~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1671
1672 (% style="color:#4472c4" %)** AT+DISFCNTCHECK=1  **(%%) ~/~/When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1673
1674
1675
1676
1677 ==== (% style="color:blue" %)**When the limit bytes are exceeded, upload in batches**(%%) ====
1678
1679 (((
1680
1681 )))
1682
1683 * (((
1684 (% style="color:#037691" %)**AT Command:**
1685 )))
1686
1687 (% style="color:#4472c4" %)** AT+DISMACANS=0**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1688
1689 (% style="color:#4472c4" %)** AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1690
1691
1692 * (((
1693 (% style="color:#037691" %)**Downlink Payload**
1694 )))
1695
1696 (% style="color:#4472c4" %)** 0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1697
1698
1699
1700
1701 ==== (% style="color:blue" %)** Copy downlink to uplink **(%%) ====
1702
1703 (((
1704
1705 )))
1706
1707 * (((
1708 (% style="color:#037691" %)**AT Command:**
1709 )))
1710
1711 (% style="color:#4472c4" %)** AT+RPL=5** (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1712
1713
1714 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1715
1716
1717 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1718
1719
1720
1721 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1722
1723
1724 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1725
1726
1727 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1728
1729
1730
1731
1732 ==== (% style="color:blue" %)**Query version number and frequency band 、TDC**(%%) ====
1733
1734
1735 * (((
1736 (% style="color:#037691" %)**Downlink Payload: 26 01  **(%%) ~/~/ Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1737 )))
1738
1739 **Example:**
1740
1741
1742 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1743
1744
1745
1746
1747 ==== (% style="color:blue" %)**Control output power duration**(%%) ====
1748
1749
1750 (((
1751 User can set the output power duration before each sampling.
1752 )))
1753
1754 * (((
1755 (% style="color:#037691" %)**AT Command:**
1756 )))
1757
1758 (((
1759 **Example:**
1760 )))
1761
1762 (((
1763 (% style="color:#4472c4" %)** AT+3V3T=1000**(%%)  ~/~/ 3V3 output power will open 1s before each sampling.
1764 )))
1765
1766 (((
1767 (% style="color:#4472c4" %)** AT+5VT=1000** (%%) ~/~/ +5V output power will open 1s before each sampling.
1768 )))
1769
1770 (((
1771
1772 )))
1773
1774 * (((
1775 (% style="color:#037691" %)**LoRaWAN Downlink Command:**
1776 )))
1777
1778 (((
1779 (% style="color:#4472c4" %)** 07 01 aa bb** (%%) Same as AT+5VT=(aa bb)
1780 )))
1781
1782 (((
1783 (% style="color:#4472c4" %)** 07 02 aa bb** (%%) Same as AT+3V3T=(aa bb)
1784 )))
1785
1786
1787
1788 == 3.6 Buttons ==
1789
1790
1791 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:233px" %)
1792 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1793 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1794
1795
1796 == 3.7 +3V3 Output(Since v1.3.3) ==
1797
1798
1799 (((
1800 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1801 )))
1802
1803 (((
1804 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1805 )))
1806
1807 (((
1808 The +3V3 output time can be controlled by AT Command.
1809 )))
1810
1811 (((
1812
1813 )))
1814
1815 (((
1816 (% style="color:#037691" %)**AT+3V3T=1000**
1817 )))
1818
1819 (((
1820
1821 )))
1822
1823 (((
1824 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1825 )))
1826
1827 (((
1828 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1829 )))
1830
1831
1832
1833 == 3.8 +5V Output(Since v1.3.3) ==
1834
1835
1836 (((
1837 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1838 )))
1839
1840 (((
1841 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1842 )))
1843
1844 (((
1845 The 5V output time can be controlled by AT Command.
1846 )))
1847
1848 (((
1849 (% style="color:red" %)**(AT+5VT increased from the maximum 5000ms to 65000ms.Since v1.4.0)**
1850 )))
1851
1852 (((
1853 (% style="color:#037691" %)**AT+5VT=1000**
1854 )))
1855
1856 (((
1857
1858 )))
1859
1860 (((
1861 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1862 )))
1863
1864 (((
1865 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1866 )))
1867
1868
1869
1870 == 3.9 LEDs ==
1871
1872
1873 (% border="1" style="background-color:#ffffcc; color:green; width:332px" %)
1874 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1875 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1876
1877
1878 == 3.10 Switch Jumper ==
1879
1880
1881 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:463px" %)
1882 |=(% style="width: 123px;" %)**Switch Jumper**|=(% style="width: 336px;" %)**Feature**
1883 |(% style="width:123px" %)**SW1**|(% style="width:336px" %)ISP position: Upgrade firmware via UART
1884 Flash position: Configure device, check running status.
1885 |(% style="width:123px" %)**SW2**|(% style="width:336px" %)5V position: set to compatible with 5v I/O.
1886 3.3v position: set to compatible with 3.3v I/O.,
1887
1888 (((
1889 (% style="color:blue" %)** +3.3V**(%%): is always ON
1890 )))
1891
1892 (((
1893 (% style="color:blue" %)** +5V**(%%): Only open before every sampling. The time is by default, it is (% style="color:#4472c4" %)** AT+5VT=0**(%%).  Max open time. 65000 ms.(Since v1.4.0)
1894 )))
1895
1896
1897
1898 = 4. Case Study =
1899
1900
1901 User can check this URL for some case studies:  [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1902
1903
1904
1905 = 5. Use AT Command =
1906
1907
1908 == 5.1 Access AT Command ==
1909
1910
1911 (((
1912 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1913
1914
1915 )))
1916
1917 [[image:1654135840598-282.png]]
1918
1919
1920
1921 (((
1922 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1923
1924
1925 )))
1926
1927 [[image:1654136105500-922.png]]
1928
1929
1930 (((
1931 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1932 )))
1933
1934
1935
1936 == 5.2 Common AT Command Sequence ==
1937
1938
1939 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1940
1941
1942 If device has not joined network yet:
1943
1944 * (% style="color:#037691" %)**AT+FDR**
1945 * (% style="color:#037691" %)**AT+NJM=0**
1946 * (% style="color:#037691" %)**ATZ**
1947
1948 (((
1949
1950
1951 If device already joined network:
1952
1953 * (% style="color:#037691" %)**AT+NJM=0**
1954 * (% style="color:#037691" %)**ATZ**
1955 )))
1956
1957
1958
1959
1960 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1961
1962
1963 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1964
1965 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%) Set to ABP mode
1966
1967 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) Set the Adaptive Data Rate Off
1968
1969 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%) Set Data Rate
1970
1971 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1972
1973 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%)  Set transmit frequency to 868.4Mhz
1974
1975 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1976
1977 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1978
1979 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1980
1981 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1982
1983
1984 (% style="color:red" %)**Note:**
1985
1986 (((
1987 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1988 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1989 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1990 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1991
1992
1993 )))
1994
1995 [[image:1654136435598-589.png]]
1996
1997
1998
1999 = 6. FAQ =
2000
2001
2002 == 6.1 How to upgrade the image? ==
2003
2004
2005 (((
2006 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
2007 )))
2008
2009 * (((
2010 Support new features
2011 )))
2012 * (((
2013 For bug fix
2014 )))
2015 * (((
2016 Change LoRaWAN bands.
2017 )))
2018
2019 (((
2020 Below shows the hardware connection for how to upload an image to RS485-BL:
2021 )))
2022
2023 [[image:1654136646995-976.png]]
2024
2025
2026 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2027
2028
2029 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACc1xfL4lk-ZKECY3_JaUeVa/RS485-BL/Firmware?dl=0&subfolder_nav_tracking=1]].
2030
2031
2032 (% style="color:blue" %)**Step3**(%%)**: **Open flashloader; choose the correct COM port to update.
2033
2034
2035 [[image:image-20220602102605-1.png]]
2036
2037
2038 [[image:image-20220602102637-2.png]]
2039
2040
2041 [[image:image-20220602102715-3.png]]
2042
2043
2044
2045 == 6.2 How to change the LoRa Frequency Bands/Region? ==
2046
2047
2048 (((
2049 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2050 )))
2051
2052
2053
2054 == 6.3 How many RS485-Slave can RS485-BL connects? ==
2055
2056
2057 (((
2058 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
2059 )))
2060
2061
2062
2063 == 6.4 How to Use RS485-BL  to connect to RS232 devices? ==
2064
2065
2066 [[Use RS485-BL or RS485-LN to connect to RS232 devices. - DRAGINO>>url:http://8.211.40.43:8080/xwiki/bin/view/Main/RS485%20to%20RS232/]]
2067
2068
2069
2070 = 7. Trouble Shooting =
2071
2072
2073 == 7.1 Downlink doesn't work, how to solve it? ==
2074
2075
2076 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
2077
2078
2079
2080 == 7.2 Why I can't join TTN V3 in US915 /AU915 bands? ==
2081
2082
2083 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2084
2085
2086
2087 = 8. Order Info =
2088
2089
2090 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
2091
2092 (% style="color:blue" %)**XXX:**
2093
2094 * (% style="color:red" %)**EU433**(%%):  frequency bands EU433
2095 * (% style="color:red" %)**EU868**(%%):  frequency bands EU868
2096 * (% style="color:red" %)**KR920**(%%):  frequency bands KR920
2097 * (% style="color:red" %)**CN470**(%%):  frequency bands CN470
2098 * (% style="color:red" %)**AS923**(%%):  frequency bands AS923
2099 * (% style="color:red" %)**AU915**(%%):  frequency bands AU915
2100 * (% style="color:red" %)**US915**(%%):  frequency bands US915
2101 * (% style="color:red" %)**IN865**(%%):  frequency bands IN865
2102 * (% style="color:red" %)**RU864**(%%):  frequency bands RU864
2103 * (% style="color:red" %)**KZ865**(%%):  frequency bands KZ865
2104
2105
2106
2107 = 9. Packing Info =
2108
2109
2110 (((
2111 **Package Includes**:
2112 )))
2113
2114 * (((
2115 RS485-BL x 1
2116 )))
2117 * (((
2118 Stick Antenna for LoRa RF part x 1
2119 )))
2120 * (((
2121 Program cable x 1
2122 )))
2123
2124 (((
2125 **Dimension and weight**:
2126 )))
2127
2128 * (((
2129 Device Size: 13.5 x 7 x 3 cm
2130 )))
2131 * (((
2132 Device Weight: 105g
2133 )))
2134 * (((
2135 Package Size / pcs : 14.5 x 8 x 5 cm
2136 )))
2137 * (((
2138 Weight / pcs : 170g
2139
2140
2141
2142
2143 )))
2144
2145 = 10. Support =
2146
2147
2148 * (((
2149 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2150 )))
2151 * (((
2152 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2153
2154
2155
2156 )))