Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="404" width="404"]]
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 **Table of Contents:**
18
19 {{toc/}}
20
21
22
23
24
25 = 1.Introduction =
26
27 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
28
29 (((
30
31 )))
32
33 (((
34 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
35 )))
36
37 (((
38 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
39 )))
40
41 (((
42 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
43 )))
44
45 (((
46 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
47 )))
48
49 (((
50 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
51 )))
52
53 (((
54 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
55 )))
56
57 (((
58 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
59 )))
60
61 [[image:1652953304999-717.png||height="424" width="733"]]
62
63
64
65 == 1.2 Specifications ==
66
67
68 **Hardware System:**
69
70 * STM32L072CZT6 MCU
71 * SX1276/78 Wireless Chip 
72 * Power Consumption (exclude RS485 device):
73 ** Idle: 6uA@3.3v
74 ** 20dB Transmit: 130mA@3.3v
75
76 **Interface for Model:**
77
78 * 1 x RS485 Interface
79 * 1 x TTL Serial , 3.3v or 5v.
80 * 1 x I2C Interface, 3.3v or 5v.
81 * 1 x one wire interface
82 * 1 x Interrupt Interface
83 * 1 x Controllable 5V output, max
84
85 **LoRa Spec:**
86
87 * Frequency Range:
88 ** Band 1 (HF): 862 ~~ 1020 Mhz
89 ** Band 2 (LF): 410 ~~ 528 Mhz
90 * 168 dB maximum link budget.
91 * +20 dBm - 100 mW constant RF output vs.
92 * Programmable bit rate up to 300 kbps.
93 * High sensitivity: down to -148 dBm.
94 * Bullet-proof front end: IIP3 = -12.5 dBm.
95 * Excellent blocking immunity.
96 * Fully integrated synthesizer with a resolution of 61 Hz.
97 * LoRa modulation.
98 * Built-in bit synchronizer for clock recovery.
99 * Preamble detection.
100 * 127 dB Dynamic Range RSSI.
101 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
102
103 == 1.3 Features ==
104
105 * LoRaWAN Class A & Class C protocol (default Class A)
106 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
107 * AT Commands to change parameters
108 * Remote configure parameters via LoRaWAN Downlink
109 * Firmware upgradable via program port
110 * Support multiply RS485 devices by flexible rules
111 * Support Modbus protocol
112 * Support Interrupt uplink
113
114 == 1.4 Applications ==
115
116 * Smart Buildings & Home Automation
117 * Logistics and Supply Chain Management
118 * Smart Metering
119 * Smart Agriculture
120 * Smart Cities
121 * Smart Factory
122
123 == 1.5 Firmware Change log ==
124
125 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
126
127
128 == 1.6 Hardware Change log ==
129
130 (((
131
132
133 (((
134 v1.4
135 )))
136 )))
137
138 (((
139 (((
140 ~1. Change Power IC to TPS22916
141 )))
142 )))
143
144 (((
145
146 )))
147
148 (((
149 (((
150 v1.3
151 )))
152 )))
153
154 (((
155 (((
156 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
157 )))
158 )))
159
160 (((
161
162 )))
163
164 (((
165 (((
166 v1.2
167 )))
168 )))
169
170 (((
171 (((
172 Release version ​​​​​
173 )))
174
175
176 )))
177
178
179 = 2. Pin mapping and Power ON Device =
180
181 (((
182 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
183 )))
184
185 [[image:1652953055962-143.png||height="387" width="728"]]
186
187
188 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
189
190
191 = 3. Operation Mode =
192
193 == 3.1 How it works? ==
194
195 (((
196 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
197
198
199 )))
200
201 == 3.2 Example to join LoRaWAN network ==
202
203 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
204
205 [[image:1652953414711-647.png||height="337" width="723"]]
206
207
208 (((
209 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
210 )))
211
212 (((
213 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
214 )))
215
216 (((
217 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from RS485-BL.
218 )))
219
220 (((
221 Each RS485-BL is shipped with a sticker with unique device EUI:
222 )))
223
224 [[image:1652953462722-299.png]]
225
226
227 (((
228 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
229 )))
230
231 (((
232 **Add APP EUI in the application.**
233 )))
234
235
236 [[image:image-20220519174512-1.png]]
237
238 [[image:image-20220519174512-2.png||height="328" width="731"]]
239
240 [[image:image-20220519174512-3.png||height="556" width="724"]]
241
242 [[image:image-20220519174512-4.png]]
243
244
245 You can also choose to create the device manually.
246
247 [[image:1652953542269-423.png||height="710" width="723"]]
248
249
250 Add APP KEY and DEV EUI
251
252 [[image:1652953553383-907.png||height="514" width="724"]]
253
254
255
256 (((
257 (% style="color:blue" %)**Step 2**(%%): Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
258 )))
259
260 [[image:1652953568895-172.png||height="232" width="724"]]
261
262
263 == 3.3 Configure Commands to read data ==
264
265 (((
266 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
267
268
269 )))
270
271 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
272
273 (((
274 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
275 )))
276
277 (((
278 **~1. RS485-MODBUS mode:**
279 )))
280
281 (((
282 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
283 )))
284
285 (((
286 **2. TTL mode:**
287 )))
288
289 (((
290 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
291 )))
292
293 (((
294 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
295 )))
296
297 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
298 |=(% style="width: 80px;" %)(((
299 (((
300 **AT Commands**
301 )))
302 )))|=(% style="width: 210px;" %)(((
303 (((
304 **Description**
305 )))
306 )))|=(% style="width: 210px;" %)(((
307 (((
308 **Example**
309 )))
310 )))
311 |(% style="width:80px" %)(((
312 (((
313 AT+BAUDR
314 )))
315 )))|(% style="width:210px" %)(((
316 (((
317 Set the baud rate (for RS485 connection). Default Value is: 9600.
318 )))
319 )))|(% style="width:210px" %)(((
320 (((
321 (((
322 AT+BAUDR=9600
323 )))
324 )))
325
326 (((
327 (((
328 Options: (1200,2400,4800,14400,19200,115200)
329 )))
330 )))
331 )))
332 |(% style="width:80px" %)(((
333 (((
334 AT+PARITY
335 )))
336 )))|(% style="width:210px" %)(((
337 (((
338 (((
339 Set UART parity (for RS485 connection)
340 )))
341 )))
342
343 (((
344 (((
345 Default Value is: no parity.
346 )))
347 )))
348 )))|(% style="width:210px" %)(((
349 (((
350 (((
351 AT+PARITY=0
352 )))
353 )))
354
355 (((
356 (((
357 Option: 0: no parity, 1: odd parity, 2: even parity
358 )))
359 )))
360 )))
361 |(% style="width:80px" %)(((
362 (((
363 AT+STOPBIT
364 )))
365 )))|(% style="width:210px" %)(((
366 (((
367 (((
368 Set serial stopbit (for RS485 connection)
369 )))
370 )))
371
372 (((
373 (((
374 Default Value is: 1bit.
375 )))
376 )))
377 )))|(% style="width:210px" %)(((
378 (((
379 (((
380 AT+STOPBIT=0 for 1bit
381 )))
382 )))
383
384 (((
385 (((
386 AT+STOPBIT=1 for 1.5 bit
387 )))
388 )))
389
390 (((
391 (((
392 AT+STOPBIT=2 for 2 bits
393 )))
394 )))
395 )))
396
397 === 3.3.2 Configure sensors ===
398
399 (((
400 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
401 )))
402
403 (((
404 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
405 )))
406
407 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
408 |=(% style="width: 80px;" %)**AT Commands**|=(% style="width: 210px;" %)**Description**|=(% style="width: 210px;" %)**Example**
409 |AT+CFGDEV|(% style="width:80px" %)(((
410 (((
411 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
412 )))
413
414 (((
415 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
416 )))
417
418 (((
419 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
420 )))
421 )))|(% style="width:210px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
422
423 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
424
425
426
427 === 3.3.3 Configure read commands for each sampling ===
428
429 (((
430 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
431 )))
432
433 (((
434 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
435 )))
436
437 (((
438 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
439 )))
440
441 (((
442 This section describes how to achieve above goals.
443 )))
444
445 (((
446 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
447
448
449 )))
450
451 (((
452 (% style="color:blue" %)**Command from RS485-BL to Sensor:**
453 )))
454
455 (((
456 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
457
458
459 )))
460
461 (((
462 (% style="color:blue" %)**Handle return from sensors to RS485-BL**:
463 )))
464
465 (((
466 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
467 )))
468
469 * (((
470 (% style="color:blue" %)**AT+DATACUT**
471 )))
472
473 (((
474 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
475
476
477 )))
478
479 * (((
480 (% style="color:blue" %)**AT+SEARCH**
481 )))
482
483 (((
484 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
485 )))
486
487 (((
488
489
490 (% style="color:blue" %)**Define wait timeout:**
491 )))
492
493 (((
494 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
495 )))
496
497 (((
498 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
499 )))
500
501 (((
502
503
504 **Examples:**
505 )))
506
507 (((
508 Below are examples for the how above AT Commands works.
509 )))
510
511 (((
512 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
513 )))
514
515 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
516 |(% style="width:498px" %)(((
517 (((
518 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
519 )))
520
521 (((
522 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
523 )))
524
525 (((
526 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
527 )))
528 )))
529
530 (((
531 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
532 )))
533
534 (((
535 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
536 )))
537
538 (((
539
540 )))
541
542 (((
543 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
544 )))
545
546 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
547 |(% style="width:577px" %)(((
548 (((
549 **AT+SEARCHx=aa,xx xx xx xx xx**
550 )))
551
552 * (((
553 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
554 )))
555 * (((
556 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
557 )))
558 )))
559
560 (((
561
562
563 **Examples:**
564 )))
565
566 (((
567 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
568 )))
569
570 (((
571 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
572 )))
573
574 (((
575 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
576 )))
577
578 (((
579 [[image:1653271044481-711.png]]
580
581
582 )))
583
584 (((
585 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
586 )))
587
588 (((
589 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
590 )))
591
592 (((
593 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
594 )))
595
596 (((
597 [[image:1653271276735-972.png]]
598 )))
599
600 (((
601 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
602 )))
603
604 (% style="background-color:#4f81bd; color:white; width:510px" %)
605 |(% style="width:726px" %)(((
606 (((
607 **AT+DATACUTx=a,b,c**
608 )))
609
610 * (((
611 **a: length for the return of AT+COMMAND**
612 )))
613 * (((
614 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
615 )))
616 * (((
617 **c: define the position for valid value.  **
618 )))
619 )))
620
621 (((
622
623
624 **Examples:**
625 )))
626
627 * (((
628 (% style="color:blue" %)**Grab bytes:**
629 )))
630
631 (((
632 [[image:1653271581490-837.png||height="313" width="722"]]
633 )))
634
635 (((
636
637 )))
638
639 * (((
640 (% style="color:blue" %)**Grab a section.**
641 )))
642
643 (((
644 [[image:1653271648378-342.png||height="326" width="720"]]
645 )))
646
647 (((
648
649 )))
650
651 * (((
652 (% style="color:blue" %)**Grab different sections.**
653 )))
654
655 (((
656 [[image:1653271657255-576.png||height="305" width="730"]]
657
658
659 )))
660
661 (((
662 (((
663 (% style="color:red" %)**Note:**
664 )))
665 )))
666
667 (((
668 (((
669 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
670 )))
671 )))
672
673 (((
674 (((
675 **Example:**
676 )))
677 )))
678
679 (((
680 (((
681 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
682 )))
683 )))
684
685 (((
686 (((
687 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
688 )))
689 )))
690
691 (((
692 (((
693 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
694 )))
695 )))
696
697 (((
698 (((
699 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
700 )))
701 )))
702
703 (((
704 (((
705 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
706 )))
707 )))
708
709 (((
710 (((
711 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
712 )))
713 )))
714
715 (((
716 [[image:1653271763403-806.png]]
717 )))
718
719
720 === 3.3.4 Compose the uplink payload ===
721
722 (((
723 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
724
725
726 )))
727
728 (((
729 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
730
731
732 )))
733
734 (((
735 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
736 )))
737
738 (((
739 Final Payload is
740 )))
741
742 (((
743 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
744 )))
745
746 (((
747 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
748 )))
749
750 [[image:1653272787040-634.png||height="515" width="719"]]
751
752
753
754 (((
755 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
756
757
758 )))
759
760 (((
761 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
762 )))
763
764 (((
765 Final Payload is
766 )))
767
768 (((
769 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
770 )))
771
772 1. (((
773 Battery Info (2 bytes): Battery voltage
774 )))
775 1. (((
776 PAYVER (1 byte): Defined by AT+PAYVER
777 )))
778 1. (((
779 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
780 )))
781 1. (((
782 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
783 )))
784 1. (((
785 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
786
787
788 )))
789
790 [[image:1653272817147-600.png||height="437" width="717"]]
791
792 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
793
794
795 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
796
797 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
798
799 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
800
801
802 Below are the uplink payloads:
803
804 [[image:1653272901032-107.png]]
805
806
807 (% style="color:red" %)Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
808
809 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
810
811 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
812
813 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
814
815 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
816
817
818
819 === 3.3.5 Uplink on demand ===
820
821 (((
822 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
823 )))
824
825 (((
826 Downlink control command:
827 )))
828
829 (((
830 **0x08 command**: Poll an uplink with current command set in RS485-BL.
831 )))
832
833 (((
834 **0xA8 command**: Send a command to RS485-BL and uplink the output from sensors.
835
836
837 )))
838
839 === 3.3.6 Uplink on Interrupt ===
840
841 Put the interrupt sensor between 3.3v_out and GPIO ext.
842
843 [[image:1653273818896-432.png]]
844
845
846 (((
847 AT+INTMOD=0  Disable Interrupt
848 )))
849
850 (((
851 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
852 )))
853
854 (((
855 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
856 )))
857
858 (((
859 AT+INTMOD=3  Interrupt trigger by rising edge.
860
861
862 )))
863
864 == 3.4 Uplink Payload ==
865
866 [[image:image-20220606105412-1.png]]
867
868 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
869
870 (((
871 {{{function Decoder(bytes, port) {}}}
872 )))
873
874 (((
875 {{{//Payload Formats of RS485-BL Deceive}}}
876 )))
877
878 (((
879 {{{return {}}}
880 )))
881
882 (((
883 {{{ //Battery,units:V}}}
884 )))
885
886 (((
887 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
888 )))
889
890 (((
891 {{{ //GPIO_EXTI }}}
892 )))
893
894 (((
895 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
896 )))
897
898 (((
899 {{{ //payload of version}}}
900 )))
901
902 (((
903 {{{ Pay_ver:bytes[2],}}}
904 )))
905
906 (((
907 {{{ }; }}}
908 )))
909
910 (((
911 **}**
912
913
914 )))
915
916 (((
917 TTN V3 uplink screen shot.
918 )))
919
920 [[image:1653274001211-372.png||height="192" width="732"]]
921
922
923 == 3.5 Configure RS485-BL via AT or Downlink ==
924
925 (((
926 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
927 )))
928
929 (((
930 There are two kinds of Commands:
931 )))
932
933 * (((
934 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
935 )))
936
937 * (((
938 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
939
940
941
942
943 )))
944
945 === 3.5.1 Common Commands: ===
946
947 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
948
949
950 === 3.5.2 Sensor related commands: ===
951
952
953
954 ==== (% style="color:blue" %)**Choose Device Type (RS485 or TTL)**(%%) ====
955
956 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
957
958 * (% style="color:#037691" %)**AT Command**
959
960 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
961
962 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
963
964
965 * (% style="color:#037691" %)**Downlink Payload**
966
967 **0A aa**  ~-~->  same as AT+MOD=aa
968
969
970
971
972 ==== (% style="color:blue" %)**RS485 Debug Command (AT+CFGDEV)**(%%) ====
973
974 (((
975 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
976 )))
977
978 * (((
979 (% style="color:#037691" %)**AT Command**
980
981 (((
982 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**  m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
983 )))
984 )))
985
986 (((
987
988 )))
989
990 * (((
991 (% style="color:#037691" %)**Downlink Payload**
992 )))
993
994 (((
995 Format: A8 MM NN XX XX XX XX YY
996 )))
997
998 (((
999 Where:
1000 )))
1001
1002 * (((
1003 MM: 1: add CRC-16/MODBUS ; 0: no CRC
1004 )))
1005 * (((
1006 NN: The length of RS485 command
1007 )))
1008 * (((
1009 XX XX XX XX: RS485 command total NN bytes
1010 )))
1011 * (((
1012 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
1013 )))
1014
1015 (((
1016 **Example 1:**
1017 )))
1018
1019 (((
1020 To connect a Modbus Alarm with below commands.
1021 )))
1022
1023 * (((
1024 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
1025 )))
1026
1027 * (((
1028 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1029 )))
1030
1031 (((
1032 So if user want to use downlink command to control to RS485 Alarm, he can use:
1033 )))
1034
1035 (((
1036 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1037 )))
1038
1039 (((
1040 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1041 )))
1042
1043 (((
1044 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
1045 )))
1046
1047 (((
1048
1049 )))
1050
1051 (((
1052 **Example 2:**
1053 )))
1054
1055 (((
1056 Check TTL Sensor return:
1057 )))
1058
1059 (((
1060 [[image:1654132684752-193.png]]
1061 )))
1062
1063
1064
1065
1066 ==== (% style="color:blue" %)**Set Payload version**(%%) ====
1067
1068 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1069
1070 * (% style="color:#037691" %)**AT Command:**
1071
1072 **AT+PAYVER:   **Set PAYVER field = 1
1073
1074
1075 * (% style="color:#037691" %)**Downlink Payload:**
1076
1077 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
1078
1079 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
1080
1081
1082
1083
1084 ==== (% style="color:blue" %)**Set RS485 Sampling Commands**(%%) ====
1085
1086 (((
1087 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1088 )))
1089
1090 (((
1091 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1092 )))
1093
1094 (((
1095
1096 )))
1097
1098 * (((
1099 (% style="color:#037691" %)**AT Command:**
1100 )))
1101
1102 **AT+COMMANDx:  Configure RS485 read command to sensor.**
1103
1104 **AT+DATACUTx:  Configure how to handle return from RS485 devices.**
1105
1106 **AT+SEARCHx:  Configure search command**
1107
1108
1109 * (((
1110 (% style="color:#037691" %)**Downlink Payload:**
1111 )))
1112
1113 (((
1114 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1115 )))
1116
1117 (((
1118 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
1119 )))
1120
1121 (((
1122 Format: AF MM NN LL XX XX XX XX YY
1123 )))
1124
1125 (((
1126 Where:
1127 )))
1128
1129 * (((
1130 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1131 )))
1132 * (((
1133 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1134 )))
1135 * (((
1136 LL:  The length of AT+COMMAND or AT+DATACUT command
1137 )))
1138 * (((
1139 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1140 )))
1141 * (((
1142 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1143 )))
1144
1145 (((
1146 **Example:**
1147 )))
1148
1149 (((
1150 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1151 )))
1152
1153 (((
1154 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1155 )))
1156
1157 (((
1158 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1159 )))
1160
1161 (((
1162
1163 )))
1164
1165 (((
1166 **0xAB** downlink command can be used for set AT+SEARCHx
1167 )))
1168
1169 (((
1170 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1171 )))
1172
1173 * (((
1174 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1175 )))
1176 * (((
1177 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1178 )))
1179
1180 (((
1181 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1182 )))
1183
1184
1185
1186
1187 ==== (% style="color:blue" %)**Fast command to handle MODBUS device**(%%) ====
1188
1189 (((
1190 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1191 )))
1192
1193 (((
1194 This command is valid since v1.3 firmware version
1195 )))
1196
1197 (((
1198
1199 )))
1200
1201 (((
1202 (% style="color:#037691" %)**AT+MBFUN has only two value:**
1203 )))
1204
1205 * (((
1206 **AT+MBFUN=1**: Enable Modbus reading. And get response base on the MODBUS return
1207 )))
1208
1209 (((
1210 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1211 )))
1212
1213 * (((
1214 **AT+MBFUN=0**: Disable Modbus fast reading.
1215 )))
1216
1217 (((
1218
1219
1220 **Example:**
1221 )))
1222
1223 * (((
1224 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1225 )))
1226 * (((
1227 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1228 )))
1229 * (((
1230 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1231 )))
1232
1233 [[image:1654133913295-597.png]]
1234
1235
1236 [[image:1654133954153-643.png]]
1237
1238
1239 * (((
1240 (% style="color:#037691" %)**Downlink Commands:**
1241 )))
1242
1243 (((
1244 **A9 aa** ~-~-> Same as AT+MBFUN=aa
1245 )))
1246
1247
1248
1249
1250 ==== (% style="color:blue" %)**RS485 command timeout**(%%) ====
1251
1252 (((
1253 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1254 )))
1255
1256 (((
1257 Default value: 0, range:  0 ~~ 5 seconds
1258 )))
1259
1260 (((
1261
1262 )))
1263
1264 * (((
1265 (% style="color:#037691" %)**AT Command:**
1266
1267 **AT+CMDDLaa=hex(bb cc)**
1268
1269
1270 )))
1271
1272 (((
1273 **Example:**
1274 )))
1275
1276 (((
1277 **AT+CMDDL1=1000** to send the open time to 1000ms
1278 )))
1279
1280 (((
1281
1282 )))
1283
1284 * (((
1285 (% style="color:#037691" %)**Downlink Payload:**
1286 )))
1287
1288 (((
1289 0x AA aa bb cc
1290 )))
1291
1292 (((
1293 Same as: AT+CMDDLaa=hex(bb cc)
1294 )))
1295
1296 (((
1297 **Example:**
1298 )))
1299
1300 (((
1301 **0xAA 01 03 E8**  ~-~-> Same as **AT+CMDDL1=1000 ms**
1302 )))
1303
1304
1305
1306
1307 ==== (% style="color:blue" %)**Uplink payload mode**(%%) ====
1308
1309 (((
1310 Define to use one uplink or multiple uplinks for the sampling.
1311 )))
1312
1313 (((
1314 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1315 )))
1316
1317 * (((
1318 (% style="color:#037691" %)**AT Command:**
1319
1320 **AT+DATAUP=0**
1321
1322 **AT+DATAUP=1**
1323 )))
1324
1325 (((
1326
1327 )))
1328
1329 * (((
1330 (% style="color:#037691" %)**Downlink Payload:**
1331 )))
1332
1333 (((
1334 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
1335 )))
1336
1337 (((
1338 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
1339 )))
1340
1341
1342
1343
1344 ==== (% style="color:blue" %)**Manually trigger an Uplink**(%%) ====
1345
1346 Ask device to send an uplink immediately.
1347
1348 * (% style="color:#037691" %)**Downlink Payload:**
1349
1350 **0x08 FF**, RS485-BL will immediately send an uplink.
1351
1352
1353
1354
1355 ==== (% style="color:blue" %)**Clear RS485 Command**(%%) ====
1356
1357 (((
1358 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1359 )))
1360
1361 (((
1362
1363 )))
1364
1365 * (((
1366 (% style="color:#037691" %)**AT Command:**
1367 )))
1368
1369 (((
1370 (% style="color:#037691" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1371 )))
1372
1373 (((
1374 Example screen shot after clear all RS485 commands. 
1375 )))
1376
1377 (((
1378
1379 )))
1380
1381 (((
1382 The uplink screen shot is:
1383 )))
1384
1385 (((
1386 [[image:1654134704555-320.png]]
1387 )))
1388
1389 (((
1390
1391 )))
1392
1393 * (((
1394 (% style="color:#037691" %)**Downlink Payload:**
1395 )))
1396
1397 (((
1398 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1399 )))
1400
1401
1402
1403
1404 ==== (% style="color:blue" %)**Set Serial Communication Parameters**(%%) ====
1405
1406 (((
1407 Set the Rs485 serial communication parameters:
1408 )))
1409
1410 * (((
1411 (% style="color:#037691" %)**AT Command:**
1412 )))
1413
1414 (((
1415
1416
1417 * Set Baud Rate:
1418 )))
1419
1420 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1421
1422
1423 * Set UART Parity
1424
1425 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1426
1427
1428 * Set STOPBIT
1429
1430 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1431
1432
1433 * (((
1434 (% style="color:#037691" %)**Downlink Payload:**
1435 )))
1436
1437 (((
1438 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1439 )))
1440
1441 (((
1442
1443
1444 **Example:**
1445 )))
1446
1447 * (((
1448 A7 01 00 60   same as AT+BAUDR=9600
1449 )))
1450 * (((
1451 A7 01 04 80  same as AT+BAUDR=115200
1452 )))
1453
1454 (((
1455 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1456 )))
1457
1458 (((
1459 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1460 )))
1461
1462
1463
1464
1465 ==== (% style="color:blue" %)**Control output power duration**(%%) ====
1466
1467 (((
1468 User can set the output power duration before each sampling.
1469 )))
1470
1471 * (((
1472 (% style="color:#037691" %)**AT Command:**
1473 )))
1474
1475 (((
1476 **Example:**
1477 )))
1478
1479 (((
1480 **AT+3V3T=1000**  ~/~/ 3V3 output power will open 1s before each sampling.
1481 )))
1482
1483 (((
1484 **AT+5VT=1000**  ~/~/ +5V output power will open 1s before each sampling.
1485 )))
1486
1487 (((
1488
1489 )))
1490
1491 * (((
1492 (% style="color:#037691" %)**LoRaWAN Downlink Command:**
1493 )))
1494
1495 (((
1496 **07 01 aa bb**  Same as AT+5VT=(aa bb)
1497 )))
1498
1499 (((
1500 **07 02 aa bb**  Same as AT+3V3T=(aa bb)
1501 )))
1502
1503
1504
1505 == 3.6 Buttons ==
1506
1507 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:233px" %)
1508 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1509 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1510
1511 == 3.7 +3V3 Output ==
1512
1513 (((
1514 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1515 )))
1516
1517 (((
1518 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1519 )))
1520
1521 (((
1522 The +3V3 output time can be controlled by AT Command.
1523 )))
1524
1525 (((
1526
1527 )))
1528
1529 (((
1530 (% style="color:#037691" %)**AT+3V3T=1000**
1531 )))
1532
1533 (((
1534
1535 )))
1536
1537 (((
1538 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1539 )))
1540
1541 (((
1542 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1543 )))
1544
1545
1546 == 3.8 +5V Output ==
1547
1548 (((
1549 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1550 )))
1551
1552 (((
1553 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1554 )))
1555
1556 (((
1557 The 5V output time can be controlled by AT Command.
1558 )))
1559
1560 (((
1561
1562 )))
1563
1564 (((
1565 (% style="color:#037691" %)**AT+5VT=1000**
1566 )))
1567
1568 (((
1569
1570 )))
1571
1572 (((
1573 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1574 )))
1575
1576 (((
1577 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1578 )))
1579
1580
1581
1582 == 3.9 LEDs ==
1583
1584 (% border="1" style="background-color:#ffffcc; color:green; width:332px" %)
1585 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1586 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1587
1588 == 3.10 Switch Jumper ==
1589
1590 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:463px" %)
1591 |=(% style="width: 123px;" %)**Switch Jumper**|=(% style="width: 336px;" %)**Feature**
1592 |(% style="width:123px" %)**SW1**|(% style="width:336px" %)ISP position: Upgrade firmware via UART
1593 Flash position: Configure device, check running status.
1594 |(% style="width:123px" %)**SW2**|(% style="width:336px" %)5V position: set to compatible with 5v I/O.
1595 3.3v position: set to compatible with 3.3v I/O.,
1596
1597 (((
1598 **+3.3V**: is always ON
1599 )))
1600
1601 (((
1602 **+5V**: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1603 )))
1604
1605
1606 = 4. Case Study =
1607
1608 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1609
1610
1611 = 5. Use AT Command =
1612
1613 == 5.1 Access AT Command ==
1614
1615 (((
1616 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1617 )))
1618
1619 [[image:1654135840598-282.png]]
1620
1621
1622 (((
1623 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1624 )))
1625
1626 [[image:1654136105500-922.png]]
1627
1628
1629 (((
1630 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1631 )))
1632
1633
1634 == 5.2 Common AT Command Sequence ==
1635
1636
1637 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1638
1639 If device has not joined network yet:
1640
1641 * (% style="color:#037691" %)**AT+FDR**
1642 * (% style="color:#037691" %)**AT+NJM=0**
1643 * (% style="color:#037691" %)**ATZ**
1644
1645 (((
1646
1647
1648 If device already joined network:
1649
1650 * (% style="color:#037691" %)**AT+NJM=0**
1651 * (% style="color:#037691" %)**ATZ**
1652 )))
1653
1654
1655
1656 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1657
1658
1659 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1660
1661 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%) Set to ABP mode
1662
1663 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) Set the Adaptive Data Rate Off
1664
1665 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%) Set Data Rate
1666
1667 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1668
1669 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%)  Set transmit frequency to 868.4Mhz
1670
1671 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1672
1673 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1674
1675 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1676
1677 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1678
1679
1680 (% style="color:red" %)**Note:**
1681
1682 (((
1683 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1684 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1685 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1686 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1687 )))
1688
1689 [[image:1654136435598-589.png]]
1690
1691
1692
1693 = 6. FAQ =
1694
1695 == 6.1 How to upgrade the image? ==
1696
1697 (((
1698 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1699 )))
1700
1701 * (((
1702 Support new features
1703 )))
1704 * (((
1705 For bug fix
1706 )))
1707 * (((
1708 Change LoRaWAN bands.
1709 )))
1710
1711 (((
1712 Below shows the hardware connection for how to upload an image to RS485-BL:
1713 )))
1714
1715 [[image:1654136646995-976.png]]
1716
1717 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1718
1719 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1720
1721 (% style="color:blue" %)**Step3**(%%)**: **Open flashloader; choose the correct COM port to update.
1722
1723 [[image:image-20220602102605-1.png]]
1724
1725
1726 [[image:image-20220602102637-2.png]]
1727
1728
1729 [[image:image-20220602102715-3.png]]
1730
1731
1732
1733 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1734
1735 (((
1736 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1737 )))
1738
1739
1740
1741 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1742
1743 (((
1744 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1745 )))
1746
1747
1748
1749 = 7. Trouble Shooting =
1750
1751
1752 == 7.1 Downlink doesn't work, how to solve it? ==
1753
1754 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1755
1756
1757 == 7.2 Why I can't join TTN V3 in US915 /AU915 bands? ==
1758
1759 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1760
1761
1762 = 8. Order Info =
1763
1764 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
1765
1766 (% style="color:blue" %)**XXX:**
1767
1768 * (% style="color:red" %)**EU433**(%%):  frequency bands EU433
1769 * (% style="color:red" %)**EU868**(%%):  frequency bands EU868
1770 * (% style="color:red" %)**KR920**(%%):  frequency bands KR920
1771 * (% style="color:red" %)**CN470**(%%):  frequency bands CN470
1772 * (% style="color:red" %)**AS923**(%%):  frequency bands AS923
1773 * (% style="color:red" %)**AU915**(%%):  frequency bands AU915
1774 * (% style="color:red" %)**US915**(%%):  frequency bands US915
1775 * (% style="color:red" %)**IN865**(%%):  frequency bands IN865
1776 * (% style="color:red" %)**RU864**(%%):  frequency bands RU864
1777 * (% style="color:red" %)**KZ865**(%%):  frequency bands KZ865
1778
1779
1780
1781 = 9. Packing Info =
1782
1783 (((
1784 **Package Includes**:
1785 )))
1786
1787 * (((
1788 RS485-BL x 1
1789 )))
1790 * (((
1791 Stick Antenna for LoRa RF part x 1
1792 )))
1793 * (((
1794 Program cable x 1
1795 )))
1796
1797 (((
1798 **Dimension and weight**:
1799 )))
1800
1801 * (((
1802 Device Size: 13.5 x 7 x 3 cm
1803 )))
1804 * (((
1805 Device Weight: 105g
1806 )))
1807 * (((
1808 Package Size / pcs : 14.5 x 8 x 5 cm
1809 )))
1810 * (((
1811 Weight / pcs : 170g
1812 )))
1813
1814
1815
1816 = 10. Support =
1817
1818 * (((
1819 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1820 )))
1821 * (((
1822 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1823 )))
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0