Version 55.1 by Bei Jinggeng on 2022/08/23 10:59

Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="404" width="404"]]
3
4
5
6
7 **Table of Contents:**
8
9 {{toc/}}
10
11
12
13
14 = 1.Introduction =
15
16
17 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
18
19 (((
20
21 )))
22
23 (((
24 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
25 )))
26
27 (((
28 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
29 )))
30
31 (((
32 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
33 )))
34
35 (((
36 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
37 )))
38
39 (((
40 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
41 )))
42
43 (((
44 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
45 )))
46
47 (((
48 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
49
50
51 )))
52
53 [[image:1652953304999-717.png||height="424" width="733"]]
54
55
56
57 == 1.2 Specifications ==
58
59
60 **Hardware System:**
61
62 * STM32L072CZT6 MCU
63 * SX1276/78 Wireless Chip 
64 * Power Consumption (exclude RS485 device):
65 ** Idle: 6uA@3.3v
66 ** 20dB Transmit: 130mA@3.3v
67
68 **Interface for Model:**
69
70 * 1 x RS485 Interface
71 * 1 x TTL Serial , 3.3v or 5v.
72 * 1 x I2C Interface, 3.3v or 5v.
73 * 1 x one wire interface
74 * 1 x Interrupt Interface
75 * 1 x Controllable 5V output, max
76
77 **LoRa Spec:**
78
79 * Frequency Range:
80 ** Band 1 (HF): 862 ~~ 1020 Mhz
81 ** Band 2 (LF): 410 ~~ 528 Mhz
82 * 168 dB maximum link budget.
83 * +20 dBm - 100 mW constant RF output vs.
84 * Programmable bit rate up to 300 kbps.
85 * High sensitivity: down to -148 dBm.
86 * Bullet-proof front end: IIP3 = -12.5 dBm.
87 * Excellent blocking immunity.
88 * Fully integrated synthesizer with a resolution of 61 Hz.
89 * LoRa modulation.
90 * Built-in bit synchronizer for clock recovery.
91 * Preamble detection.
92 * 127 dB Dynamic Range RSSI.
93 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
94
95
96
97 == 1.3 Features ==
98
99
100 * LoRaWAN Class A & Class C protocol (default Class A)
101 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
102 * AT Commands to change parameters
103 * Remote configure parameters via LoRaWAN Downlink
104 * Firmware upgradable via program port
105 * Support multiply RS485 devices by flexible rules
106 * Support Modbus protocol
107 * Support Interrupt uplink
108
109
110
111 == 1.4 Applications ==
112
113
114 * Smart Buildings & Home Automation
115 * Logistics and Supply Chain Management
116 * Smart Metering
117 * Smart Agriculture
118 * Smart Cities
119 * Smart Factory
120
121
122
123 == 1.5 Firmware Change log ==
124
125
126 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
127
128
129
130 == 1.6 Hardware Change log ==
131
132 (((
133
134
135 (((
136 **v1.4**
137 )))
138 )))
139
140 (((
141 (((
142 ~1. Change Power IC to TPS22916
143 )))
144 )))
145
146 (((
147
148 )))
149
150 (((
151 (((
152 **v1.3**
153 )))
154 )))
155
156 (((
157 (((
158 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
159 )))
160 )))
161
162 (((
163
164 )))
165
166 (((
167 (((
168 **v1.2**
169 )))
170 )))
171
172 (((
173 (((
174 Release version ​​​​​
175 )))
176
177
178 )))
179
180
181 = 2. Pin mapping and Power ON Device =
182
183
184 (((
185 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
186 )))
187
188 [[image:1652953055962-143.png||height="387" width="728"]]
189
190
191 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
192
193
194
195 = 3. Operation Mode =
196
197
198 == 3.1 How it works? ==
199
200
201 (((
202 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
203
204
205
206 )))
207
208 == 3.2 Example to join LoRaWAN network ==
209
210
211 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
212
213 [[image:1652953414711-647.png||height="337" width="723"]]
214
215
216 (((
217 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
218 )))
219
220 (((
221 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
222
223
224 )))
225
226 (((
227 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from RS485-BL.
228 )))
229
230 (((
231 Each RS485-BL is shipped with a sticker with unique device EUI:
232 )))
233
234 [[image:1652953462722-299.png]]
235
236
237 (((
238 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
239 )))
240
241 (((
242 **Add APP EUI in the application.**
243 )))
244
245
246 [[image:image-20220519174512-1.png]]
247
248 [[image:image-20220519174512-2.png||height="328" width="731"]]
249
250 [[image:image-20220519174512-3.png||height="556" width="724"]]
251
252 [[image:image-20220519174512-4.png]]
253
254
255 You can also choose to create the device manually.
256
257 [[image:1652953542269-423.png||height="710" width="723"]]
258
259
260 Add APP KEY and DEV EUI
261
262 [[image:1652953553383-907.png||height="514" width="724"]]
263
264
265
266 (((
267 (% style="color:blue" %)**Step 2**(%%): Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
268 )))
269
270 [[image:1652953568895-172.png||height="232" width="724"]]
271
272
273
274 == 3.3 Configure Commands to read data ==
275
276
277 (((
278 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
279
280
281
282 )))
283
284 === 3.3.1 Configure UART settings for RS485 or TTL communication ===
285
286
287 (((
288 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
289 )))
290
291 (((
292 **~1. RS485-MODBUS mode:**
293 )))
294
295 (((
296 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
297
298
299 )))
300
301 (((
302 **2. TTL mode:**
303 )))
304
305 (((
306 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
307 )))
308
309 (((
310 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
311 )))
312
313 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
314 |=(% style="width: 80px;" %)(((
315 (((
316 **AT Commands**
317 )))
318 )))|=(% style="width: 210px;" %)(((
319 (((
320 **Description**
321 )))
322 )))|=(% style="width: 210px;" %)(((
323 (((
324 **Example**
325 )))
326 )))
327 |(% style="width:80px" %)(((
328 (((
329 AT+BAUDR
330 )))
331 )))|(% style="width:210px" %)(((
332 (((
333 Set the baud rate (for RS485 connection). Default Value is: 9600.
334 )))
335 )))|(% style="width:210px" %)(((
336 (((
337 (((
338 AT+BAUDR=9600
339 )))
340 )))
341
342 (((
343 (((
344 Options: (1200,2400,4800,14400,19200,115200)
345 )))
346 )))
347 )))
348 |(% style="width:80px" %)(((
349 (((
350 AT+PARITY
351 )))
352 )))|(% style="width:210px" %)(((
353 (((
354 (((
355 Set UART parity (for RS485 connection)
356 )))
357 )))
358
359 (((
360 (((
361 Default Value is: no parity.
362 )))
363 )))
364 )))|(% style="width:210px" %)(((
365 (((
366 (((
367 AT+PARITY=0
368 )))
369 )))
370
371 (((
372 (((
373 Option: 0: no parity, 1: odd parity, 2: even parity
374 )))
375 )))
376 )))
377 |(% style="width:80px" %)(((
378 (((
379 AT+STOPBIT
380 )))
381 )))|(% style="width:210px" %)(((
382 (((
383 (((
384 Set serial stopbit (for RS485 connection)
385 )))
386 )))
387
388 (((
389 (((
390 Default Value is: 1bit.
391 )))
392 )))
393 )))|(% style="width:210px" %)(((
394 (((
395 (((
396 AT+STOPBIT=0 for 1bit
397 )))
398 )))
399
400 (((
401 (((
402 AT+STOPBIT=1 for 1.5 bit
403 )))
404 )))
405
406 (((
407 (((
408 AT+STOPBIT=2 for 2 bits
409 )))
410 )))
411 )))
412
413
414
415 === 3.3.2 Configure sensors ===
416
417
418 (((
419 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
420 )))
421
422 (((
423 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
424 )))
425
426 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
427 |=(% style="width: 80px;" %)**AT Commands**|=(% style="width: 210px;" %)**Description**|=(% style="width: 210px;" %)**Example**
428 |AT+CFGDEV|(% style="width:80px" %)(((
429 (((
430 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
431 )))
432
433 (((
434 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
435 )))
436
437 (((
438 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
439 )))
440 )))|(% style="width:210px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
441
442 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
443
444
445
446 === 3.3.3 Configure read commands for each sampling ===
447
448
449 (((
450 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
451 )))
452
453 (((
454 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
455 )))
456
457 (((
458 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
459 )))
460
461 (((
462 This section describes how to achieve above goals.
463 )))
464
465 (((
466 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
467
468
469 )))
470
471 (((
472 (% style="color:blue" %)**Command from RS485-BL to Sensor:**
473 )))
474
475 (((
476 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
477
478
479 )))
480
481 (((
482 (% style="color:blue" %)**Handle return from sensors to RS485-BL**:
483 )))
484
485 (((
486 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
487 )))
488
489 * (((
490 (% style="color:blue" %)**AT+DATACUT**
491 )))
492
493 (((
494 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
495
496
497 )))
498
499 * (((
500 (% style="color:blue" %)**AT+SEARCH**
501 )))
502
503 (((
504 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
505 )))
506
507 (((
508
509
510 (% style="color:blue" %)**Define wait timeout:**
511 )))
512
513 (((
514 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
515 )))
516
517 (((
518 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
519 )))
520
521 (((
522
523
524 **Examples:**
525 )))
526
527 (((
528 Below are examples for the how above AT Commands works.
529 )))
530
531 (((
532 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
533 )))
534
535 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:497px" %)
536 |(% style="width:494px" %)(((
537 (((
538 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
539 )))
540
541 (((
542 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
543 )))
544
545 (((
546 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
547 )))
548 )))
549
550 (((
551 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
552 )))
553
554 (((
555 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
556 )))
557
558 (((
559
560 )))
561
562 (((
563 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
564 )))
565
566 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:473px" %)
567 |(% style="width:470px" %)(((
568 (((
569 **AT+SEARCHx=aa,xx xx xx xx xx**
570 )))
571
572 * (((
573 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
574 )))
575 * (((
576 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
577 )))
578 )))
579
580 (((
581
582
583 **Examples:**
584 )))
585
586 (((
587 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
588 )))
589
590 (((
591 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
592 )))
593
594 (((
595 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
596 )))
597
598 (((
599 [[image:1653271044481-711.png]]
600
601
602 )))
603
604 (((
605 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
606 )))
607
608 (((
609 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
610 )))
611
612 (((
613 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
614 )))
615
616 (((
617 [[image:1653271276735-972.png]]
618 )))
619
620 (((
621 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
622 )))
623
624 (% style="background-color:#4f81bd; color:white; width:496px" %)
625 |(% style="width:493px" %)(((
626 (((
627 **AT+DATACUTx=a,b,c**
628 )))
629
630 * (((
631 **a: length for the return of AT+COMMAND**
632 )))
633 * (((
634 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
635 )))
636 * (((
637 **c: define the position for valid value.  **
638 )))
639 )))
640
641 (((
642
643
644
645 **Examples:**
646 )))
647
648 * (((
649 (% style="color:blue" %)**Grab bytes:**
650 )))
651
652 (((
653 [[image:1653271581490-837.png||height="313" width="722"]]
654 )))
655
656 (((
657
658
659
660 )))
661
662 * (((
663 (% style="color:blue" %)**Grab a section.**
664 )))
665
666 (((
667 [[image:1653271648378-342.png||height="326" width="720"]]
668 )))
669
670 (((
671
672
673
674 )))
675
676 * (((
677 (% style="color:blue" %)**Grab different sections.**
678 )))
679
680 (((
681 [[image:1653271657255-576.png||height="305" width="730"]]
682
683
684 )))
685
686 (((
687 (((
688 (% style="color:red" %)**Note:**
689 )))
690 )))
691
692 (((
693 (((
694 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
695
696
697 )))
698 )))
699
700 (((
701 (((
702 **Example:**
703 )))
704 )))
705
706 (((
707 (((
708 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
709 )))
710 )))
711
712 (((
713 (((
714 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
715 )))
716 )))
717
718 (((
719 (((
720 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
721 )))
722 )))
723
724 (((
725 (((
726 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
727 )))
728 )))
729
730 (((
731 (((
732 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
733 )))
734 )))
735
736 (((
737 (((
738 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
739 )))
740 )))
741
742 (((
743 [[image:1653271763403-806.png]]
744 )))
745
746
747
748 === 3.3.4 Compose the uplink payload ===
749
750
751 (((
752 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
753
754
755 )))
756
757 (((
758 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
759
760
761 )))
762
763 (((
764 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
765 )))
766
767 (((
768 Final Payload is
769 )))
770
771 (((
772 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
773 )))
774
775 (((
776 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
777 )))
778
779 [[image:1653272787040-634.png||height="515" width="719"]]
780
781
782
783 (((
784 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
785
786
787 )))
788
789 (((
790 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
791 )))
792
793 (((
794 Final Payload is
795 )))
796
797 (((
798 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
799 )))
800
801 1. (((
802 Battery Info (2 bytes): Battery voltage
803 )))
804 1. (((
805 PAYVER (1 byte): Defined by AT+PAYVER
806 )))
807 1. (((
808 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
809 )))
810 1. (((
811 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
812 )))
813 1. (((
814 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
815
816
817 )))
818
819 [[image:1653272817147-600.png||height="437" width="717"]]
820
821 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
822
823
824 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
825
826 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% _mstmutation="1" style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
827
828 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% _mstmutation="1" style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
829
830
831 Below are the uplink payloads:
832
833 [[image:1653272901032-107.png]]
834
835
836 (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
837
838 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
839
840 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
841
842 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
843
844 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
845
846
847
848
849 === 3.3.5 Uplink on demand ===
850
851
852 (((
853 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
854 )))
855
856 (((
857 Downlink control command:
858 )))
859
860 (((
861 **0x08 command**: Poll an uplink with current command set in RS485-BL.
862 )))
863
864 (((
865 **0xA8 command**: Send a command to RS485-BL and uplink the output from sensors.
866
867
868
869 )))
870
871 === 3.3.6 Uplink on Interrupt ===
872
873
874 Put the interrupt sensor between 3.3v_out and GPIO ext.
875
876 [[image:1653273818896-432.png]]
877
878
879 (((
880 AT+INTMOD=0  Disable Interrupt
881 )))
882
883 (((
884 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
885 )))
886
887 (((
888 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
889 )))
890
891 (((
892 AT+INTMOD=3  Interrupt trigger by rising edge.
893
894
895
896 )))
897
898 == 3.4 Uplink Payload ==
899
900
901 [[image:image-20220606105412-1.png]]
902
903 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
904
905 (((
906 {{{function Decoder(bytes, port) {}}}
907 )))
908
909 (((
910 {{{//Payload Formats of RS485-BL Deceive}}}
911 )))
912
913 (((
914 {{{return {}}}
915 )))
916
917 (((
918 {{{ //Battery,units:V}}}
919 )))
920
921 (((
922 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
923 )))
924
925 (((
926 {{{ //GPIO_EXTI }}}
927 )))
928
929 (((
930 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
931 )))
932
933 (((
934 {{{ //payload of version}}}
935 )))
936
937 (((
938 {{{ Pay_ver:bytes[2],}}}
939 )))
940
941 (((
942 {{{ }; }}}
943 )))
944
945 (((
946 **}**
947
948
949 )))
950
951 (((
952 TTN V3 uplink screen shot.
953 )))
954
955 [[image:1653274001211-372.png||height="192" width="732"]]
956
957
958
959 == 3.5 Configure RS485-BL via AT or Downlink ==
960
961
962 (((
963 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
964 )))
965
966 (((
967 There are two kinds of Commands:
968 )))
969
970 * (((
971 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
972 )))
973
974 * (((
975 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
976
977
978
979
980 )))
981
982 === 3.5.1 Common Commands: ===
983
984
985 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
986
987
988
989 === 3.5.2 Sensor related commands: ===
990
991
992
993 ==== (% style="color:blue" %)**Choose Device Type (RS485 or TTL)**(%%) ====
994
995
996 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
997
998 * (% style="color:#037691" %)**AT Command**
999
1000 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
1001
1002 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
1003
1004
1005 * (% style="color:#037691" %)**Downlink Payload**
1006
1007 **0A aa**  ~-~->  same as AT+MOD=aa
1008
1009
1010
1011
1012 ==== (% style="color:blue" %)**RS485 Debug Command (AT+CFGDEV)**(%%) ====
1013
1014
1015 (((
1016 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
1017 )))
1018
1019 * (((
1020 (% style="color:#037691" %)**AT Command**
1021
1022 (((
1023 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**  m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
1024 )))
1025 )))
1026
1027 (((
1028
1029 )))
1030
1031 * (((
1032 (% style="color:#037691" %)**Downlink Payload**
1033 )))
1034
1035 (((
1036 Format: A8 MM NN XX XX XX XX YY
1037 )))
1038
1039 (((
1040 Where:
1041 )))
1042
1043 * (((
1044 MM: 1: add CRC-16/MODBUS ; 0: no CRC
1045 )))
1046 * (((
1047 NN: The length of RS485 command
1048 )))
1049 * (((
1050 XX XX XX XX: RS485 command total NN bytes
1051 )))
1052 * (((
1053 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
1054
1055
1056
1057 )))
1058
1059 (((
1060 (% style="color:blue" %)**Example 1:**
1061 )))
1062
1063 (((
1064 To connect a Modbus Alarm with below commands.
1065 )))
1066
1067 * (((
1068 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
1069 )))
1070
1071 * (((
1072 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1073 )))
1074
1075 (((
1076 So if user want to use downlink command to control to RS485 Alarm, he can use:
1077 )))
1078
1079 (((
1080 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1081 )))
1082
1083 (((
1084 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1085 )))
1086
1087 (((
1088 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
1089 )))
1090
1091 (((
1092
1093
1094
1095 )))
1096
1097 (((
1098 (% style="color:blue" %)**Example 2:**
1099 )))
1100
1101 (((
1102 Check TTL Sensor return:
1103 )))
1104
1105 (((
1106 [[image:1654132684752-193.png]]
1107 )))
1108
1109
1110
1111
1112 ==== (% style="color:blue" %)**Set Payload version**(%%) ====
1113
1114
1115 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1116
1117 * (% style="color:#037691" %)**AT Command:**
1118
1119 **AT+PAYVER:   **Set PAYVER field = 1
1120
1121
1122 * (% style="color:#037691" %)**Downlink Payload:**
1123
1124 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
1125
1126 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
1127
1128
1129
1130
1131 ==== (% style="color:blue" %)**Set RS485 Sampling Commands**(%%) ====
1132
1133
1134 (((
1135 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1136 )))
1137
1138 (((
1139 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1140 )))
1141
1142 (((
1143
1144 )))
1145
1146 * (((
1147 (% style="color:#037691" %)**AT Command:**
1148 )))
1149
1150 **AT+COMMANDx:  Configure RS485 read command to sensor.**
1151
1152 **AT+DATACUTx:  Configure how to handle return from RS485 devices.**
1153
1154 **AT+SEARCHx:  Configure search command**
1155
1156
1157 * (((
1158 (% style="color:#037691" %)**Downlink Payload:**
1159 )))
1160
1161 (((
1162 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1163 )))
1164
1165 (((
1166 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
1167 )))
1168
1169 (((
1170 Format: AF MM NN LL XX XX XX XX YY
1171 )))
1172
1173 (((
1174 Where:
1175 )))
1176
1177 * (((
1178 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1179 )))
1180 * (((
1181 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1182 )))
1183 * (((
1184 LL:  The length of AT+COMMAND or AT+DATACUT command
1185 )))
1186 * (((
1187 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1188 )))
1189 * (((
1190 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1191 )))
1192
1193 (((
1194 **Example:**
1195 )))
1196
1197 (((
1198 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1199 )))
1200
1201 (((
1202 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1203 )))
1204
1205 (((
1206 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1207 )))
1208
1209 (((
1210
1211 )))
1212
1213 (((
1214 **0xAB** downlink command can be used for set AT+SEARCHx
1215 )))
1216
1217 (((
1218 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1219 )))
1220
1221 * (((
1222 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1223 )))
1224 * (((
1225 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1226 )))
1227
1228 (((
1229 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1230 )))
1231
1232
1233
1234
1235 ==== (% style="color:blue" %)**Fast command to handle MODBUS device**(%%) ====
1236
1237
1238 (((
1239 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1240 )))
1241
1242 (((
1243 This command is valid since v1.3 firmware version
1244 )))
1245
1246 (((
1247
1248 )))
1249
1250 (((
1251 (% style="color:#037691" %)**AT+MBFUN has only two value:**
1252 )))
1253
1254 * (((
1255 **AT+MBFUN=1**: Enable Modbus reading. And get response base on the MODBUS return
1256 )))
1257
1258 (((
1259 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1260 )))
1261
1262 * (((
1263 **AT+MBFUN=0**: Disable Modbus fast reading.
1264 )))
1265
1266 (((
1267
1268
1269 **Example:**
1270 )))
1271
1272 * (((
1273 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1274 )))
1275 * (((
1276 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1277 )))
1278 * (((
1279 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1280 )))
1281
1282 [[image:1654133913295-597.png]]
1283
1284
1285 [[image:1654133954153-643.png]]
1286
1287
1288 * (((
1289 (% style="color:#037691" %)**Downlink Commands:**
1290 )))
1291
1292 (((
1293 **A9 aa** ~-~-> Same as AT+MBFUN=aa
1294 )))
1295
1296
1297
1298
1299 ==== (% style="color:blue" %)**RS485 command timeout**(%%) ====
1300
1301
1302 (((
1303 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1304 )))
1305
1306 (((
1307 Default value: 0, range:  0 ~~ 5 seconds
1308 )))
1309
1310 (((
1311
1312 )))
1313
1314 * (((
1315 (% style="color:#037691" %)**AT Command:**
1316
1317 **AT+CMDDLaa=hex(bb cc)**
1318
1319
1320 )))
1321
1322 (((
1323 **Example:**
1324 )))
1325
1326 (((
1327 **AT+CMDDL1=1000** to send the open time to 1000ms
1328 )))
1329
1330 (((
1331
1332 )))
1333
1334 * (((
1335 (% style="color:#037691" %)**Downlink Payload:**
1336 )))
1337
1338 (((
1339 0x AA aa bb cc
1340 )))
1341
1342 (((
1343 Same as: AT+CMDDLaa=hex(bb cc)
1344 )))
1345
1346 (((
1347 **Example:**
1348 )))
1349
1350 (((
1351 (% _mstmutation="1" %)**0xAA 01 03 E8**(%%)  ~-~-> Same as (% _mstmutation="1" %)**AT+CMDDL1=1000 ms**
1352 )))
1353
1354
1355
1356
1357 ==== (% style="color:blue" %)**Uplink payload mode**(%%) ====
1358
1359
1360 (((
1361 Define to use one uplink or multiple uplinks for the sampling.
1362 )))
1363
1364 (((
1365 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1366 )))
1367
1368 * (((
1369 (% style="color:#037691" %)**AT Command:**
1370
1371 **AT+DATAUP=0**
1372
1373 **AT+DATAUP=1**
1374 )))
1375
1376 (((
1377
1378 )))
1379
1380 * (((
1381 (% style="color:#037691" %)**Downlink Payload:**
1382 )))
1383
1384 (((
1385 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
1386 )))
1387
1388 (((
1389 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
1390 )))
1391
1392
1393
1394
1395 ==== (% style="color:blue" %)**Manually trigger an Uplink**(%%) ====
1396
1397
1398 Ask device to send an uplink immediately.
1399
1400 * (% style="color:#037691" %)**Downlink Payload:**
1401
1402 **0x08 FF**, RS485-BL will immediately send an uplink.
1403
1404
1405
1406
1407 ==== (% style="color:blue" %)**Clear RS485 Command**(%%) ====
1408
1409
1410 (((
1411 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1412 )))
1413
1414 (((
1415
1416 )))
1417
1418 * (((
1419 (% style="color:#037691" %)**AT Command:**
1420 )))
1421
1422 (((
1423 (% style="color:#037691" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1424 )))
1425
1426 (((
1427 Example screen shot after clear all RS485 commands. 
1428 )))
1429
1430 (((
1431
1432 )))
1433
1434 (((
1435 The uplink screen shot is:
1436 )))
1437
1438 (((
1439 [[image:1654134704555-320.png]]
1440 )))
1441
1442 (((
1443
1444 )))
1445
1446 * (((
1447 (% style="color:#037691" %)**Downlink Payload:**
1448 )))
1449
1450 (((
1451 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1452 )))
1453
1454
1455
1456
1457 ==== (% style="color:blue" %)**Set Serial Communication Parameters**(%%) ====
1458
1459
1460 (((
1461 Set the Rs485 serial communication parameters:
1462 )))
1463
1464 * (((
1465 (% style="color:#037691" %)**AT Command:**
1466 )))
1467
1468 (((
1469
1470
1471 * Set Baud Rate:
1472 )))
1473
1474 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1475
1476
1477 * Set UART Parity
1478
1479 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1480
1481
1482 * Set STOPBIT
1483
1484 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1485
1486
1487 * (((
1488 (% style="color:#037691" %)**Downlink Payload:**
1489 )))
1490
1491 (((
1492 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1493 )))
1494
1495 (((
1496
1497
1498 **Example:**
1499 )))
1500
1501 * (((
1502 A7 01 00 60   same as AT+BAUDR=9600
1503 )))
1504 * (((
1505 A7 01 04 80  same as AT+BAUDR=115200
1506 )))
1507
1508 (((
1509 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1510 )))
1511
1512 (((
1513 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1514 )))
1515
1516
1517
1518
1519 ==== (% style="color:blue" %)**Control output power duration**(%%) ====
1520
1521
1522 (((
1523 User can set the output power duration before each sampling.
1524 )))
1525
1526 * (((
1527 (% style="color:#037691" %)**AT Command:**
1528 )))
1529
1530 (((
1531 **Example:**
1532 )))
1533
1534 (((
1535 **AT+3V3T=1000**  ~/~/ 3V3 output power will open 1s before each sampling.
1536 )))
1537
1538 (((
1539 **AT+5VT=1000**  ~/~/ +5V output power will open 1s before each sampling.
1540 )))
1541
1542 (((
1543
1544 )))
1545
1546 * (((
1547 (% style="color:#037691" %)**LoRaWAN Downlink Command:**
1548 )))
1549
1550 (((
1551 **07 01 aa bb**  Same as AT+5VT=(aa bb)
1552 )))
1553
1554 (((
1555 **07 02 aa bb**  Same as AT+3V3T=(aa bb)
1556 )))
1557
1558
1559
1560 == 3.6 Buttons ==
1561
1562
1563 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:233px" %)
1564 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1565 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1566
1567 == 3.7 +3V3 Output ==
1568
1569
1570 (((
1571 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1572 )))
1573
1574 (((
1575 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1576 )))
1577
1578 (((
1579 The +3V3 output time can be controlled by AT Command.
1580 )))
1581
1582 (((
1583
1584 )))
1585
1586 (((
1587 (% style="color:#037691" %)**AT+3V3T=1000**
1588 )))
1589
1590 (((
1591
1592 )))
1593
1594 (((
1595 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1596 )))
1597
1598 (((
1599 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1600 )))
1601
1602
1603
1604 == 3.8 +5V Output ==
1605
1606
1607 (((
1608 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1609 )))
1610
1611 (((
1612 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1613 )))
1614
1615 (((
1616 The 5V output time can be controlled by AT Command.
1617 )))
1618
1619 (((
1620
1621 )))
1622
1623 (((
1624 (% style="color:#037691" %)**AT+5VT=1000**
1625 )))
1626
1627 (((
1628
1629 )))
1630
1631 (((
1632 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1633 )))
1634
1635 (((
1636 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1637 )))
1638
1639
1640
1641 == 3.9 LEDs ==
1642
1643
1644 (% border="1" style="background-color:#ffffcc; color:green; width:332px" %)
1645 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1646 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1647
1648 == 3.10 Switch Jumper ==
1649
1650
1651 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:463px" %)
1652 |=(% style="width: 123px;" %)**Switch Jumper**|=(% style="width: 336px;" %)**Feature**
1653 |(% style="width:123px" %)**SW1**|(% style="width:336px" %)ISP position: Upgrade firmware via UART
1654 Flash position: Configure device, check running status.
1655 |(% style="width:123px" %)**SW2**|(% style="width:336px" %)5V position: set to compatible with 5v I/O.
1656 3.3v position: set to compatible with 3.3v I/O.,
1657
1658 (((
1659 **+3.3V**: is always ON
1660 )))
1661
1662 (((
1663 **+5V**: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1664 )))
1665
1666
1667
1668 = 4. Case Study =
1669
1670
1671 User can check this URL for some case studies:  [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1672
1673
1674
1675 = 5. Use AT Command =
1676
1677
1678 == 5.1 Access AT Command ==
1679
1680
1681 (((
1682 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1683 )))
1684
1685 [[image:1654135840598-282.png]]
1686
1687
1688 (((
1689 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1690 )))
1691
1692 [[image:1654136105500-922.png]]
1693
1694
1695 (((
1696 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1697 )))
1698
1699
1700
1701 == 5.2 Common AT Command Sequence ==
1702
1703
1704 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1705
1706
1707 If device has not joined network yet:
1708
1709 * (% style="color:#037691" %)**AT+FDR**
1710 * (% style="color:#037691" %)**AT+NJM=0**
1711 * (% style="color:#037691" %)**ATZ**
1712
1713 (((
1714
1715
1716 If device already joined network:
1717
1718 * (% style="color:#037691" %)**AT+NJM=0**
1719 * (% style="color:#037691" %)**ATZ**
1720 )))
1721
1722
1723
1724
1725 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1726
1727
1728 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1729
1730 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%) Set to ABP mode
1731
1732 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) Set the Adaptive Data Rate Off
1733
1734 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%) Set Data Rate
1735
1736 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1737
1738 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%)  Set transmit frequency to 868.4Mhz
1739
1740 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1741
1742 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1743
1744 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1745
1746 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1747
1748
1749 (% style="color:red" %)**Note:**
1750
1751 (((
1752 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1753 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1754 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1755 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1756 )))
1757
1758 [[image:1654136435598-589.png]]
1759
1760
1761
1762 = 6. FAQ =
1763
1764
1765 == 6.1 How to upgrade the image? ==
1766
1767
1768 (((
1769 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1770 )))
1771
1772 * (((
1773 Support new features
1774 )))
1775 * (((
1776 For bug fix
1777 )))
1778 * (((
1779 Change LoRaWAN bands.
1780 )))
1781
1782 (((
1783 Below shows the hardware connection for how to upload an image to RS485-BL:
1784 )))
1785
1786 [[image:1654136646995-976.png]]
1787
1788 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1789
1790 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1791
1792 (% style="color:blue" %)**Step3**(%%)**: **Open flashloader; choose the correct COM port to update.
1793
1794 [[image:image-20220602102605-1.png]]
1795
1796
1797 [[image:image-20220602102637-2.png]]
1798
1799
1800 [[image:image-20220602102715-3.png]]
1801
1802
1803
1804 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1805
1806
1807 (((
1808 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1809 )))
1810
1811
1812
1813 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1814
1815
1816 (((
1817 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1818 )))
1819
1820
1821
1822 == 6.4 How to Use RS485-BL  to connect to RS232 devices? ==
1823
1824
1825 [[Use RS485-BL or RS485-LN to connect to RS232 devices. - DRAGINO>>url:http://8.211.40.43:8080/xwiki/bin/view/Main/RS485%20to%20RS232/]]
1826
1827
1828
1829 = 7. Trouble Shooting =
1830
1831
1832 == 7.1 Downlink doesn't work, how to solve it? ==
1833
1834
1835 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1836
1837
1838
1839 == 7.2 Why I can't join TTN V3 in US915 /AU915 bands? ==
1840
1841
1842 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1843
1844
1845
1846 = 8. Order Info =
1847
1848
1849 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
1850
1851 (% style="color:blue" %)**XXX:**
1852
1853 * (% style="color:red" %)**EU433**(%%):  frequency bands EU433
1854 * (% style="color:red" %)**EU868**(%%):  frequency bands EU868
1855 * (% style="color:red" %)**KR920**(%%):  frequency bands KR920
1856 * (% style="color:red" %)**CN470**(%%):  frequency bands CN470
1857 * (% style="color:red" %)**AS923**(%%):  frequency bands AS923
1858 * (% style="color:red" %)**AU915**(%%):  frequency bands AU915
1859 * (% style="color:red" %)**US915**(%%):  frequency bands US915
1860 * (% style="color:red" %)**IN865**(%%):  frequency bands IN865
1861 * (% style="color:red" %)**RU864**(%%):  frequency bands RU864
1862 * (% style="color:red" %)**KZ865**(%%):  frequency bands KZ865
1863
1864
1865
1866
1867 = 9. Packing Info =
1868
1869
1870 (((
1871 **Package Includes**:
1872 )))
1873
1874 * (((
1875 RS485-BL x 1
1876 )))
1877 * (((
1878 Stick Antenna for LoRa RF part x 1
1879 )))
1880 * (((
1881 Program cable x 1
1882 )))
1883
1884 (((
1885 **Dimension and weight**:
1886 )))
1887
1888 * (((
1889 Device Size: 13.5 x 7 x 3 cm
1890 )))
1891 * (((
1892 Device Weight: 105g
1893 )))
1894 * (((
1895 Package Size / pcs : 14.5 x 8 x 5 cm
1896 )))
1897 * (((
1898 Weight / pcs : 170g
1899
1900
1901
1902
1903 )))
1904
1905 = 10. Support =
1906
1907
1908 * (((
1909 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1910 )))
1911 * (((
1912 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1913
1914
1915
1916 )))