Version 52.1 by Bei Jinggeng on 2022/07/08 16:48

Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="404" width="404"]]
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 **Table of Contents:**
18
19 {{toc/}}
20
21
22
23
24
25 = 1.Introduction =
26
27 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
28
29 (((
30
31 )))
32
33 (((
34 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
35 )))
36
37 (((
38 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
39 )))
40
41 (((
42 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
43 )))
44
45 (((
46 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
47 )))
48
49 (((
50 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
51 )))
52
53 (((
54 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
55 )))
56
57 (((
58 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
59
60
61 )))
62
63 [[image:1652953304999-717.png||height="424" width="733"]]
64
65
66
67 == 1.2 Specifications ==
68
69
70 **Hardware System:**
71
72 * STM32L072CZT6 MCU
73 * SX1276/78 Wireless Chip 
74 * Power Consumption (exclude RS485 device):
75 ** Idle: 6uA@3.3v
76 ** 20dB Transmit: 130mA@3.3v
77
78 **Interface for Model:**
79
80 * 1 x RS485 Interface
81 * 1 x TTL Serial , 3.3v or 5v.
82 * 1 x I2C Interface, 3.3v or 5v.
83 * 1 x one wire interface
84 * 1 x Interrupt Interface
85 * 1 x Controllable 5V output, max
86
87 **LoRa Spec:**
88
89 * Frequency Range:
90 ** Band 1 (HF): 862 ~~ 1020 Mhz
91 ** Band 2 (LF): 410 ~~ 528 Mhz
92 * 168 dB maximum link budget.
93 * +20 dBm - 100 mW constant RF output vs.
94 * Programmable bit rate up to 300 kbps.
95 * High sensitivity: down to -148 dBm.
96 * Bullet-proof front end: IIP3 = -12.5 dBm.
97 * Excellent blocking immunity.
98 * Fully integrated synthesizer with a resolution of 61 Hz.
99 * LoRa modulation.
100 * Built-in bit synchronizer for clock recovery.
101 * Preamble detection.
102 * 127 dB Dynamic Range RSSI.
103 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
104
105
106 == 1.3 Features ==
107
108 * LoRaWAN Class A & Class C protocol (default Class A)
109 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
110 * AT Commands to change parameters
111 * Remote configure parameters via LoRaWAN Downlink
112 * Firmware upgradable via program port
113 * Support multiply RS485 devices by flexible rules
114 * Support Modbus protocol
115 * Support Interrupt uplink
116
117
118 == 1.4 Applications ==
119
120 * Smart Buildings & Home Automation
121 * Logistics and Supply Chain Management
122 * Smart Metering
123 * Smart Agriculture
124 * Smart Cities
125 * Smart Factory
126
127
128 == 1.5 Firmware Change log ==
129
130 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
131
132
133 == 1.6 Hardware Change log ==
134
135 (((
136
137
138 (((
139 **v1.4**
140 )))
141 )))
142
143 (((
144 (((
145 ~1. Change Power IC to TPS22916
146 )))
147 )))
148
149 (((
150
151 )))
152
153 (((
154 (((
155 **v1.3**
156 )))
157 )))
158
159 (((
160 (((
161 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
162 )))
163 )))
164
165 (((
166
167 )))
168
169 (((
170 (((
171 **v1.2**
172 )))
173 )))
174
175 (((
176 (((
177 Release version ​​​​​
178 )))
179
180
181 )))
182
183
184 = 2. Pin mapping and Power ON Device =
185
186 (((
187 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
188 )))
189
190 [[image:1652953055962-143.png||height="387" width="728"]]
191
192
193 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
194
195
196 = 3. Operation Mode =
197
198 == 3.1 How it works? ==
199
200 (((
201 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
202
203
204 )))
205
206 == 3.2 Example to join LoRaWAN network ==
207
208 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
209
210 [[image:1652953414711-647.png||height="337" width="723"]]
211
212
213 (((
214 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
215 )))
216
217 (((
218 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
219 )))
220
221 (((
222 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from RS485-BL.
223 )))
224
225 (((
226 Each RS485-BL is shipped with a sticker with unique device EUI:
227 )))
228
229 [[image:1652953462722-299.png]]
230
231
232 (((
233 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
234 )))
235
236 (((
237 **Add APP EUI in the application.**
238 )))
239
240
241 [[image:image-20220519174512-1.png]]
242
243 [[image:image-20220519174512-2.png||height="328" width="731"]]
244
245 [[image:image-20220519174512-3.png||height="556" width="724"]]
246
247 [[image:image-20220519174512-4.png]]
248
249
250 You can also choose to create the device manually.
251
252 [[image:1652953542269-423.png||height="710" width="723"]]
253
254
255 Add APP KEY and DEV EUI
256
257 [[image:1652953553383-907.png||height="514" width="724"]]
258
259
260
261 (((
262 (% style="color:blue" %)**Step 2**(%%): Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
263 )))
264
265 [[image:1652953568895-172.png||height="232" width="724"]]
266
267
268 == 3.3 Configure Commands to read data ==
269
270 (((
271 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
272
273
274 )))
275
276 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
277
278 (((
279 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
280 )))
281
282 (((
283 **~1. RS485-MODBUS mode:**
284 )))
285
286 (((
287 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
288 )))
289
290 (((
291 **2. TTL mode:**
292 )))
293
294 (((
295 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
296 )))
297
298 (((
299 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
300 )))
301
302 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
303 |=(% style="width: 80px;" %)(((
304 (((
305 **AT Commands**
306 )))
307 )))|=(% style="width: 210px;" %)(((
308 (((
309 **Description**
310 )))
311 )))|=(% style="width: 210px;" %)(((
312 (((
313 **Example**
314 )))
315 )))
316 |(% style="width:80px" %)(((
317 (((
318 AT+BAUDR
319 )))
320 )))|(% style="width:210px" %)(((
321 (((
322 Set the baud rate (for RS485 connection). Default Value is: 9600.
323 )))
324 )))|(% style="width:210px" %)(((
325 (((
326 (((
327 AT+BAUDR=9600
328 )))
329 )))
330
331 (((
332 (((
333 Options: (1200,2400,4800,14400,19200,115200)
334 )))
335 )))
336 )))
337 |(% style="width:80px" %)(((
338 (((
339 AT+PARITY
340 )))
341 )))|(% style="width:210px" %)(((
342 (((
343 (((
344 Set UART parity (for RS485 connection)
345 )))
346 )))
347
348 (((
349 (((
350 Default Value is: no parity.
351 )))
352 )))
353 )))|(% style="width:210px" %)(((
354 (((
355 (((
356 AT+PARITY=0
357 )))
358 )))
359
360 (((
361 (((
362 Option: 0: no parity, 1: odd parity, 2: even parity
363 )))
364 )))
365 )))
366 |(% style="width:80px" %)(((
367 (((
368 AT+STOPBIT
369 )))
370 )))|(% style="width:210px" %)(((
371 (((
372 (((
373 Set serial stopbit (for RS485 connection)
374 )))
375 )))
376
377 (((
378 (((
379 Default Value is: 1bit.
380 )))
381 )))
382 )))|(% style="width:210px" %)(((
383 (((
384 (((
385 AT+STOPBIT=0 for 1bit
386 )))
387 )))
388
389 (((
390 (((
391 AT+STOPBIT=1 for 1.5 bit
392 )))
393 )))
394
395 (((
396 (((
397 AT+STOPBIT=2 for 2 bits
398 )))
399 )))
400 )))
401
402 === 3.3.2 Configure sensors ===
403
404 (((
405 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
406 )))
407
408 (((
409 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
410 )))
411
412 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
413 |=(% style="width: 80px;" %)**AT Commands**|=(% style="width: 210px;" %)**Description**|=(% style="width: 210px;" %)**Example**
414 |AT+CFGDEV|(% style="width:80px" %)(((
415 (((
416 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
417 )))
418
419 (((
420 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
421 )))
422
423 (((
424 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
425 )))
426 )))|(% style="width:210px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
427
428 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
429
430
431
432 === 3.3.3 Configure read commands for each sampling ===
433
434 (((
435 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
436 )))
437
438 (((
439 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
440 )))
441
442 (((
443 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
444 )))
445
446 (((
447 This section describes how to achieve above goals.
448 )))
449
450 (((
451 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
452
453
454 )))
455
456 (((
457 (% style="color:blue" %)**Command from RS485-BL to Sensor:**
458 )))
459
460 (((
461 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
462
463
464 )))
465
466 (((
467 (% style="color:blue" %)**Handle return from sensors to RS485-BL**:
468 )))
469
470 (((
471 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
472 )))
473
474 * (((
475 (% style="color:blue" %)**AT+DATACUT**
476 )))
477
478 (((
479 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
480
481
482 )))
483
484 * (((
485 (% style="color:blue" %)**AT+SEARCH**
486 )))
487
488 (((
489 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
490 )))
491
492 (((
493
494
495 (% style="color:blue" %)**Define wait timeout:**
496 )))
497
498 (((
499 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
500 )))
501
502 (((
503 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
504 )))
505
506 (((
507
508
509 **Examples:**
510 )))
511
512 (((
513 Below are examples for the how above AT Commands works.
514 )))
515
516 (((
517 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
518 )))
519
520 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
521 |(% style="width:498px" %)(((
522 (((
523 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
524 )))
525
526 (((
527 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
528 )))
529
530 (((
531 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
532 )))
533 )))
534
535 (((
536 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
537 )))
538
539 (((
540 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
541 )))
542
543 (((
544
545 )))
546
547 (((
548 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
549 )))
550
551 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
552 |(% style="width:577px" %)(((
553 (((
554 **AT+SEARCHx=aa,xx xx xx xx xx**
555 )))
556
557 * (((
558 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
559 )))
560 * (((
561 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
562 )))
563 )))
564
565 (((
566
567
568 **Examples:**
569 )))
570
571 (((
572 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
573 )))
574
575 (((
576 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
577 )))
578
579 (((
580 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
581 )))
582
583 (((
584 [[image:1653271044481-711.png]]
585
586
587 )))
588
589 (((
590 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
591 )))
592
593 (((
594 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
595 )))
596
597 (((
598 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
599 )))
600
601 (((
602 [[image:1653271276735-972.png]]
603 )))
604
605 (((
606 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
607 )))
608
609 (% style="background-color:#4f81bd; color:white; width:510px" %)
610 |(% style="width:726px" %)(((
611 (((
612 **AT+DATACUTx=a,b,c**
613 )))
614
615 * (((
616 **a: length for the return of AT+COMMAND**
617 )))
618 * (((
619 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
620 )))
621 * (((
622 **c: define the position for valid value.  **
623 )))
624 )))
625
626 (((
627
628
629 **Examples:**
630 )))
631
632 * (((
633 (% style="color:blue" %)**Grab bytes:**
634 )))
635
636 (((
637 [[image:1653271581490-837.png||height="313" width="722"]]
638 )))
639
640 (((
641
642 )))
643
644 * (((
645 (% style="color:blue" %)**Grab a section.**
646 )))
647
648 (((
649 [[image:1653271648378-342.png||height="326" width="720"]]
650 )))
651
652 (((
653
654 )))
655
656 * (((
657 (% style="color:blue" %)**Grab different sections.**
658 )))
659
660 (((
661 [[image:1653271657255-576.png||height="305" width="730"]]
662
663
664 )))
665
666 (((
667 (((
668 (% style="color:red" %)**Note:**
669 )))
670 )))
671
672 (((
673 (((
674 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
675 )))
676 )))
677
678 (((
679 (((
680 **Example:**
681 )))
682 )))
683
684 (((
685 (((
686 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
687 )))
688 )))
689
690 (((
691 (((
692 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
693 )))
694 )))
695
696 (((
697 (((
698 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
699 )))
700 )))
701
702 (((
703 (((
704 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
705 )))
706 )))
707
708 (((
709 (((
710 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
711 )))
712 )))
713
714 (((
715 (((
716 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
717 )))
718 )))
719
720 (((
721 [[image:1653271763403-806.png]]
722 )))
723
724
725 === 3.3.4 Compose the uplink payload ===
726
727 (((
728 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
729
730
731 )))
732
733 (((
734 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
735
736
737 )))
738
739 (((
740 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
741 )))
742
743 (((
744 Final Payload is
745 )))
746
747 (((
748 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
749 )))
750
751 (((
752 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
753 )))
754
755 [[image:1653272787040-634.png||height="515" width="719"]]
756
757
758
759 (((
760 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
761
762
763 )))
764
765 (((
766 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
767 )))
768
769 (((
770 Final Payload is
771 )))
772
773 (((
774 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
775 )))
776
777 1. (((
778 Battery Info (2 bytes): Battery voltage
779 )))
780 1. (((
781 PAYVER (1 byte): Defined by AT+PAYVER
782 )))
783 1. (((
784 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
785 )))
786 1. (((
787 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
788 )))
789 1. (((
790 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
791
792
793 )))
794
795 [[image:1653272817147-600.png||height="437" width="717"]]
796
797 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
798
799
800 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
801
802 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
803
804 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
805
806
807 Below are the uplink payloads:
808
809 [[image:1653272901032-107.png]]
810
811
812 (% style="color:red" %)Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
813
814 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
815
816 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
817
818 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
819
820 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
821
822
823
824 === 3.3.5 Uplink on demand ===
825
826 (((
827 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
828 )))
829
830 (((
831 Downlink control command:
832 )))
833
834 (((
835 **0x08 command**: Poll an uplink with current command set in RS485-BL.
836 )))
837
838 (((
839 **0xA8 command**: Send a command to RS485-BL and uplink the output from sensors.
840
841
842 )))
843
844 === 3.3.6 Uplink on Interrupt ===
845
846 Put the interrupt sensor between 3.3v_out and GPIO ext.
847
848 [[image:1653273818896-432.png]]
849
850
851 (((
852 AT+INTMOD=0  Disable Interrupt
853 )))
854
855 (((
856 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
857 )))
858
859 (((
860 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
861 )))
862
863 (((
864 AT+INTMOD=3  Interrupt trigger by rising edge.
865
866
867 )))
868
869 == 3.4 Uplink Payload ==
870
871 [[image:image-20220606105412-1.png]]
872
873 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
874
875 (((
876 {{{function Decoder(bytes, port) {}}}
877 )))
878
879 (((
880 {{{//Payload Formats of RS485-BL Deceive}}}
881 )))
882
883 (((
884 {{{return {}}}
885 )))
886
887 (((
888 {{{ //Battery,units:V}}}
889 )))
890
891 (((
892 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
893 )))
894
895 (((
896 {{{ //GPIO_EXTI }}}
897 )))
898
899 (((
900 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
901 )))
902
903 (((
904 {{{ //payload of version}}}
905 )))
906
907 (((
908 {{{ Pay_ver:bytes[2],}}}
909 )))
910
911 (((
912 {{{ }; }}}
913 )))
914
915 (((
916 **}**
917
918
919 )))
920
921 (((
922 TTN V3 uplink screen shot.
923 )))
924
925 [[image:1653274001211-372.png||height="192" width="732"]]
926
927
928 == 3.5 Configure RS485-BL via AT or Downlink ==
929
930 (((
931 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
932 )))
933
934 (((
935 There are two kinds of Commands:
936 )))
937
938 * (((
939 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
940 )))
941
942 * (((
943 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
944
945
946
947
948 )))
949
950 === 3.5.1 Common Commands: ===
951
952 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
953
954
955 === 3.5.2 Sensor related commands: ===
956
957
958
959 ==== (% style="color:blue" %)**Choose Device Type (RS485 or TTL)**(%%) ====
960
961 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
962
963 * (% style="color:#037691" %)**AT Command**
964
965 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
966
967 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
968
969
970 * (% style="color:#037691" %)**Downlink Payload**
971
972 **0A aa**  ~-~->  same as AT+MOD=aa
973
974
975
976
977 ==== (% style="color:blue" %)**RS485 Debug Command (AT+CFGDEV)**(%%) ====
978
979 (((
980 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
981 )))
982
983 * (((
984 (% style="color:#037691" %)**AT Command**
985
986 (((
987 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**  m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
988 )))
989 )))
990
991 (((
992
993 )))
994
995 * (((
996 (% style="color:#037691" %)**Downlink Payload**
997 )))
998
999 (((
1000 Format: A8 MM NN XX XX XX XX YY
1001 )))
1002
1003 (((
1004 Where:
1005 )))
1006
1007 * (((
1008 MM: 1: add CRC-16/MODBUS ; 0: no CRC
1009 )))
1010 * (((
1011 NN: The length of RS485 command
1012 )))
1013 * (((
1014 XX XX XX XX: RS485 command total NN bytes
1015 )))
1016 * (((
1017 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
1018 )))
1019
1020 (((
1021 **Example 1:**
1022 )))
1023
1024 (((
1025 To connect a Modbus Alarm with below commands.
1026 )))
1027
1028 * (((
1029 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
1030 )))
1031
1032 * (((
1033 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1034 )))
1035
1036 (((
1037 So if user want to use downlink command to control to RS485 Alarm, he can use:
1038 )))
1039
1040 (((
1041 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1042 )))
1043
1044 (((
1045 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1046 )))
1047
1048 (((
1049 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
1050 )))
1051
1052 (((
1053
1054 )))
1055
1056 (((
1057 **Example 2:**
1058 )))
1059
1060 (((
1061 Check TTL Sensor return:
1062 )))
1063
1064 (((
1065 [[image:1654132684752-193.png]]
1066 )))
1067
1068
1069
1070
1071 ==== (% style="color:blue" %)**Set Payload version**(%%) ====
1072
1073 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1074
1075 * (% style="color:#037691" %)**AT Command:**
1076
1077 **AT+PAYVER:   **Set PAYVER field = 1
1078
1079
1080 * (% style="color:#037691" %)**Downlink Payload:**
1081
1082 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
1083
1084 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
1085
1086
1087
1088
1089 ==== (% style="color:blue" %)**Set RS485 Sampling Commands**(%%) ====
1090
1091 (((
1092 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1093 )))
1094
1095 (((
1096 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1097 )))
1098
1099 (((
1100
1101 )))
1102
1103 * (((
1104 (% style="color:#037691" %)**AT Command:**
1105 )))
1106
1107 **AT+COMMANDx:  Configure RS485 read command to sensor.**
1108
1109 **AT+DATACUTx:  Configure how to handle return from RS485 devices.**
1110
1111 **AT+SEARCHx:  Configure search command**
1112
1113
1114 * (((
1115 (% style="color:#037691" %)**Downlink Payload:**
1116 )))
1117
1118 (((
1119 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1120 )))
1121
1122 (((
1123 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
1124 )))
1125
1126 (((
1127 Format: AF MM NN LL XX XX XX XX YY
1128 )))
1129
1130 (((
1131 Where:
1132 )))
1133
1134 * (((
1135 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1136 )))
1137 * (((
1138 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1139 )))
1140 * (((
1141 LL:  The length of AT+COMMAND or AT+DATACUT command
1142 )))
1143 * (((
1144 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1145 )))
1146 * (((
1147 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1148 )))
1149
1150 (((
1151 **Example:**
1152 )))
1153
1154 (((
1155 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1156 )))
1157
1158 (((
1159 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1160 )))
1161
1162 (((
1163 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1164 )))
1165
1166 (((
1167
1168 )))
1169
1170 (((
1171 **0xAB** downlink command can be used for set AT+SEARCHx
1172 )))
1173
1174 (((
1175 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1176 )))
1177
1178 * (((
1179 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1180 )))
1181 * (((
1182 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1183 )))
1184
1185 (((
1186 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1187 )))
1188
1189
1190
1191
1192 ==== (% style="color:blue" %)**Fast command to handle MODBUS device**(%%) ====
1193
1194 (((
1195 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1196 )))
1197
1198 (((
1199 This command is valid since v1.3 firmware version
1200 )))
1201
1202 (((
1203
1204 )))
1205
1206 (((
1207 (% style="color:#037691" %)**AT+MBFUN has only two value:**
1208 )))
1209
1210 * (((
1211 **AT+MBFUN=1**: Enable Modbus reading. And get response base on the MODBUS return
1212 )))
1213
1214 (((
1215 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1216 )))
1217
1218 * (((
1219 **AT+MBFUN=0**: Disable Modbus fast reading.
1220 )))
1221
1222 (((
1223
1224
1225 **Example:**
1226 )))
1227
1228 * (((
1229 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1230 )))
1231 * (((
1232 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1233 )))
1234 * (((
1235 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1236 )))
1237
1238 [[image:1654133913295-597.png]]
1239
1240
1241 [[image:1654133954153-643.png]]
1242
1243
1244 * (((
1245 (% style="color:#037691" %)**Downlink Commands:**
1246 )))
1247
1248 (((
1249 **A9 aa** ~-~-> Same as AT+MBFUN=aa
1250 )))
1251
1252
1253
1254
1255 ==== (% style="color:blue" %)**RS485 command timeout**(%%) ====
1256
1257 (((
1258 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1259 )))
1260
1261 (((
1262 Default value: 0, range:  0 ~~ 5 seconds
1263 )))
1264
1265 (((
1266
1267 )))
1268
1269 * (((
1270 (% style="color:#037691" %)**AT Command:**
1271
1272 **AT+CMDDLaa=hex(bb cc)**
1273
1274
1275 )))
1276
1277 (((
1278 **Example:**
1279 )))
1280
1281 (((
1282 **AT+CMDDL1=1000** to send the open time to 1000ms
1283 )))
1284
1285 (((
1286
1287 )))
1288
1289 * (((
1290 (% style="color:#037691" %)**Downlink Payload:**
1291 )))
1292
1293 (((
1294 0x AA aa bb cc
1295 )))
1296
1297 (((
1298 Same as: AT+CMDDLaa=hex(bb cc)
1299 )))
1300
1301 (((
1302 **Example:**
1303 )))
1304
1305 (((
1306 **0xAA 01 03 E8**  ~-~-> Same as **AT+CMDDL1=1000 ms**
1307 )))
1308
1309
1310
1311
1312 ==== (% style="color:blue" %)**Uplink payload mode**(%%) ====
1313
1314 (((
1315 Define to use one uplink or multiple uplinks for the sampling.
1316 )))
1317
1318 (((
1319 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1320 )))
1321
1322 * (((
1323 (% style="color:#037691" %)**AT Command:**
1324
1325 **AT+DATAUP=0**
1326
1327 **AT+DATAUP=1**
1328 )))
1329
1330 (((
1331
1332 )))
1333
1334 * (((
1335 (% style="color:#037691" %)**Downlink Payload:**
1336 )))
1337
1338 (((
1339 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
1340 )))
1341
1342 (((
1343 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
1344 )))
1345
1346
1347
1348
1349 ==== (% style="color:blue" %)**Manually trigger an Uplink**(%%) ====
1350
1351 Ask device to send an uplink immediately.
1352
1353 * (% style="color:#037691" %)**Downlink Payload:**
1354
1355 **0x08 FF**, RS485-BL will immediately send an uplink.
1356
1357
1358
1359
1360 ==== (% style="color:blue" %)**Clear RS485 Command**(%%) ====
1361
1362 (((
1363 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1364 )))
1365
1366 (((
1367
1368 )))
1369
1370 * (((
1371 (% style="color:#037691" %)**AT Command:**
1372 )))
1373
1374 (((
1375 (% style="color:#037691" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1376 )))
1377
1378 (((
1379 Example screen shot after clear all RS485 commands. 
1380 )))
1381
1382 (((
1383
1384 )))
1385
1386 (((
1387 The uplink screen shot is:
1388 )))
1389
1390 (((
1391 [[image:1654134704555-320.png]]
1392 )))
1393
1394 (((
1395
1396 )))
1397
1398 * (((
1399 (% style="color:#037691" %)**Downlink Payload:**
1400 )))
1401
1402 (((
1403 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1404 )))
1405
1406
1407
1408
1409 ==== (% style="color:blue" %)**Set Serial Communication Parameters**(%%) ====
1410
1411 (((
1412 Set the Rs485 serial communication parameters:
1413 )))
1414
1415 * (((
1416 (% style="color:#037691" %)**AT Command:**
1417 )))
1418
1419 (((
1420
1421
1422 * Set Baud Rate:
1423 )))
1424
1425 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1426
1427
1428 * Set UART Parity
1429
1430 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1431
1432
1433 * Set STOPBIT
1434
1435 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1436
1437
1438 * (((
1439 (% style="color:#037691" %)**Downlink Payload:**
1440 )))
1441
1442 (((
1443 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1444 )))
1445
1446 (((
1447
1448
1449 **Example:**
1450 )))
1451
1452 * (((
1453 A7 01 00 60   same as AT+BAUDR=9600
1454 )))
1455 * (((
1456 A7 01 04 80  same as AT+BAUDR=115200
1457 )))
1458
1459 (((
1460 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1461 )))
1462
1463 (((
1464 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1465 )))
1466
1467
1468
1469
1470 ==== (% style="color:blue" %)**Control output power duration**(%%) ====
1471
1472 (((
1473 User can set the output power duration before each sampling.
1474 )))
1475
1476 * (((
1477 (% style="color:#037691" %)**AT Command:**
1478 )))
1479
1480 (((
1481 **Example:**
1482 )))
1483
1484 (((
1485 **AT+3V3T=1000**  ~/~/ 3V3 output power will open 1s before each sampling.
1486 )))
1487
1488 (((
1489 **AT+5VT=1000**  ~/~/ +5V output power will open 1s before each sampling.
1490 )))
1491
1492 (((
1493
1494 )))
1495
1496 * (((
1497 (% style="color:#037691" %)**LoRaWAN Downlink Command:**
1498 )))
1499
1500 (((
1501 **07 01 aa bb**  Same as AT+5VT=(aa bb)
1502 )))
1503
1504 (((
1505 **07 02 aa bb**  Same as AT+3V3T=(aa bb)
1506 )))
1507
1508
1509
1510 == 3.6 Buttons ==
1511
1512 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:233px" %)
1513 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1514 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1515
1516
1517
1518 == 3.7 +3V3 Output ==
1519
1520 (((
1521 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1522 )))
1523
1524 (((
1525 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1526 )))
1527
1528 (((
1529 The +3V3 output time can be controlled by AT Command.
1530 )))
1531
1532 (((
1533
1534 )))
1535
1536 (((
1537 (% style="color:#037691" %)**AT+3V3T=1000**
1538 )))
1539
1540 (((
1541
1542 )))
1543
1544 (((
1545 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1546 )))
1547
1548 (((
1549 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1550 )))
1551
1552
1553 == 3.8 +5V Output ==
1554
1555 (((
1556 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1557 )))
1558
1559 (((
1560 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1561 )))
1562
1563 (((
1564 The 5V output time can be controlled by AT Command.
1565 )))
1566
1567 (((
1568
1569 )))
1570
1571 (((
1572 (% style="color:#037691" %)**AT+5VT=1000**
1573 )))
1574
1575 (((
1576
1577 )))
1578
1579 (((
1580 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1581 )))
1582
1583 (((
1584 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1585 )))
1586
1587
1588
1589 == 3.9 LEDs ==
1590
1591 (% border="1" style="background-color:#ffffcc; color:green; width:332px" %)
1592 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1593 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1594
1595
1596
1597 == 3.10 Switch Jumper ==
1598
1599 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:463px" %)
1600 |=(% style="width: 123px;" %)**Switch Jumper**|=(% style="width: 336px;" %)**Feature**
1601 |(% style="width:123px" %)**SW1**|(% style="width:336px" %)ISP position: Upgrade firmware via UART
1602 Flash position: Configure device, check running status.
1603 |(% style="width:123px" %)**SW2**|(% style="width:336px" %)5V position: set to compatible with 5v I/O.
1604 3.3v position: set to compatible with 3.3v I/O.,
1605
1606 (((
1607 **+3.3V**: is always ON
1608 )))
1609
1610 (((
1611 **+5V**: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1612 )))
1613
1614
1615 = 4. Case Study =
1616
1617 User can check this URL for some case studies:  [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1618
1619
1620 = 5. Use AT Command =
1621
1622 == 5.1 Access AT Command ==
1623
1624 (((
1625 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1626 )))
1627
1628 [[image:1654135840598-282.png]]
1629
1630
1631 (((
1632 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1633 )))
1634
1635 [[image:1654136105500-922.png]]
1636
1637
1638 (((
1639 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1640 )))
1641
1642
1643 == 5.2 Common AT Command Sequence ==
1644
1645
1646 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1647
1648 If device has not joined network yet:
1649
1650 * (% style="color:#037691" %)**AT+FDR**
1651 * (% style="color:#037691" %)**AT+NJM=0**
1652 * (% style="color:#037691" %)**ATZ**
1653
1654 (((
1655
1656
1657 If device already joined network:
1658
1659 * (% style="color:#037691" %)**AT+NJM=0**
1660 * (% style="color:#037691" %)**ATZ**
1661 )))
1662
1663
1664
1665 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1666
1667
1668 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1669
1670 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%) Set to ABP mode
1671
1672 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) Set the Adaptive Data Rate Off
1673
1674 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%) Set Data Rate
1675
1676 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1677
1678 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%)  Set transmit frequency to 868.4Mhz
1679
1680 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1681
1682 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1683
1684 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1685
1686 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1687
1688
1689 (% style="color:red" %)**Note:**
1690
1691 (((
1692 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1693 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1694 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1695 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1696 )))
1697
1698 [[image:1654136435598-589.png]]
1699
1700
1701
1702 = 6. FAQ =
1703
1704 == 6.1 How to upgrade the image? ==
1705
1706 (((
1707 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1708 )))
1709
1710 * (((
1711 Support new features
1712 )))
1713 * (((
1714 For bug fix
1715 )))
1716 * (((
1717 Change LoRaWAN bands.
1718 )))
1719
1720 (((
1721 Below shows the hardware connection for how to upload an image to RS485-BL:
1722 )))
1723
1724 [[image:1654136646995-976.png]]
1725
1726 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1727
1728 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1729
1730 (% style="color:blue" %)**Step3**(%%)**: **Open flashloader; choose the correct COM port to update.
1731
1732 [[image:image-20220602102605-1.png]]
1733
1734
1735 [[image:image-20220602102637-2.png]]
1736
1737
1738 [[image:image-20220602102715-3.png]]
1739
1740
1741
1742 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1743
1744 (((
1745 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1746 )))
1747
1748
1749 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1750
1751 (((
1752 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1753 )))
1754
1755
1756
1757 = 6.4How to Use RS485-BL  to connect to RS232 devices? =
1758
1759 [[Use RS485-BL or RS485-LN to connect to RS232 devices. - DRAGINO>>url:http://8.211.40.43:8080/xwiki/bin/view/Main/RS485%20to%20RS232/]]
1760
1761
1762
1763 = 7. Trouble Shooting =
1764
1765
1766 == 7.1 Downlink doesn't work, how to solve it? ==
1767
1768 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1769
1770
1771 == 7.2 Why I can't join TTN V3 in US915 /AU915 bands? ==
1772
1773 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1774
1775
1776 = 8. Order Info =
1777
1778 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
1779
1780 (% style="color:blue" %)**XXX:**
1781
1782 * (% style="color:red" %)**EU433**(%%):  frequency bands EU433
1783 * (% style="color:red" %)**EU868**(%%):  frequency bands EU868
1784 * (% style="color:red" %)**KR920**(%%):  frequency bands KR920
1785 * (% style="color:red" %)**CN470**(%%):  frequency bands CN470
1786 * (% style="color:red" %)**AS923**(%%):  frequency bands AS923
1787 * (% style="color:red" %)**AU915**(%%):  frequency bands AU915
1788 * (% style="color:red" %)**US915**(%%):  frequency bands US915
1789 * (% style="color:red" %)**IN865**(%%):  frequency bands IN865
1790 * (% style="color:red" %)**RU864**(%%):  frequency bands RU864
1791 * (% style="color:red" %)**KZ865**(%%):  frequency bands KZ865
1792
1793
1794 = 9. Packing Info =
1795
1796 (((
1797 **Package Includes**:
1798 )))
1799
1800 * (((
1801 RS485-BL x 1
1802 )))
1803 * (((
1804 Stick Antenna for LoRa RF part x 1
1805 )))
1806 * (((
1807 Program cable x 1
1808 )))
1809
1810 (((
1811 **Dimension and weight**:
1812 )))
1813
1814 * (((
1815 Device Size: 13.5 x 7 x 3 cm
1816 )))
1817 * (((
1818 Device Weight: 105g
1819 )))
1820 * (((
1821 Package Size / pcs : 14.5 x 8 x 5 cm
1822 )))
1823 * (((
1824 Weight / pcs : 170g
1825
1826
1827
1828 )))
1829
1830 = 10. Support =
1831
1832 * (((
1833 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1834 )))
1835 * (((
1836 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1837 )))
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0