Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="404" width="404"]]
3
4
5
6
7 **Table of Contents:**
8
9 {{toc/}}
10
11
12
13
14 = 1.Introduction =
15
16
17 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
18
19 (((
20
21 )))
22
23 (((
24 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
25 )))
26
27 (((
28 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
29 )))
30
31 (((
32 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
33 )))
34
35 (((
36 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
37 )))
38
39 (((
40 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
41 )))
42
43 (((
44 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
45 )))
46
47 (((
48 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
49
50
51 )))
52
53 [[image:1652953304999-717.png||height="424" width="733"]]
54
55
56
57 == 1.2 Specifications ==
58
59
60 **Hardware System:**
61
62 * STM32L072CZT6 MCU
63 * SX1276/78 Wireless Chip 
64 * Power Consumption (exclude RS485 device):
65 ** Idle: 6uA@3.3v
66 ** 20dB Transmit: [[130mA@3.3v>>mailto:130mA@3.3v]]
67 * 5V sampling maximum current:500mA
68
69 **Interface for Model:**
70
71 * 1 x RS485 Interface
72 * 1 x TTL Serial , 3.3v or 5v.
73 * 1 x I2C Interface, 3.3v or 5v.
74 * 1 x one wire interface
75 * 1 x Interrupt Interface
76 * 1 x Controllable 5V output, max
77
78 **LoRa Spec:**
79
80 * Frequency Range:
81 ** Band 1 (HF): 862 ~~ 1020 Mhz
82 ** Band 2 (LF): 410 ~~ 528 Mhz
83 * 168 dB maximum link budget.
84 * +20 dBm - 100 mW constant RF output vs.
85 * Programmable bit rate up to 300 kbps.
86 * High sensitivity: down to -148 dBm.
87 * Bullet-proof front end: IIP3 = -12.5 dBm.
88 * Excellent blocking immunity.
89 * Fully integrated synthesizer with a resolution of 61 Hz.
90 * LoRa modulation.
91 * Built-in bit synchronizer for clock recovery.
92 * Preamble detection.
93 * 127 dB Dynamic Range RSSI.
94 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
95
96
97 == 1.3 Features ==
98
99
100 * LoRaWAN Class A & Class C protocol (default Class A)
101 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
102 * AT Commands to change parameters
103 * Remote configure parameters via LoRaWAN Downlink
104 * Firmware upgradable via program port
105 * Support multiply RS485 devices by flexible rules
106 * Support Modbus protocol
107 * Support Interrupt uplink
108
109
110 == 1.4 Applications ==
111
112
113 * Smart Buildings & Home Automation
114 * Logistics and Supply Chain Management
115 * Smart Metering
116 * Smart Agriculture
117 * Smart Cities
118 * Smart Factory
119
120
121 == 1.5 Firmware Change log ==
122
123
124 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
125
126
127
128 == 1.6 Hardware Change log ==
129
130 (((
131
132
133 (((
134 **v1.4**
135 )))
136 )))
137
138 (((
139 (((
140 ~1. Change Power IC to TPS22916
141 )))
142 )))
143
144 (((
145
146 )))
147
148 (((
149 (((
150 **v1.3**
151 )))
152 )))
153
154 (((
155 (((
156 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
157 )))
158 )))
159
160 (((
161
162 )))
163
164 (((
165 (((
166 **v1.2**
167 )))
168 )))
169
170 (((
171 (((
172 Release version ​​​​​
173 )))
174
175
176 )))
177
178
179 = 2. Pin mapping and Power ON Device =
180
181
182 (((
183 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
184 )))
185
186 [[image:1652953055962-143.png||height="387" width="728"]]
187
188
189 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
190
191
192
193 = 3. Operation Mode =
194
195
196 == 3.1 How it works? ==
197
198
199 (((
200 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
201
202
203
204 )))
205
206 == 3.2 Example to join LoRaWAN network ==
207
208
209 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
210
211 [[image:1652953414711-647.png||height="337" width="723"]]
212
213
214 (((
215 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
216 )))
217
218 (((
219 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
220
221
222 )))
223
224 (((
225 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from RS485-BL.
226 )))
227
228 (((
229 Each RS485-BL is shipped with a sticker with unique device EUI:
230 )))
231
232 [[image:1652953462722-299.png]]
233
234
235 (((
236 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
237 )))
238
239 (((
240 **Add APP EUI in the application.**
241 )))
242
243
244 [[image:image-20220519174512-1.png]]
245
246 [[image:image-20220519174512-2.png||height="328" width="731"]]
247
248 [[image:image-20220519174512-3.png||height="556" width="724"]]
249
250 [[image:image-20220519174512-4.png]]
251
252
253 You can also choose to create the device manually.
254
255 [[image:1652953542269-423.png||height="710" width="723"]]
256
257
258 Add APP KEY and DEV EUI
259
260 [[image:1652953553383-907.png||height="514" width="724"]]
261
262
263
264 (((
265 (% style="color:blue" %)**Step 2**(%%): Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
266 )))
267
268 [[image:1652953568895-172.png||height="232" width="724"]]
269
270
271
272 == 3.3 Configure Commands to read data ==
273
274
275 (((
276 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
277
278
279
280 )))
281
282 === 3.3.1 Configure UART settings for RS485 or TTL communication ===
283
284
285 (((
286 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
287 )))
288
289 (((
290 **~1. RS485-MODBUS mode:**
291 )))
292
293 (((
294 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
295
296
297 )))
298
299 (((
300 **2. TTL mode:**
301 )))
302
303 (((
304 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
305 )))
306
307 (((
308 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
309 )))
310
311 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
312 |=(% style="width: 80px;" %)(((
313 (((
314 **AT Commands**
315 )))
316 )))|=(% style="width: 210px;" %)(((
317 (((
318 **Description**
319 )))
320 )))|=(% style="width: 210px;" %)(((
321 (((
322 **Example**
323 )))
324 )))
325 |(% style="width:80px" %)(((
326 (((
327 AT+BAUDR
328 )))
329 )))|(% style="width:210px" %)(((
330 (((
331 Set the baud rate (for RS485 connection). Default Value is: 9600.
332 )))
333 )))|(% style="width:210px" %)(((
334 (((
335 (((
336 AT+BAUDR=9600
337 )))
338 )))
339
340 (((
341 (((
342 Options: (1200,2400,4800,14400,19200,115200)
343 )))
344 )))
345 )))
346 |(% style="width:80px" %)(((
347 (((
348 AT+PARITY
349 )))
350 )))|(% style="width:210px" %)(((
351 (((
352 (((
353 Set UART parity (for RS485 connection)
354 )))
355 )))
356
357 (((
358 (((
359 Default Value is: no parity.
360 )))
361 )))
362 )))|(% style="width:210px" %)(((
363 (((
364 (((
365 AT+PARITY=0
366 )))
367 )))
368
369 (((
370 (((
371 Option: 0: no parity, 1: odd parity, 2: even parity
372 )))
373 )))
374 )))
375 |(% style="width:80px" %)(((
376 (((
377 AT+STOPBIT
378 )))
379 )))|(% style="width:210px" %)(((
380 (((
381 (((
382 Set serial stopbit (for RS485 connection)
383 )))
384 )))
385
386 (((
387 (((
388 Default Value is: 1bit.
389 )))
390 )))
391 )))|(% style="width:210px" %)(((
392 (((
393 (((
394 AT+STOPBIT=0 for 1bit
395 )))
396 )))
397
398 (((
399 (((
400 AT+STOPBIT=1 for 1.5 bit
401 )))
402 )))
403
404 (((
405 (((
406 AT+STOPBIT=2 for 2 bits
407 )))
408 )))
409 )))
410
411
412 === 3.3.2 Configure sensors ===
413
414
415 (((
416 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
417 )))
418
419 (((
420 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
421 )))
422
423 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
424 |=(% style="width: 80px;" %)**AT Commands**|=(% style="width: 210px;" %)**Description**|=(% style="width: 210px;" %)**Example**
425 |AT+CFGDEV|(% style="width:80px" %)(((
426 (((
427 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
428 )))
429
430 (((
431 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
432 )))
433
434 (((
435 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
436 )))
437 )))|(% style="width:210px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
438
439 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
440
441
442
443 === 3.3.3 Configure read commands for each sampling ===
444
445
446 (((
447 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
448 )))
449
450 (((
451 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
452 )))
453
454 (((
455 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
456 )))
457
458 (((
459 This section describes how to achieve above goals.
460 )))
461
462 (((
463 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
464
465
466 )))
467
468 (((
469 (% style="color:blue" %)**Command from RS485-BL to Sensor:**
470 )))
471
472 (((
473 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
474
475
476 )))
477
478 (((
479 (% style="color:blue" %)**Handle return from sensors to RS485-BL**:
480 )))
481
482 (((
483 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
484 )))
485
486 * (((
487 (% style="color:blue" %)**AT+DATACUT**
488 )))
489
490 (((
491 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
492
493
494 )))
495
496 * (((
497 (% style="color:blue" %)**AT+SEARCH**
498 )))
499
500 (((
501 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
502 )))
503
504 (((
505
506
507 (% style="color:blue" %)**Define wait timeout:**
508 )))
509
510 (((
511 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
512 )))
513
514 (((
515 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
516 )))
517
518 (((
519
520
521 **Examples:**
522 )))
523
524 (((
525 Below are examples for the how above AT Commands works.
526 )))
527
528 (((
529 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
530 )))
531
532 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:497px" %)
533 |(% style="width:494px" %)(((
534 (((
535 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
536 )))
537
538 (((
539 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
540 )))
541
542 (((
543 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
544 )))
545 )))
546
547 (((
548 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
549 )))
550
551 (((
552 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
553 )))
554
555 (((
556
557 )))
558
559 (((
560 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
561 )))
562
563 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:473px" %)
564 |(% style="width:470px" %)(((
565 (((
566 **AT+SEARCHx=aa,xx xx xx xx xx**
567 )))
568
569 * (((
570 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
571 )))
572 * (((
573 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
574 )))
575 )))
576
577 (((
578
579
580 **Examples:**
581 )))
582
583 (((
584 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
585 )))
586
587 (((
588 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
589 )))
590
591 (((
592 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
593 )))
594
595 (((
596 [[image:1653271044481-711.png]]
597
598
599 )))
600
601 (((
602 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
603 )))
604
605 (((
606 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
607 )))
608
609 (((
610 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
611 )))
612
613 (((
614 [[image:1653271276735-972.png]]
615 )))
616
617 (((
618 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
619 )))
620
621 (% style="background-color:#4f81bd; color:white; width:496px" %)
622 |(% style="width:493px" %)(((
623 (((
624 **AT+DATACUTx=a,b,c**
625 )))
626
627 * (((
628 **a: length for the return of AT+COMMAND**
629 )))
630 * (((
631 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
632 )))
633 * (((
634 **c: define the position for valid value.  **
635 )))
636 )))
637
638 (((
639
640
641
642 **Examples:**
643 )))
644
645 * (((
646 (% style="color:blue" %)**Grab bytes:**
647 )))
648
649 (((
650 [[image:1653271581490-837.png||height="313" width="722"]]
651 )))
652
653 (((
654
655
656
657 )))
658
659 * (((
660 (% style="color:blue" %)**Grab a section.**
661 )))
662
663 (((
664 [[image:1653271648378-342.png||height="326" width="720"]]
665 )))
666
667 (((
668
669
670
671 )))
672
673 * (((
674 (% style="color:blue" %)**Grab different sections.**
675 )))
676
677 (((
678 [[image:1653271657255-576.png||height="305" width="730"]]
679
680
681 )))
682
683 (((
684 (((
685 (% style="color:red" %)**Note:**
686 )))
687 )))
688
689 (((
690 (((
691 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
692
693
694 )))
695 )))
696
697 (((
698 (((
699 **Example:**
700 )))
701 )))
702
703 (((
704 (((
705 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
706 )))
707 )))
708
709 (((
710 (((
711 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
712 )))
713 )))
714
715 (((
716 (((
717 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
718 )))
719 )))
720
721 (((
722 (((
723 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
724 )))
725 )))
726
727 (((
728 (((
729 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
730 )))
731 )))
732
733 (((
734 (((
735 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
736 )))
737 )))
738
739 (((
740 [[image:1653271763403-806.png]]
741 )))
742
743
744
745 === 3.3.4 Compose the uplink payload ===
746
747
748 (((
749 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
750
751
752 )))
753
754 (((
755 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
756
757
758 )))
759
760 (((
761 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
762 )))
763
764 (((
765 Final Payload is
766 )))
767
768 (((
769 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
770 )))
771
772 (((
773 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
774 )))
775
776 [[image:1653272787040-634.png||height="515" width="719"]]
777
778
779
780 (((
781 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
782
783
784 )))
785
786 (((
787 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
788 )))
789
790 (((
791 Final Payload is
792 )))
793
794 (((
795 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
796 )))
797
798 1. (((
799 Battery Info (2 bytes): Battery voltage
800 )))
801 1. (((
802 PAYVER (1 byte): Defined by AT+PAYVER
803 )))
804 1. (((
805 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
806 )))
807 1. (((
808 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
809 )))
810 1. (((
811 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
812
813
814 )))
815
816 [[image:1653272817147-600.png||height="437" width="717"]]
817
818 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
819
820
821 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
822
823 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% _mstmutation="1" style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
824
825 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% _mstmutation="1" style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
826
827
828 Below are the uplink payloads:
829
830 [[image:1653272901032-107.png]]
831
832
833 (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
834
835 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
836
837 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
838
839 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
840
841 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
842
843
844
845
846 === 3.3.5 Uplink on demand ===
847
848
849 (((
850 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
851 )))
852
853 (((
854 Downlink control command:
855 )))
856
857 (((
858 **0x08 command**: Poll an uplink with current command set in RS485-BL.
859 )))
860
861 (((
862 **0xA8 command**: Send a command to RS485-BL and uplink the output from sensors.
863
864
865
866 )))
867
868 === 3.3.6 Uplink on Interrupt ===
869
870
871 Put the interrupt sensor between 3.3v_out and GPIO ext.
872
873 [[image:1653273818896-432.png]]
874
875
876 (((
877 AT+INTMOD=0  Disable Interrupt
878 )))
879
880 (((
881 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
882 )))
883
884 (((
885 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
886 )))
887
888 (((
889 AT+INTMOD=3  Interrupt trigger by rising edge.
890
891
892
893 )))
894
895 == 3.4 Uplink Payload ==
896
897
898 [[image:image-20220606105412-1.png]]
899
900 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
901
902 (((
903 {{{function Decoder(bytes, port) {}}}
904 )))
905
906 (((
907 {{{//Payload Formats of RS485-BL Deceive}}}
908 )))
909
910 (((
911 {{{return {}}}
912 )))
913
914 (((
915 {{{ //Battery,units:V}}}
916 )))
917
918 (((
919 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
920 )))
921
922 (((
923 {{{ //GPIO_EXTI }}}
924 )))
925
926 (((
927 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
928 )))
929
930 (((
931 {{{ //payload of version}}}
932 )))
933
934 (((
935 {{{ Pay_ver:bytes[2],}}}
936 )))
937
938 (((
939 {{{ }; }}}
940 )))
941
942 (((
943 **}**
944
945
946 )))
947
948 (((
949 TTN V3 uplink screen shot.
950 )))
951
952 [[image:1653274001211-372.png||height="192" width="732"]]
953
954
955
956 == 3.5 Configure RS485-BL via AT or Downlink ==
957
958
959 (((
960 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
961 )))
962
963 (((
964 There are two kinds of Commands:
965 )))
966
967 * (((
968 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
969 )))
970
971 * (((
972 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
973
974
975
976
977 )))
978
979 === 3.5.1 Common Commands: ===
980
981
982 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
983
984
985
986 === 3.5.2 Sensor related commands: ===
987
988
989
990 ==== (% style="color:blue" %)**Choose Device Type (RS485 or TTL)**(%%) ====
991
992
993 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
994
995 * (% style="color:#037691" %)**AT Command**
996
997 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
998
999 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
1000
1001
1002 * (% style="color:#037691" %)**Downlink Payload**
1003
1004 **0A aa**  ~-~->  same as AT+MOD=aa
1005
1006
1007
1008
1009 ==== (% style="color:blue" %)**RS485 Debug Command (AT+CFGDEV)**(%%) ====
1010
1011
1012 (((
1013 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
1014 )))
1015
1016 * (((
1017 (% style="color:#037691" %)**AT Command**
1018
1019 (((
1020 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**  m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
1021 )))
1022 )))
1023
1024 (((
1025
1026 )))
1027
1028 * (((
1029 (% style="color:#037691" %)**Downlink Payload**
1030 )))
1031
1032 (((
1033 Format: A8 MM NN XX XX XX XX YY
1034 )))
1035
1036 (((
1037 Where:
1038 )))
1039
1040 * (((
1041 MM: 1: add CRC-16/MODBUS ; 0: no CRC
1042 )))
1043 * (((
1044 NN: The length of RS485 command
1045 )))
1046 * (((
1047 XX XX XX XX: RS485 command total NN bytes
1048 )))
1049 * (((
1050 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
1051
1052
1053
1054 )))
1055
1056 (((
1057 (% style="color:blue" %)**Example 1:**
1058 )))
1059
1060 (((
1061 To connect a Modbus Alarm with below commands.
1062 )))
1063
1064 * (((
1065 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
1066 )))
1067
1068 * (((
1069 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1070 )))
1071
1072 (((
1073 So if user want to use downlink command to control to RS485 Alarm, he can use:
1074 )))
1075
1076 (((
1077 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1078 )))
1079
1080 (((
1081 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1082 )))
1083
1084 (((
1085 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
1086 )))
1087
1088 (((
1089
1090
1091
1092 )))
1093
1094 (((
1095 (% style="color:blue" %)**Example 2:**
1096 )))
1097
1098 (((
1099 Check TTL Sensor return:
1100 )))
1101
1102 (((
1103 [[image:1654132684752-193.png]]
1104 )))
1105
1106
1107
1108
1109 ==== (% style="color:blue" %)**Set Payload version**(%%) ====
1110
1111
1112 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1113
1114 * (% style="color:#037691" %)**AT Command:**
1115
1116 **AT+PAYVER:   **Set PAYVER field = 1
1117
1118
1119 * (% style="color:#037691" %)**Downlink Payload:**
1120
1121 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
1122
1123 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
1124
1125
1126
1127
1128 ==== (% style="color:blue" %)**Set RS485 Sampling Commands**(%%) ====
1129
1130
1131 (((
1132 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1133 )))
1134
1135 (((
1136 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1137 )))
1138
1139 (((
1140
1141 )))
1142
1143 * (((
1144 (% style="color:#037691" %)**AT Command:**
1145 )))
1146
1147 **AT+COMMANDx:  Configure RS485 read command to sensor.**
1148
1149 **AT+DATACUTx:  Configure how to handle return from RS485 devices.**
1150
1151 **AT+SEARCHx:  Configure search command**
1152
1153
1154 * (((
1155 (% style="color:#037691" %)**Downlink Payload:**
1156 )))
1157
1158 (((
1159 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1160 )))
1161
1162 (((
1163 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
1164 )))
1165
1166 (((
1167 Format: AF MM NN LL XX XX XX XX YY
1168 )))
1169
1170 (((
1171 Where:
1172 )))
1173
1174 * (((
1175 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1176 )))
1177 * (((
1178 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1179 )))
1180 * (((
1181 LL:  The length of AT+COMMAND or AT+DATACUT command
1182 )))
1183 * (((
1184 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1185 )))
1186 * (((
1187 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1188 )))
1189
1190 (((
1191 **Example:**
1192 )))
1193
1194 (((
1195 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1196 )))
1197
1198 (((
1199 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1200 )))
1201
1202 (((
1203 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1204 )))
1205
1206 (((
1207
1208 )))
1209
1210 (((
1211 **0xAB** downlink command can be used for set AT+SEARCHx
1212 )))
1213
1214 (((
1215 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1216 )))
1217
1218 * (((
1219 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1220 )))
1221 * (((
1222 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1223 )))
1224
1225 (((
1226 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1227 )))
1228
1229
1230
1231
1232 ==== (% style="color:blue" %)**Fast command to handle MODBUS device**(%%) ====
1233
1234
1235 (((
1236 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1237 )))
1238
1239 (((
1240 This command is valid since v1.3 firmware version
1241 )))
1242
1243 (((
1244
1245 )))
1246
1247 (((
1248 (% style="color:#037691" %)**AT+MBFUN has only two value:**
1249 )))
1250
1251 * (((
1252 **AT+MBFUN=1**: Enable Modbus reading. And get response base on the MODBUS return
1253 )))
1254
1255 (((
1256 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1257 )))
1258
1259 * (((
1260 **AT+MBFUN=0**: Disable Modbus fast reading.
1261 )))
1262
1263 (((
1264
1265
1266 **Example:**
1267 )))
1268
1269 * (((
1270 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1271 )))
1272 * (((
1273 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1274 )))
1275 * (((
1276 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1277 )))
1278
1279 [[image:1654133913295-597.png]]
1280
1281
1282 [[image:1654133954153-643.png]]
1283
1284
1285 * (((
1286 (% style="color:#037691" %)**Downlink Commands:**
1287 )))
1288
1289 (((
1290 **A9 aa** ~-~-> Same as AT+MBFUN=aa
1291 )))
1292
1293
1294
1295
1296 ==== (% style="color:blue" %)**RS485 command timeout**(%%) ====
1297
1298
1299 (((
1300 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1301 )))
1302
1303 (((
1304 Default value: 0, range:  0 ~~ 5 seconds
1305 )))
1306
1307 (((
1308
1309 )))
1310
1311 * (((
1312 (% style="color:#037691" %)**AT Command:**
1313
1314 **AT+CMDDLaa=hex(bb cc)**
1315
1316
1317 )))
1318
1319 (((
1320 **Example:**
1321 )))
1322
1323 (((
1324 **AT+CMDDL1=1000** to send the open time to 1000ms
1325 )))
1326
1327 (((
1328
1329 )))
1330
1331 * (((
1332 (% style="color:#037691" %)**Downlink Payload:**
1333 )))
1334
1335 (((
1336 0x AA aa bb cc
1337 )))
1338
1339 (((
1340 Same as: AT+CMDDLaa=hex(bb cc)
1341 )))
1342
1343 (((
1344 **Example:**
1345 )))
1346
1347 (((
1348 (% _mstmutation="1" %)**0xAA 01 03 E8**(%%)  ~-~-> Same as (% _mstmutation="1" %)**AT+CMDDL1=1000 ms**
1349 )))
1350
1351
1352
1353
1354 ==== (% style="color:blue" %)**Uplink payload mode**(%%) ====
1355
1356
1357 (((
1358 Define to use one uplink or multiple uplinks for the sampling.
1359 )))
1360
1361 (((
1362 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1363 )))
1364
1365 * (((
1366 (% style="color:#037691" %)**AT Command:**
1367
1368 **AT+DATAUP=0**
1369
1370 **AT+DATAUP=1**
1371 )))
1372
1373 (((
1374
1375 )))
1376
1377 * (((
1378 (% style="color:#037691" %)**Downlink Payload:**
1379 )))
1380
1381 (((
1382 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
1383 )))
1384
1385 (((
1386 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
1387 )))
1388
1389
1390
1391
1392 ==== (% style="color:blue" %)**Manually trigger an Uplink**(%%) ====
1393
1394
1395 Ask device to send an uplink immediately.
1396
1397 * (% style="color:#037691" %)**Downlink Payload:**
1398
1399 **0x08 FF**, RS485-BL will immediately send an uplink.
1400
1401
1402
1403
1404 ==== (% style="color:blue" %)**Clear RS485 Command**(%%) ====
1405
1406
1407 (((
1408 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1409 )))
1410
1411 (((
1412
1413 )))
1414
1415 * (((
1416 (% style="color:#037691" %)**AT Command:**
1417 )))
1418
1419 (((
1420 (% style="color:#037691" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1421 )))
1422
1423 (((
1424 Example screen shot after clear all RS485 commands. 
1425 )))
1426
1427 (((
1428
1429 )))
1430
1431 (((
1432 The uplink screen shot is:
1433 )))
1434
1435 (((
1436 [[image:1654134704555-320.png]]
1437 )))
1438
1439 (((
1440
1441 )))
1442
1443 * (((
1444 (% style="color:#037691" %)**Downlink Payload:**
1445 )))
1446
1447 (((
1448 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1449 )))
1450
1451
1452
1453
1454 ==== (% style="color:blue" %)**Set Serial Communication Parameters**(%%) ====
1455
1456
1457 (((
1458 Set the Rs485 serial communication parameters:
1459 )))
1460
1461 * (((
1462 (% style="color:#037691" %)**AT Command:**
1463 )))
1464
1465 (((
1466
1467
1468 * Set Baud Rate:
1469 )))
1470
1471 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1472
1473
1474 * Set UART Parity
1475
1476 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1477
1478
1479 * Set STOPBIT
1480
1481 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1482
1483
1484 * (((
1485 (% style="color:#037691" %)**Downlink Payload:**
1486 )))
1487
1488 (((
1489 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1490 )))
1491
1492 (((
1493
1494
1495 **Example:**
1496 )))
1497
1498 * (((
1499 A7 01 00 60   same as AT+BAUDR=9600
1500 )))
1501 * (((
1502 A7 01 04 80  same as AT+BAUDR=115200
1503 )))
1504
1505 (((
1506 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1507 )))
1508
1509 (((
1510 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1511 )))
1512
1513
1514
1515
1516 ==== (% style="color:blue" %)**Control output power duration**(%%) ====
1517
1518
1519 (((
1520 User can set the output power duration before each sampling.
1521 )))
1522
1523 * (((
1524 (% style="color:#037691" %)**AT Command:**
1525 )))
1526
1527 (((
1528 **Example:**
1529 )))
1530
1531 (((
1532 **AT+3V3T=1000**  ~/~/ 3V3 output power will open 1s before each sampling.
1533 )))
1534
1535 (((
1536 **AT+5VT=1000**  ~/~/ +5V output power will open 1s before each sampling.
1537 )))
1538
1539 (((
1540
1541 )))
1542
1543 * (((
1544 (% style="color:#037691" %)**LoRaWAN Downlink Command:**
1545 )))
1546
1547 (((
1548 **07 01 aa bb**  Same as AT+5VT=(aa bb)
1549 )))
1550
1551 (((
1552 **07 02 aa bb**  Same as AT+3V3T=(aa bb)
1553 )))
1554
1555
1556
1557 == 3.6 Buttons ==
1558
1559
1560 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:233px" %)
1561 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1562 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1563
1564 == 3.7 +3V3 Output ==
1565
1566
1567 (((
1568 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1569 )))
1570
1571 (((
1572 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1573 )))
1574
1575 (((
1576 The +3V3 output time can be controlled by AT Command.
1577 )))
1578
1579 (((
1580
1581 )))
1582
1583 (((
1584 (% style="color:#037691" %)**AT+3V3T=1000**
1585 )))
1586
1587 (((
1588
1589 )))
1590
1591 (((
1592 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1593 )))
1594
1595 (((
1596 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1597 )))
1598
1599
1600
1601 == 3.8 +5V Output ==
1602
1603
1604 (((
1605 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1606 )))
1607
1608 (((
1609 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1610 )))
1611
1612 (((
1613 The 5V output time can be controlled by AT Command.
1614 )))
1615
1616 (((
1617
1618 )))
1619
1620 (((
1621 (% style="color:#037691" %)**AT+5VT=1000**
1622 )))
1623
1624 (((
1625
1626 )))
1627
1628 (((
1629 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1630 )))
1631
1632 (((
1633 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1634 )))
1635
1636
1637
1638 == 3.9 LEDs ==
1639
1640
1641 (% border="1" style="background-color:#ffffcc; color:green; width:332px" %)
1642 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1643 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1644
1645 == 3.10 Switch Jumper ==
1646
1647
1648 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:463px" %)
1649 |=(% style="width: 123px;" %)**Switch Jumper**|=(% style="width: 336px;" %)**Feature**
1650 |(% style="width:123px" %)**SW1**|(% style="width:336px" %)ISP position: Upgrade firmware via UART
1651 Flash position: Configure device, check running status.
1652 |(% style="width:123px" %)**SW2**|(% style="width:336px" %)5V position: set to compatible with 5v I/O.
1653 3.3v position: set to compatible with 3.3v I/O.,
1654
1655 (((
1656 **+3.3V**: is always ON
1657 )))
1658
1659 (((
1660 **+5V**: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1661 )))
1662
1663
1664
1665 = 4. Case Study =
1666
1667
1668 User can check this URL for some case studies:  [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1669
1670
1671
1672 = 5. Use AT Command =
1673
1674
1675 == 5.1 Access AT Command ==
1676
1677
1678 (((
1679 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1680 )))
1681
1682 [[image:1654135840598-282.png]]
1683
1684
1685 (((
1686 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1687 )))
1688
1689 [[image:1654136105500-922.png]]
1690
1691
1692 (((
1693 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1694 )))
1695
1696
1697
1698 == 5.2 Common AT Command Sequence ==
1699
1700
1701 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1702
1703
1704 If device has not joined network yet:
1705
1706 * (% style="color:#037691" %)**AT+FDR**
1707 * (% style="color:#037691" %)**AT+NJM=0**
1708 * (% style="color:#037691" %)**ATZ**
1709
1710 (((
1711
1712
1713 If device already joined network:
1714
1715 * (% style="color:#037691" %)**AT+NJM=0**
1716 * (% style="color:#037691" %)**ATZ**
1717 )))
1718
1719
1720
1721
1722 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1723
1724
1725 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1726
1727 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%) Set to ABP mode
1728
1729 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) Set the Adaptive Data Rate Off
1730
1731 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%) Set Data Rate
1732
1733 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1734
1735 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%)  Set transmit frequency to 868.4Mhz
1736
1737 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1738
1739 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1740
1741 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1742
1743 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1744
1745
1746 (% style="color:red" %)**Note:**
1747
1748 (((
1749 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1750 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1751 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1752 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1753 )))
1754
1755 [[image:1654136435598-589.png]]
1756
1757
1758
1759 = 6. FAQ =
1760
1761
1762 == 6.1 How to upgrade the image? ==
1763
1764
1765 (((
1766 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1767 )))
1768
1769 * (((
1770 Support new features
1771 )))
1772 * (((
1773 For bug fix
1774 )))
1775 * (((
1776 Change LoRaWAN bands.
1777 )))
1778
1779 (((
1780 Below shows the hardware connection for how to upload an image to RS485-BL:
1781 )))
1782
1783 [[image:1654136646995-976.png]]
1784
1785 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1786
1787 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1788
1789 (% style="color:blue" %)**Step3**(%%)**: **Open flashloader; choose the correct COM port to update.
1790
1791 [[image:image-20220602102605-1.png]]
1792
1793
1794 [[image:image-20220602102637-2.png]]
1795
1796
1797 [[image:image-20220602102715-3.png]]
1798
1799
1800
1801 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1802
1803
1804 (((
1805 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1806 )))
1807
1808
1809
1810 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1811
1812
1813 (((
1814 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1815 )))
1816
1817
1818
1819 == 6.4 How to Use RS485-BL  to connect to RS232 devices? ==
1820
1821
1822 [[Use RS485-BL or RS485-LN to connect to RS232 devices. - DRAGINO>>url:http://8.211.40.43:8080/xwiki/bin/view/Main/RS485%20to%20RS232/]]
1823
1824
1825
1826 = 7. Trouble Shooting =
1827
1828
1829 == 7.1 Downlink doesn't work, how to solve it? ==
1830
1831
1832 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1833
1834
1835
1836 == 7.2 Why I can't join TTN V3 in US915 /AU915 bands? ==
1837
1838
1839 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1840
1841
1842
1843 = 8. Order Info =
1844
1845
1846 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
1847
1848 (% style="color:blue" %)**XXX:**
1849
1850 * (% style="color:red" %)**EU433**(%%):  frequency bands EU433
1851 * (% style="color:red" %)**EU868**(%%):  frequency bands EU868
1852 * (% style="color:red" %)**KR920**(%%):  frequency bands KR920
1853 * (% style="color:red" %)**CN470**(%%):  frequency bands CN470
1854 * (% style="color:red" %)**AS923**(%%):  frequency bands AS923
1855 * (% style="color:red" %)**AU915**(%%):  frequency bands AU915
1856 * (% style="color:red" %)**US915**(%%):  frequency bands US915
1857 * (% style="color:red" %)**IN865**(%%):  frequency bands IN865
1858 * (% style="color:red" %)**RU864**(%%):  frequency bands RU864
1859 * (% style="color:red" %)**KZ865**(%%):  frequency bands KZ865
1860
1861
1862
1863 = 9. Packing Info =
1864
1865
1866 (((
1867 **Package Includes**:
1868 )))
1869
1870 * (((
1871 RS485-BL x 1
1872 )))
1873 * (((
1874 Stick Antenna for LoRa RF part x 1
1875 )))
1876 * (((
1877 Program cable x 1
1878 )))
1879
1880 (((
1881 **Dimension and weight**:
1882 )))
1883
1884 * (((
1885 Device Size: 13.5 x 7 x 3 cm
1886 )))
1887 * (((
1888 Device Weight: 105g
1889 )))
1890 * (((
1891 Package Size / pcs : 14.5 x 8 x 5 cm
1892 )))
1893 * (((
1894 Weight / pcs : 170g
1895
1896
1897
1898
1899 )))
1900
1901 = 10. Support =
1902
1903
1904 * (((
1905 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1906 )))
1907 * (((
1908 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1909
1910
1911
1912 )))
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0