Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="404" width="404"]]
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 **Table of Contents:**
18
19 {{toc/}}
20
21
22
23
24
25 = 1.Introduction =
26
27 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
28
29 (((
30
31 )))
32
33 (((
34 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
35 )))
36
37 (((
38 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
39 )))
40
41 (((
42 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
43 )))
44
45 (((
46 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
47 )))
48
49 (((
50 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
51 )))
52
53 (((
54 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
55 )))
56
57 (((
58 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
59
60
61 )))
62
63 [[image:1652953304999-717.png||height="424" width="733"]]
64
65
66
67 == 1.2 Specifications ==
68
69
70 **Hardware System:**
71
72 * STM32L072CZT6 MCU
73 * SX1276/78 Wireless Chip 
74 * Power Consumption (exclude RS485 device):
75 ** Idle: 6uA@3.3v
76 ** 20dB Transmit: 130mA@3.3v
77
78 **Interface for Model:**
79
80 * 1 x RS485 Interface
81 * 1 x TTL Serial , 3.3v or 5v.
82 * 1 x I2C Interface, 3.3v or 5v.
83 * 1 x one wire interface
84 * 1 x Interrupt Interface
85 * 1 x Controllable 5V output, max
86
87 **LoRa Spec:**
88
89 * Frequency Range:
90 ** Band 1 (HF): 862 ~~ 1020 Mhz
91 ** Band 2 (LF): 410 ~~ 528 Mhz
92 * 168 dB maximum link budget.
93 * +20 dBm - 100 mW constant RF output vs.
94 * Programmable bit rate up to 300 kbps.
95 * High sensitivity: down to -148 dBm.
96 * Bullet-proof front end: IIP3 = -12.5 dBm.
97 * Excellent blocking immunity.
98 * Fully integrated synthesizer with a resolution of 61 Hz.
99 * LoRa modulation.
100 * Built-in bit synchronizer for clock recovery.
101 * Preamble detection.
102 * 127 dB Dynamic Range RSSI.
103 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
104
105
106
107 == 1.3 Features ==
108
109 * LoRaWAN Class A & Class C protocol (default Class A)
110 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
111 * AT Commands to change parameters
112 * Remote configure parameters via LoRaWAN Downlink
113 * Firmware upgradable via program port
114 * Support multiply RS485 devices by flexible rules
115 * Support Modbus protocol
116 * Support Interrupt uplink
117
118
119
120 == 1.4 Applications ==
121
122 * Smart Buildings & Home Automation
123 * Logistics and Supply Chain Management
124 * Smart Metering
125 * Smart Agriculture
126 * Smart Cities
127 * Smart Factory
128
129
130
131 == 1.5 Firmware Change log ==
132
133 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
134
135
136 == 1.6 Hardware Change log ==
137
138 (((
139
140
141 (((
142 **v1.4**
143 )))
144 )))
145
146 (((
147 (((
148 ~1. Change Power IC to TPS22916
149 )))
150 )))
151
152 (((
153
154 )))
155
156 (((
157 (((
158 **v1.3**
159 )))
160 )))
161
162 (((
163 (((
164 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
165 )))
166 )))
167
168 (((
169
170 )))
171
172 (((
173 (((
174 **v1.2**
175 )))
176 )))
177
178 (((
179 (((
180 Release version ​​​​​
181 )))
182
183
184 )))
185
186
187 = 2. Pin mapping and Power ON Device =
188
189 (((
190 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
191 )))
192
193 [[image:1652953055962-143.png||height="387" width="728"]]
194
195
196 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
197
198
199 = 3. Operation Mode =
200
201 == 3.1 How it works? ==
202
203 (((
204 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
205
206
207 )))
208
209 == 3.2 Example to join LoRaWAN network ==
210
211 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
212
213 [[image:1652953414711-647.png||height="337" width="723"]]
214
215
216 (((
217 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
218 )))
219
220 (((
221 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
222 )))
223
224 (((
225 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from RS485-BL.
226 )))
227
228 (((
229 Each RS485-BL is shipped with a sticker with unique device EUI:
230 )))
231
232 [[image:1652953462722-299.png]]
233
234
235 (((
236 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
237 )))
238
239 (((
240 **Add APP EUI in the application.**
241 )))
242
243
244 [[image:image-20220519174512-1.png]]
245
246 [[image:image-20220519174512-2.png||height="328" width="731"]]
247
248 [[image:image-20220519174512-3.png||height="556" width="724"]]
249
250 [[image:image-20220519174512-4.png]]
251
252
253 You can also choose to create the device manually.
254
255 [[image:1652953542269-423.png||height="710" width="723"]]
256
257
258 Add APP KEY and DEV EUI
259
260 [[image:1652953553383-907.png||height="514" width="724"]]
261
262
263
264 (((
265 (% style="color:blue" %)**Step 2**(%%): Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
266 )))
267
268 [[image:1652953568895-172.png||height="232" width="724"]]
269
270
271 == 3.3 Configure Commands to read data ==
272
273 (((
274 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
275
276
277 )))
278
279 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
280
281 (((
282 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
283 )))
284
285 (((
286 **~1. RS485-MODBUS mode:**
287 )))
288
289 (((
290 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
291 )))
292
293 (((
294 **2. TTL mode:**
295 )))
296
297 (((
298 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
299 )))
300
301 (((
302 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
303 )))
304
305 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
306 |=(% style="width: 80px;" %)(((
307 (((
308 **AT Commands**
309 )))
310 )))|=(% style="width: 210px;" %)(((
311 (((
312 **Description**
313 )))
314 )))|=(% style="width: 210px;" %)(((
315 (((
316 **Example**
317 )))
318 )))
319 |(% style="width:80px" %)(((
320 (((
321 AT+BAUDR
322 )))
323 )))|(% style="width:210px" %)(((
324 (((
325 Set the baud rate (for RS485 connection). Default Value is: 9600.
326 )))
327 )))|(% style="width:210px" %)(((
328 (((
329 (((
330 AT+BAUDR=9600
331 )))
332 )))
333
334 (((
335 (((
336 Options: (1200,2400,4800,14400,19200,115200)
337 )))
338 )))
339 )))
340 |(% style="width:80px" %)(((
341 (((
342 AT+PARITY
343 )))
344 )))|(% style="width:210px" %)(((
345 (((
346 (((
347 Set UART parity (for RS485 connection)
348 )))
349 )))
350
351 (((
352 (((
353 Default Value is: no parity.
354 )))
355 )))
356 )))|(% style="width:210px" %)(((
357 (((
358 (((
359 AT+PARITY=0
360 )))
361 )))
362
363 (((
364 (((
365 Option: 0: no parity, 1: odd parity, 2: even parity
366 )))
367 )))
368 )))
369 |(% style="width:80px" %)(((
370 (((
371 AT+STOPBIT
372 )))
373 )))|(% style="width:210px" %)(((
374 (((
375 (((
376 Set serial stopbit (for RS485 connection)
377 )))
378 )))
379
380 (((
381 (((
382 Default Value is: 1bit.
383 )))
384 )))
385 )))|(% style="width:210px" %)(((
386 (((
387 (((
388 AT+STOPBIT=0 for 1bit
389 )))
390 )))
391
392 (((
393 (((
394 AT+STOPBIT=1 for 1.5 bit
395 )))
396 )))
397
398 (((
399 (((
400 AT+STOPBIT=2 for 2 bits
401 )))
402 )))
403 )))
404
405
406 === 3.3.2 Configure sensors ===
407
408 (((
409 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
410 )))
411
412 (((
413 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
414 )))
415
416 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
417 |=(% style="width: 80px;" %)**AT Commands**|=(% style="width: 210px;" %)**Description**|=(% style="width: 210px;" %)**Example**
418 |AT+CFGDEV|(% style="width:80px" %)(((
419 (((
420 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
421 )))
422
423 (((
424 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
425 )))
426
427 (((
428 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
429 )))
430 )))|(% style="width:210px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
431
432 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
433
434
435
436 === 3.3.3 Configure read commands for each sampling ===
437
438 (((
439 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
440 )))
441
442 (((
443 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
444 )))
445
446 (((
447 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
448 )))
449
450 (((
451 This section describes how to achieve above goals.
452 )))
453
454 (((
455 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
456
457
458 )))
459
460 (((
461 (% style="color:blue" %)**Command from RS485-BL to Sensor:**
462 )))
463
464 (((
465 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
466
467
468 )))
469
470 (((
471 (% style="color:blue" %)**Handle return from sensors to RS485-BL**:
472 )))
473
474 (((
475 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
476 )))
477
478 * (((
479 (% style="color:blue" %)**AT+DATACUT**
480 )))
481
482 (((
483 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
484
485
486 )))
487
488 * (((
489 (% style="color:blue" %)**AT+SEARCH**
490 )))
491
492 (((
493 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
494 )))
495
496 (((
497
498
499 (% style="color:blue" %)**Define wait timeout:**
500 )))
501
502 (((
503 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
504 )))
505
506 (((
507 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
508 )))
509
510 (((
511
512
513 **Examples:**
514 )))
515
516 (((
517 Below are examples for the how above AT Commands works.
518 )))
519
520 (((
521 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
522 )))
523
524 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
525 |(% style="width:498px" %)(((
526 (((
527 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
528 )))
529
530 (((
531 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
532 )))
533
534 (((
535 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
536 )))
537 )))
538
539 (((
540 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
541 )))
542
543 (((
544 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
545 )))
546
547 (((
548
549 )))
550
551 (((
552 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
553 )))
554
555 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
556 |(% style="width:577px" %)(((
557 (((
558 **AT+SEARCHx=aa,xx xx xx xx xx**
559 )))
560
561 * (((
562 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
563 )))
564 * (((
565 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
566 )))
567 )))
568
569 (((
570
571
572 **Examples:**
573 )))
574
575 (((
576 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
577 )))
578
579 (((
580 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
581 )))
582
583 (((
584 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
585 )))
586
587 (((
588 [[image:1653271044481-711.png]]
589
590
591 )))
592
593 (((
594 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
595 )))
596
597 (((
598 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
599 )))
600
601 (((
602 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
603 )))
604
605 (((
606 [[image:1653271276735-972.png]]
607 )))
608
609 (((
610 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
611 )))
612
613 (% style="background-color:#4f81bd; color:white; width:510px" %)
614 |(% style="width:726px" %)(((
615 (((
616 **AT+DATACUTx=a,b,c**
617 )))
618
619 * (((
620 **a: length for the return of AT+COMMAND**
621 )))
622 * (((
623 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
624 )))
625 * (((
626 **c: define the position for valid value.  **
627 )))
628 )))
629
630 (((
631
632
633 **Examples:**
634 )))
635
636 * (((
637 (% style="color:blue" %)**Grab bytes:**
638 )))
639
640 (((
641 [[image:1653271581490-837.png||height="313" width="722"]]
642 )))
643
644 (((
645
646 )))
647
648 * (((
649 (% style="color:blue" %)**Grab a section.**
650 )))
651
652 (((
653 [[image:1653271648378-342.png||height="326" width="720"]]
654 )))
655
656 (((
657
658 )))
659
660 * (((
661 (% style="color:blue" %)**Grab different sections.**
662 )))
663
664 (((
665 [[image:1653271657255-576.png||height="305" width="730"]]
666
667
668 )))
669
670 (((
671 (((
672 (% style="color:red" %)**Note:**
673 )))
674 )))
675
676 (((
677 (((
678 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
679 )))
680 )))
681
682 (((
683 (((
684 **Example:**
685 )))
686 )))
687
688 (((
689 (((
690 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
691 )))
692 )))
693
694 (((
695 (((
696 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
697 )))
698 )))
699
700 (((
701 (((
702 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
703 )))
704 )))
705
706 (((
707 (((
708 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
709 )))
710 )))
711
712 (((
713 (((
714 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
715 )))
716 )))
717
718 (((
719 (((
720 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
721 )))
722 )))
723
724 (((
725 [[image:1653271763403-806.png]]
726 )))
727
728
729 === 3.3.4 Compose the uplink payload ===
730
731 (((
732 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
733
734
735 )))
736
737 (((
738 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
739
740
741 )))
742
743 (((
744 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
745 )))
746
747 (((
748 Final Payload is
749 )))
750
751 (((
752 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
753 )))
754
755 (((
756 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
757 )))
758
759 [[image:1653272787040-634.png||height="515" width="719"]]
760
761
762
763 (((
764 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
765
766
767 )))
768
769 (((
770 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
771 )))
772
773 (((
774 Final Payload is
775 )))
776
777 (((
778 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
779 )))
780
781 1. (((
782 Battery Info (2 bytes): Battery voltage
783 )))
784 1. (((
785 PAYVER (1 byte): Defined by AT+PAYVER
786 )))
787 1. (((
788 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
789 )))
790 1. (((
791 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
792 )))
793 1. (((
794 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
795
796
797 )))
798
799 [[image:1653272817147-600.png||height="437" width="717"]]
800
801 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
802
803
804 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
805
806 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
807
808 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
809
810
811 Below are the uplink payloads:
812
813 [[image:1653272901032-107.png]]
814
815
816 (% style="color:red" %)Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
817
818 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
819
820 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
821
822 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
823
824 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
825
826
827
828 === 3.3.5 Uplink on demand ===
829
830 (((
831 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
832 )))
833
834 (((
835 Downlink control command:
836 )))
837
838 (((
839 **0x08 command**: Poll an uplink with current command set in RS485-BL.
840 )))
841
842 (((
843 **0xA8 command**: Send a command to RS485-BL and uplink the output from sensors.
844
845
846 )))
847
848 === 3.3.6 Uplink on Interrupt ===
849
850 Put the interrupt sensor between 3.3v_out and GPIO ext.
851
852 [[image:1653273818896-432.png]]
853
854
855 (((
856 AT+INTMOD=0  Disable Interrupt
857 )))
858
859 (((
860 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
861 )))
862
863 (((
864 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
865 )))
866
867 (((
868 AT+INTMOD=3  Interrupt trigger by rising edge.
869
870
871 )))
872
873 == 3.4 Uplink Payload ==
874
875 [[image:image-20220606105412-1.png]]
876
877 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
878
879 (((
880 {{{function Decoder(bytes, port) {}}}
881 )))
882
883 (((
884 {{{//Payload Formats of RS485-BL Deceive}}}
885 )))
886
887 (((
888 {{{return {}}}
889 )))
890
891 (((
892 {{{ //Battery,units:V}}}
893 )))
894
895 (((
896 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
897 )))
898
899 (((
900 {{{ //GPIO_EXTI }}}
901 )))
902
903 (((
904 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
905 )))
906
907 (((
908 {{{ //payload of version}}}
909 )))
910
911 (((
912 {{{ Pay_ver:bytes[2],}}}
913 )))
914
915 (((
916 {{{ }; }}}
917 )))
918
919 (((
920 **}**
921
922
923 )))
924
925 (((
926 TTN V3 uplink screen shot.
927 )))
928
929 [[image:1653274001211-372.png||height="192" width="732"]]
930
931
932 == 3.5 Configure RS485-BL via AT or Downlink ==
933
934 (((
935 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
936 )))
937
938 (((
939 There are two kinds of Commands:
940 )))
941
942 * (((
943 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
944 )))
945
946 * (((
947 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
948
949
950
951
952 )))
953
954 === 3.5.1 Common Commands: ===
955
956 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
957
958
959 === 3.5.2 Sensor related commands: ===
960
961
962
963 ==== (% style="color:blue" %)**Choose Device Type (RS485 or TTL)**(%%) ====
964
965 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
966
967 * (% style="color:#037691" %)**AT Command**
968
969 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
970
971 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
972
973
974 * (% style="color:#037691" %)**Downlink Payload**
975
976 **0A aa**  ~-~->  same as AT+MOD=aa
977
978
979
980
981 ==== (% style="color:blue" %)**RS485 Debug Command (AT+CFGDEV)**(%%) ====
982
983 (((
984 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
985 )))
986
987 * (((
988 (% style="color:#037691" %)**AT Command**
989
990 (((
991 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**  m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
992 )))
993 )))
994
995 (((
996
997 )))
998
999 * (((
1000 (% style="color:#037691" %)**Downlink Payload**
1001 )))
1002
1003 (((
1004 Format: A8 MM NN XX XX XX XX YY
1005 )))
1006
1007 (((
1008 Where:
1009 )))
1010
1011 * (((
1012 MM: 1: add CRC-16/MODBUS ; 0: no CRC
1013 )))
1014 * (((
1015 NN: The length of RS485 command
1016 )))
1017 * (((
1018 XX XX XX XX: RS485 command total NN bytes
1019 )))
1020 * (((
1021 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
1022 )))
1023
1024 (((
1025 **Example 1:**
1026 )))
1027
1028 (((
1029 To connect a Modbus Alarm with below commands.
1030 )))
1031
1032 * (((
1033 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
1034 )))
1035
1036 * (((
1037 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1038 )))
1039
1040 (((
1041 So if user want to use downlink command to control to RS485 Alarm, he can use:
1042 )))
1043
1044 (((
1045 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1046 )))
1047
1048 (((
1049 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1050 )))
1051
1052 (((
1053 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
1054 )))
1055
1056 (((
1057
1058 )))
1059
1060 (((
1061 **Example 2:**
1062 )))
1063
1064 (((
1065 Check TTL Sensor return:
1066 )))
1067
1068 (((
1069 [[image:1654132684752-193.png]]
1070 )))
1071
1072
1073
1074
1075 ==== (% style="color:blue" %)**Set Payload version**(%%) ====
1076
1077 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1078
1079 * (% style="color:#037691" %)**AT Command:**
1080
1081 **AT+PAYVER:   **Set PAYVER field = 1
1082
1083
1084 * (% style="color:#037691" %)**Downlink Payload:**
1085
1086 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
1087
1088 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
1089
1090
1091
1092
1093 ==== (% style="color:blue" %)**Set RS485 Sampling Commands**(%%) ====
1094
1095 (((
1096 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1097 )))
1098
1099 (((
1100 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1101 )))
1102
1103 (((
1104
1105 )))
1106
1107 * (((
1108 (% style="color:#037691" %)**AT Command:**
1109 )))
1110
1111 **AT+COMMANDx:  Configure RS485 read command to sensor.**
1112
1113 **AT+DATACUTx:  Configure how to handle return from RS485 devices.**
1114
1115 **AT+SEARCHx:  Configure search command**
1116
1117
1118 * (((
1119 (% style="color:#037691" %)**Downlink Payload:**
1120 )))
1121
1122 (((
1123 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1124 )))
1125
1126 (((
1127 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
1128 )))
1129
1130 (((
1131 Format: AF MM NN LL XX XX XX XX YY
1132 )))
1133
1134 (((
1135 Where:
1136 )))
1137
1138 * (((
1139 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1140 )))
1141 * (((
1142 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1143 )))
1144 * (((
1145 LL:  The length of AT+COMMAND or AT+DATACUT command
1146 )))
1147 * (((
1148 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1149 )))
1150 * (((
1151 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1152 )))
1153
1154 (((
1155 **Example:**
1156 )))
1157
1158 (((
1159 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1160 )))
1161
1162 (((
1163 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1164 )))
1165
1166 (((
1167 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1168 )))
1169
1170 (((
1171
1172 )))
1173
1174 (((
1175 **0xAB** downlink command can be used for set AT+SEARCHx
1176 )))
1177
1178 (((
1179 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1180 )))
1181
1182 * (((
1183 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1184 )))
1185 * (((
1186 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1187 )))
1188
1189 (((
1190 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1191 )))
1192
1193
1194
1195
1196 ==== (% style="color:blue" %)**Fast command to handle MODBUS device**(%%) ====
1197
1198 (((
1199 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1200 )))
1201
1202 (((
1203 This command is valid since v1.3 firmware version
1204 )))
1205
1206 (((
1207
1208 )))
1209
1210 (((
1211 (% style="color:#037691" %)**AT+MBFUN has only two value:**
1212 )))
1213
1214 * (((
1215 **AT+MBFUN=1**: Enable Modbus reading. And get response base on the MODBUS return
1216 )))
1217
1218 (((
1219 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1220 )))
1221
1222 * (((
1223 **AT+MBFUN=0**: Disable Modbus fast reading.
1224 )))
1225
1226 (((
1227
1228
1229 **Example:**
1230 )))
1231
1232 * (((
1233 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1234 )))
1235 * (((
1236 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1237 )))
1238 * (((
1239 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1240 )))
1241
1242 [[image:1654133913295-597.png]]
1243
1244
1245 [[image:1654133954153-643.png]]
1246
1247
1248 * (((
1249 (% style="color:#037691" %)**Downlink Commands:**
1250 )))
1251
1252 (((
1253 **A9 aa** ~-~-> Same as AT+MBFUN=aa
1254 )))
1255
1256
1257
1258
1259 ==== (% style="color:blue" %)**RS485 command timeout**(%%) ====
1260
1261 (((
1262 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1263 )))
1264
1265 (((
1266 Default value: 0, range:  0 ~~ 5 seconds
1267 )))
1268
1269 (((
1270
1271 )))
1272
1273 * (((
1274 (% style="color:#037691" %)**AT Command:**
1275
1276 **AT+CMDDLaa=hex(bb cc)**
1277
1278
1279 )))
1280
1281 (((
1282 **Example:**
1283 )))
1284
1285 (((
1286 **AT+CMDDL1=1000** to send the open time to 1000ms
1287 )))
1288
1289 (((
1290
1291 )))
1292
1293 * (((
1294 (% style="color:#037691" %)**Downlink Payload:**
1295 )))
1296
1297 (((
1298 0x AA aa bb cc
1299 )))
1300
1301 (((
1302 Same as: AT+CMDDLaa=hex(bb cc)
1303 )))
1304
1305 (((
1306 **Example:**
1307 )))
1308
1309 (((
1310 **0xAA 01 03 E8**  ~-~-> Same as **AT+CMDDL1=1000 ms**
1311 )))
1312
1313
1314
1315
1316 ==== (% style="color:blue" %)**Uplink payload mode**(%%) ====
1317
1318 (((
1319 Define to use one uplink or multiple uplinks for the sampling.
1320 )))
1321
1322 (((
1323 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1324 )))
1325
1326 * (((
1327 (% style="color:#037691" %)**AT Command:**
1328
1329 **AT+DATAUP=0**
1330
1331 **AT+DATAUP=1**
1332 )))
1333
1334 (((
1335
1336 )))
1337
1338 * (((
1339 (% style="color:#037691" %)**Downlink Payload:**
1340 )))
1341
1342 (((
1343 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
1344 )))
1345
1346 (((
1347 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
1348 )))
1349
1350
1351
1352
1353 ==== (% style="color:blue" %)**Manually trigger an Uplink**(%%) ====
1354
1355 Ask device to send an uplink immediately.
1356
1357 * (% style="color:#037691" %)**Downlink Payload:**
1358
1359 **0x08 FF**, RS485-BL will immediately send an uplink.
1360
1361
1362
1363
1364 ==== (% style="color:blue" %)**Clear RS485 Command**(%%) ====
1365
1366 (((
1367 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1368 )))
1369
1370 (((
1371
1372 )))
1373
1374 * (((
1375 (% style="color:#037691" %)**AT Command:**
1376 )))
1377
1378 (((
1379 (% style="color:#037691" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1380 )))
1381
1382 (((
1383 Example screen shot after clear all RS485 commands. 
1384 )))
1385
1386 (((
1387
1388 )))
1389
1390 (((
1391 The uplink screen shot is:
1392 )))
1393
1394 (((
1395 [[image:1654134704555-320.png]]
1396 )))
1397
1398 (((
1399
1400 )))
1401
1402 * (((
1403 (% style="color:#037691" %)**Downlink Payload:**
1404 )))
1405
1406 (((
1407 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1408 )))
1409
1410
1411
1412
1413 ==== (% style="color:blue" %)**Set Serial Communication Parameters**(%%) ====
1414
1415 (((
1416 Set the Rs485 serial communication parameters:
1417 )))
1418
1419 * (((
1420 (% style="color:#037691" %)**AT Command:**
1421 )))
1422
1423 (((
1424
1425
1426 * Set Baud Rate:
1427 )))
1428
1429 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1430
1431
1432 * Set UART Parity
1433
1434 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1435
1436
1437 * Set STOPBIT
1438
1439 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1440
1441
1442 * (((
1443 (% style="color:#037691" %)**Downlink Payload:**
1444 )))
1445
1446 (((
1447 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1448 )))
1449
1450 (((
1451
1452
1453 **Example:**
1454 )))
1455
1456 * (((
1457 A7 01 00 60   same as AT+BAUDR=9600
1458 )))
1459 * (((
1460 A7 01 04 80  same as AT+BAUDR=115200
1461 )))
1462
1463 (((
1464 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1465 )))
1466
1467 (((
1468 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1469 )))
1470
1471
1472
1473
1474 ==== (% style="color:blue" %)**Control output power duration**(%%) ====
1475
1476 (((
1477 User can set the output power duration before each sampling.
1478 )))
1479
1480 * (((
1481 (% style="color:#037691" %)**AT Command:**
1482 )))
1483
1484 (((
1485 **Example:**
1486 )))
1487
1488 (((
1489 **AT+3V3T=1000**  ~/~/ 3V3 output power will open 1s before each sampling.
1490 )))
1491
1492 (((
1493 **AT+5VT=1000**  ~/~/ +5V output power will open 1s before each sampling.
1494 )))
1495
1496 (((
1497
1498 )))
1499
1500 * (((
1501 (% style="color:#037691" %)**LoRaWAN Downlink Command:**
1502 )))
1503
1504 (((
1505 **07 01 aa bb**  Same as AT+5VT=(aa bb)
1506 )))
1507
1508 (((
1509 **07 02 aa bb**  Same as AT+3V3T=(aa bb)
1510 )))
1511
1512
1513
1514 == 3.6 Buttons ==
1515
1516 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:233px" %)
1517 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1518 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1519
1520
1521
1522
1523 == 3.7 +3V3 Output ==
1524
1525 (((
1526 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1527 )))
1528
1529 (((
1530 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1531 )))
1532
1533 (((
1534 The +3V3 output time can be controlled by AT Command.
1535 )))
1536
1537 (((
1538
1539 )))
1540
1541 (((
1542 (% style="color:#037691" %)**AT+3V3T=1000**
1543 )))
1544
1545 (((
1546
1547 )))
1548
1549 (((
1550 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1551 )))
1552
1553 (((
1554 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1555 )))
1556
1557
1558 == 3.8 +5V Output ==
1559
1560 (((
1561 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1562 )))
1563
1564 (((
1565 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1566 )))
1567
1568 (((
1569 The 5V output time can be controlled by AT Command.
1570 )))
1571
1572 (((
1573
1574 )))
1575
1576 (((
1577 (% style="color:#037691" %)**AT+5VT=1000**
1578 )))
1579
1580 (((
1581
1582 )))
1583
1584 (((
1585 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1586 )))
1587
1588 (((
1589 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1590 )))
1591
1592
1593
1594 == 3.9 LEDs ==
1595
1596 (% border="1" style="background-color:#ffffcc; color:green; width:332px" %)
1597 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1598 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1599
1600
1601
1602
1603 == 3.10 Switch Jumper ==
1604
1605 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:463px" %)
1606 |=(% style="width: 123px;" %)**Switch Jumper**|=(% style="width: 336px;" %)**Feature**
1607 |(% style="width:123px" %)**SW1**|(% style="width:336px" %)ISP position: Upgrade firmware via UART
1608 Flash position: Configure device, check running status.
1609 |(% style="width:123px" %)**SW2**|(% style="width:336px" %)5V position: set to compatible with 5v I/O.
1610 3.3v position: set to compatible with 3.3v I/O.,
1611
1612 (((
1613 **+3.3V**: is always ON
1614 )))
1615
1616 (((
1617 **+5V**: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1618 )))
1619
1620
1621 = 4. Case Study =
1622
1623 User can check this URL for some case studies:  [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1624
1625
1626 = 5. Use AT Command =
1627
1628 == 5.1 Access AT Command ==
1629
1630 (((
1631 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1632 )))
1633
1634 [[image:1654135840598-282.png]]
1635
1636
1637 (((
1638 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1639 )))
1640
1641 [[image:1654136105500-922.png]]
1642
1643
1644 (((
1645 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1646 )))
1647
1648
1649 == 5.2 Common AT Command Sequence ==
1650
1651
1652 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1653
1654 If device has not joined network yet:
1655
1656 * (% style="color:#037691" %)**AT+FDR**
1657 * (% style="color:#037691" %)**AT+NJM=0**
1658 * (% style="color:#037691" %)**ATZ**
1659
1660 (((
1661
1662
1663 If device already joined network:
1664
1665 * (% style="color:#037691" %)**AT+NJM=0**
1666 * (% style="color:#037691" %)**ATZ**
1667 )))
1668
1669
1670
1671 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1672
1673
1674 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1675
1676 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%) Set to ABP mode
1677
1678 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) Set the Adaptive Data Rate Off
1679
1680 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%) Set Data Rate
1681
1682 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1683
1684 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%)  Set transmit frequency to 868.4Mhz
1685
1686 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1687
1688 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1689
1690 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1691
1692 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1693
1694
1695 (% style="color:red" %)**Note:**
1696
1697 (((
1698 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1699 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1700 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1701 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1702 )))
1703
1704 [[image:1654136435598-589.png]]
1705
1706
1707
1708 = 6. FAQ =
1709
1710 == 6.1 How to upgrade the image? ==
1711
1712 (((
1713 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1714 )))
1715
1716 * (((
1717 Support new features
1718 )))
1719 * (((
1720 For bug fix
1721 )))
1722 * (((
1723 Change LoRaWAN bands.
1724 )))
1725
1726 (((
1727 Below shows the hardware connection for how to upload an image to RS485-BL:
1728 )))
1729
1730 [[image:1654136646995-976.png]]
1731
1732 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1733
1734 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1735
1736 (% style="color:blue" %)**Step3**(%%)**: **Open flashloader; choose the correct COM port to update.
1737
1738 [[image:image-20220602102605-1.png]]
1739
1740
1741 [[image:image-20220602102637-2.png]]
1742
1743
1744 [[image:image-20220602102715-3.png]]
1745
1746
1747
1748 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1749
1750 (((
1751 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1752 )))
1753
1754
1755 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1756
1757 (((
1758 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1759 )))
1760
1761
1762 = 7. Trouble Shooting =
1763
1764
1765 == 7.1 Downlink doesn't work, how to solve it? ==
1766
1767 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1768
1769
1770 == 7.2 Why I can't join TTN V3 in US915 /AU915 bands? ==
1771
1772 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1773
1774
1775 = 8. Order Info =
1776
1777 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
1778
1779 (% style="color:blue" %)**XXX:**
1780
1781 * (% style="color:red" %)**EU433**(%%):  frequency bands EU433
1782 * (% style="color:red" %)**EU868**(%%):  frequency bands EU868
1783 * (% style="color:red" %)**KR920**(%%):  frequency bands KR920
1784 * (% style="color:red" %)**CN470**(%%):  frequency bands CN470
1785 * (% style="color:red" %)**AS923**(%%):  frequency bands AS923
1786 * (% style="color:red" %)**AU915**(%%):  frequency bands AU915
1787 * (% style="color:red" %)**US915**(%%):  frequency bands US915
1788 * (% style="color:red" %)**IN865**(%%):  frequency bands IN865
1789 * (% style="color:red" %)**RU864**(%%):  frequency bands RU864
1790 * (% style="color:red" %)**KZ865**(%%):  frequency bands KZ865
1791
1792
1793
1794 = 9. Packing Info =
1795
1796 (((
1797 **Package Includes**:
1798 )))
1799
1800 * (((
1801 RS485-BL x 1
1802 )))
1803 * (((
1804 Stick Antenna for LoRa RF part x 1
1805 )))
1806 * (((
1807 Program cable x 1
1808 )))
1809
1810 (((
1811 **Dimension and weight**:
1812 )))
1813
1814 * (((
1815 Device Size: 13.5 x 7 x 3 cm
1816 )))
1817 * (((
1818 Device Weight: 105g
1819 )))
1820 * (((
1821 Package Size / pcs : 14.5 x 8 x 5 cm
1822 )))
1823 * (((
1824 Weight / pcs : 170g
1825
1826
1827
1828 )))
1829
1830 = 10. Support =
1831
1832 * (((
1833 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1834 )))
1835 * (((
1836 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1837 )))
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0