Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="404" width="404"]]
3
4
5
6
7 **Table of Contents:**
8
9 {{toc/}}
10
11
12
13
14
15 = 1.Introduction =
16
17 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
18
19 (((
20
21 )))
22
23 (((
24 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
25 )))
26
27 (((
28 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
29 )))
30
31 (((
32 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
33 )))
34
35 (((
36 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
37 )))
38
39 (((
40 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
41 )))
42
43 (((
44 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
45 )))
46
47 (((
48 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
49 )))
50
51 [[image:1652953304999-717.png||height="424" width="733"]]
52
53
54
55 == 1.2 Specifications ==
56
57
58 **Hardware System:**
59
60 * STM32L072CZT6 MCU
61 * SX1276/78 Wireless Chip 
62 * Power Consumption (exclude RS485 device):
63 ** Idle: 6uA@3.3v
64 ** 20dB Transmit: 130mA@3.3v
65
66 **Interface for Model:**
67
68 * 1 x RS485 Interface
69 * 1 x TTL Serial , 3.3v or 5v.
70 * 1 x I2C Interface, 3.3v or 5v.
71 * 1 x one wire interface
72 * 1 x Interrupt Interface
73 * 1 x Controllable 5V output, max
74
75 **LoRa Spec:**
76
77 * Frequency Range:
78 ** Band 1 (HF): 862 ~~ 1020 Mhz
79 ** Band 2 (LF): 410 ~~ 528 Mhz
80 * 168 dB maximum link budget.
81 * +20 dBm - 100 mW constant RF output vs.
82 * Programmable bit rate up to 300 kbps.
83 * High sensitivity: down to -148 dBm.
84 * Bullet-proof front end: IIP3 = -12.5 dBm.
85 * Excellent blocking immunity.
86 * Fully integrated synthesizer with a resolution of 61 Hz.
87 * LoRa modulation.
88 * Built-in bit synchronizer for clock recovery.
89 * Preamble detection.
90 * 127 dB Dynamic Range RSSI.
91 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
92
93
94
95 == 1.3 Features ==
96
97 * LoRaWAN Class A & Class C protocol (default Class A)
98 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
99 * AT Commands to change parameters
100 * Remote configure parameters via LoRaWAN Downlink
101 * Firmware upgradable via program port
102 * Support multiply RS485 devices by flexible rules
103 * Support Modbus protocol
104 * Support Interrupt uplink
105
106
107
108 == 1.4 Applications ==
109
110 * Smart Buildings & Home Automation
111 * Logistics and Supply Chain Management
112 * Smart Metering
113 * Smart Agriculture
114 * Smart Cities
115 * Smart Factory
116
117
118
119 == 1.5 Firmware Change log ==
120
121 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
122
123
124 == 1.6 Hardware Change log ==
125
126 (((
127
128
129 (((
130 v1.4
131 )))
132 )))
133
134 (((
135 (((
136 ~1. Change Power IC to TPS22916
137 )))
138 )))
139
140 (((
141
142 )))
143
144 (((
145 (((
146 v1.3
147 )))
148 )))
149
150 (((
151 (((
152 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
153 )))
154 )))
155
156 (((
157
158 )))
159
160 (((
161 (((
162 v1.2
163 )))
164 )))
165
166 (((
167 (((
168 Release version ​​​​​
169 )))
170
171
172 )))
173
174
175 = 2. Pin mapping and Power ON Device =
176
177 (((
178 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
179 )))
180
181 [[image:1652953055962-143.png||height="387" width="728"]]
182
183
184 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
185
186
187 = 3. Operation Mode =
188
189 == 3.1 How it works? ==
190
191 (((
192 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
193
194
195 )))
196
197 == 3.2 Example to join LoRaWAN network ==
198
199 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
200
201 [[image:1652953414711-647.png||height="337" width="723"]]
202
203
204 (((
205 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
206 )))
207
208 (((
209 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
210 )))
211
212 (((
213 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from RS485-BL.
214 )))
215
216 (((
217 Each RS485-BL is shipped with a sticker with unique device EUI:
218 )))
219
220 [[image:1652953462722-299.png]]
221
222
223 (((
224 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
225 )))
226
227 (((
228 **Add APP EUI in the application.**
229 )))
230
231
232 [[image:image-20220519174512-1.png]]
233
234 [[image:image-20220519174512-2.png||height="328" width="731"]]
235
236 [[image:image-20220519174512-3.png||height="556" width="724"]]
237
238 [[image:image-20220519174512-4.png]]
239
240
241 You can also choose to create the device manually.
242
243 [[image:1652953542269-423.png||height="710" width="723"]]
244
245
246 Add APP KEY and DEV EUI
247
248 [[image:1652953553383-907.png||height="514" width="724"]]
249
250
251
252 (((
253 (% style="color:blue" %)**Step 2**(%%): Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
254 )))
255
256 [[image:1652953568895-172.png||height="232" width="724"]]
257
258
259 == 3.3 Configure Commands to read data ==
260
261 (((
262 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
263
264
265 )))
266
267 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
268
269 (((
270 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
271 )))
272
273 (((
274 **~1. RS485-MODBUS mode:**
275 )))
276
277 (((
278 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
279 )))
280
281 (((
282 **2. TTL mode:**
283 )))
284
285 (((
286 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
287 )))
288
289 (((
290 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
291 )))
292
293 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
294 |=(% style="width: 80px;" %)(((
295 (((
296 **AT Commands**
297 )))
298 )))|=(% style="width: 210px;" %)(((
299 (((
300 **Description**
301 )))
302 )))|=(% style="width: 210px;" %)(((
303 (((
304 **Example**
305 )))
306 )))
307 |(% style="width:80px" %)(((
308 (((
309 AT+BAUDR
310 )))
311 )))|(% style="width:210px" %)(((
312 (((
313 Set the baud rate (for RS485 connection). Default Value is: 9600.
314 )))
315 )))|(% style="width:210px" %)(((
316 (((
317 (((
318 AT+BAUDR=9600
319 )))
320 )))
321
322 (((
323 (((
324 Options: (1200,2400,4800,14400,19200,115200)
325 )))
326 )))
327 )))
328 |(% style="width:80px" %)(((
329 (((
330 AT+PARITY
331 )))
332 )))|(% style="width:210px" %)(((
333 (((
334 (((
335 Set UART parity (for RS485 connection)
336 )))
337 )))
338
339 (((
340 (((
341 Default Value is: no parity.
342 )))
343 )))
344 )))|(% style="width:210px" %)(((
345 (((
346 (((
347 AT+PARITY=0
348 )))
349 )))
350
351 (((
352 (((
353 Option: 0: no parity, 1: odd parity, 2: even parity
354 )))
355 )))
356 )))
357 |(% style="width:80px" %)(((
358 (((
359 AT+STOPBIT
360 )))
361 )))|(% style="width:210px" %)(((
362 (((
363 (((
364 Set serial stopbit (for RS485 connection)
365 )))
366 )))
367
368 (((
369 (((
370 Default Value is: 1bit.
371 )))
372 )))
373 )))|(% style="width:210px" %)(((
374 (((
375 (((
376 AT+STOPBIT=0 for 1bit
377 )))
378 )))
379
380 (((
381 (((
382 AT+STOPBIT=1 for 1.5 bit
383 )))
384 )))
385
386 (((
387 (((
388 AT+STOPBIT=2 for 2 bits
389 )))
390 )))
391 )))
392
393
394
395 === 3.3.2 Configure sensors ===
396
397 (((
398 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
399 )))
400
401 (((
402 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
403 )))
404
405 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
406 |=(% style="width: 80px;" %)**AT Commands**|=(% style="width: 210px;" %)**Description**|=(% style="width: 210px;" %)**Example**
407 |AT+CFGDEV|(% style="width:80px" %)(((
408 (((
409 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
410 )))
411
412 (((
413 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
414 )))
415
416 (((
417 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
418 )))
419 )))|(% style="width:210px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
420
421 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
422
423
424
425 === 3.3.3 Configure read commands for each sampling ===
426
427 (((
428 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
429 )))
430
431 (((
432 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
433 )))
434
435 (((
436 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
437 )))
438
439 (((
440 This section describes how to achieve above goals.
441 )))
442
443 (((
444 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
445
446
447 )))
448
449 (((
450 (% style="color:blue" %)**Command from RS485-BL to Sensor:**
451 )))
452
453 (((
454 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
455
456
457 )))
458
459 (((
460 (% style="color:blue" %)**Handle return from sensors to RS485-BL**:
461 )))
462
463 (((
464 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
465 )))
466
467 * (((
468 (% style="color:blue" %)**AT+DATACUT**
469 )))
470
471 (((
472 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
473
474
475 )))
476
477 * (((
478 (% style="color:blue" %)**AT+SEARCH**
479 )))
480
481 (((
482 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
483 )))
484
485 (((
486
487
488 (% style="color:blue" %)**Define wait timeout:**
489 )))
490
491 (((
492 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
493 )))
494
495 (((
496 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
497 )))
498
499 (((
500
501
502 **Examples:**
503 )))
504
505 (((
506 Below are examples for the how above AT Commands works.
507 )))
508
509 (((
510 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
511 )))
512
513 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
514 |(% style="width:498px" %)(((
515 (((
516 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
517 )))
518
519 (((
520 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
521 )))
522
523 (((
524 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
525 )))
526 )))
527
528 (((
529 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
530 )))
531
532 (((
533 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
534 )))
535
536 (((
537
538 )))
539
540 (((
541 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
542 )))
543
544 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
545 |(% style="width:577px" %)(((
546 (((
547 **AT+SEARCHx=aa,xx xx xx xx xx**
548 )))
549
550 * (((
551 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
552 )))
553 * (((
554 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
555 )))
556 )))
557
558 (((
559
560
561 **Examples:**
562 )))
563
564 (((
565 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
566 )))
567
568 (((
569 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
570 )))
571
572 (((
573 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
574 )))
575
576 (((
577 [[image:1653271044481-711.png]]
578
579
580 )))
581
582 (((
583 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
584 )))
585
586 (((
587 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
588 )))
589
590 (((
591 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
592 )))
593
594 (((
595 [[image:1653271276735-972.png]]
596 )))
597
598 (((
599 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
600 )))
601
602 (% style="background-color:#4f81bd; color:white; width:510px" %)
603 |(% style="width:726px" %)(((
604 (((
605 **AT+DATACUTx=a,b,c**
606 )))
607
608 * (((
609 **a: length for the return of AT+COMMAND**
610 )))
611 * (((
612 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
613 )))
614 * (((
615 **c: define the position for valid value.  **
616 )))
617 )))
618
619 (((
620
621
622 **Examples:**
623 )))
624
625 * (((
626 (% style="color:blue" %)**Grab bytes:**
627 )))
628
629 (((
630 [[image:1653271581490-837.png||height="313" width="722"]]
631 )))
632
633 (((
634
635 )))
636
637 * (((
638 (% style="color:blue" %)**Grab a section.**
639 )))
640
641 (((
642 [[image:1653271648378-342.png||height="326" width="720"]]
643 )))
644
645 (((
646
647 )))
648
649 * (((
650 (% style="color:blue" %)**Grab different sections.**
651 )))
652
653 (((
654 [[image:1653271657255-576.png||height="305" width="730"]]
655
656
657 )))
658
659 (((
660 (((
661 (% style="color:red" %)**Note:**
662 )))
663 )))
664
665 (((
666 (((
667 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
668 )))
669 )))
670
671 (((
672 (((
673 **Example:**
674 )))
675 )))
676
677 (((
678 (((
679 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
680 )))
681 )))
682
683 (((
684 (((
685 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
686 )))
687 )))
688
689 (((
690 (((
691 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
692 )))
693 )))
694
695 (((
696 (((
697 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
698 )))
699 )))
700
701 (((
702 (((
703 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
704 )))
705 )))
706
707 (((
708 (((
709 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
710 )))
711 )))
712
713 (((
714 [[image:1653271763403-806.png]]
715 )))
716
717
718 === 3.3.4 Compose the uplink payload ===
719
720 (((
721 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
722
723
724 )))
725
726 (((
727 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
728
729
730 )))
731
732 (((
733 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
734 )))
735
736 (((
737 Final Payload is
738 )))
739
740 (((
741 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
742 )))
743
744 (((
745 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
746 )))
747
748 [[image:1653272787040-634.png||height="515" width="719"]]
749
750
751
752 (((
753 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
754
755
756 )))
757
758 (((
759 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
760 )))
761
762 (((
763 Final Payload is
764 )))
765
766 (((
767 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
768 )))
769
770 1. (((
771 Battery Info (2 bytes): Battery voltage
772 )))
773 1. (((
774 PAYVER (1 byte): Defined by AT+PAYVER
775 )))
776 1. (((
777 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
778 )))
779 1. (((
780 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
781 )))
782 1. (((
783 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
784
785
786 )))
787
788 [[image:1653272817147-600.png||height="437" width="717"]]
789
790 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
791
792
793 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
794
795 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
796
797 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
798
799
800 Below are the uplink payloads:
801
802 [[image:1653272901032-107.png]]
803
804
805 (% style="color:red" %)Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
806
807 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
808
809 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
810
811 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
812
813 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
814
815
816
817 === 3.3.5 Uplink on demand ===
818
819 (((
820 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
821 )))
822
823 (((
824 Downlink control command:
825 )))
826
827 (((
828 **0x08 command**: Poll an uplink with current command set in RS485-BL.
829 )))
830
831 (((
832 **0xA8 command**: Send a command to RS485-BL and uplink the output from sensors.
833
834
835 )))
836
837 === 3.3.6 Uplink on Interrupt ===
838
839 Put the interrupt sensor between 3.3v_out and GPIO ext.
840
841 [[image:1653273818896-432.png]]
842
843
844 (((
845 AT+INTMOD=0  Disable Interrupt
846 )))
847
848 (((
849 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
850 )))
851
852 (((
853 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
854 )))
855
856 (((
857 AT+INTMOD=3  Interrupt trigger by rising edge.
858
859
860 )))
861
862 == 3.4 Uplink Payload ==
863
864 [[image:image-20220606105412-1.png]]
865
866 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
867
868 (((
869 {{{function Decoder(bytes, port) {}}}
870 )))
871
872 (((
873 {{{//Payload Formats of RS485-BL Deceive}}}
874 )))
875
876 (((
877 {{{return {}}}
878 )))
879
880 (((
881 {{{ //Battery,units:V}}}
882 )))
883
884 (((
885 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
886 )))
887
888 (((
889 {{{ //GPIO_EXTI }}}
890 )))
891
892 (((
893 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
894 )))
895
896 (((
897 {{{ //payload of version}}}
898 )))
899
900 (((
901 {{{ Pay_ver:bytes[2],}}}
902 )))
903
904 (((
905 {{{ }; }}}
906 )))
907
908 (((
909 **}**
910
911
912 )))
913
914 (((
915 TTN V3 uplink screen shot.
916 )))
917
918 [[image:1653274001211-372.png||height="192" width="732"]]
919
920
921 == 3.5 Configure RS485-BL via AT or Downlink ==
922
923 (((
924 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
925 )))
926
927 (((
928 There are two kinds of Commands:
929 )))
930
931 * (((
932 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
933 )))
934
935 * (((
936 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
937
938
939
940
941 )))
942
943 === 3.5.1 Common Commands: ===
944
945 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
946
947
948 === 3.5.2 Sensor related commands: ===
949
950
951
952 ==== (% style="color:blue" %)**Choose Device Type (RS485 or TTL)**(%%) ====
953
954 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
955
956 * (% style="color:#037691" %)**AT Command**
957
958 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
959
960 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
961
962
963 * (% style="color:#037691" %)**Downlink Payload**
964
965 **0A aa**  ~-~->  same as AT+MOD=aa
966
967
968
969
970 ==== (% style="color:blue" %)**RS485 Debug Command (AT+CFGDEV)**(%%) ====
971
972 (((
973 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
974 )))
975
976 * (((
977 (% style="color:#037691" %)**AT Command**
978
979 (((
980 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**  m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
981 )))
982 )))
983
984 (((
985
986 )))
987
988 * (((
989 (% style="color:#037691" %)**Downlink Payload**
990 )))
991
992 (((
993 Format: A8 MM NN XX XX XX XX YY
994 )))
995
996 (((
997 Where:
998 )))
999
1000 * (((
1001 MM: 1: add CRC-16/MODBUS ; 0: no CRC
1002 )))
1003 * (((
1004 NN: The length of RS485 command
1005 )))
1006 * (((
1007 XX XX XX XX: RS485 command total NN bytes
1008 )))
1009 * (((
1010 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
1011 )))
1012
1013 (((
1014 **Example 1:**
1015 )))
1016
1017 (((
1018 To connect a Modbus Alarm with below commands.
1019 )))
1020
1021 * (((
1022 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
1023 )))
1024
1025 * (((
1026 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1027 )))
1028
1029 (((
1030 So if user want to use downlink command to control to RS485 Alarm, he can use:
1031 )))
1032
1033 (((
1034 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1035 )))
1036
1037 (((
1038 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1039 )))
1040
1041 (((
1042 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
1043 )))
1044
1045 (((
1046
1047 )))
1048
1049 (((
1050 **Example 2:**
1051 )))
1052
1053 (((
1054 Check TTL Sensor return:
1055 )))
1056
1057 (((
1058 [[image:1654132684752-193.png]]
1059 )))
1060
1061
1062
1063
1064 ==== (% style="color:blue" %)**Set Payload version**(%%) ====
1065
1066 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1067
1068 * (% style="color:#037691" %)**AT Command:**
1069
1070 **AT+PAYVER:   **Set PAYVER field = 1
1071
1072
1073 * (% style="color:#037691" %)**Downlink Payload:**
1074
1075 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
1076
1077 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
1078
1079
1080
1081
1082 ==== (% style="color:blue" %)**Set RS485 Sampling Commands**(%%) ====
1083
1084 (((
1085 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1086 )))
1087
1088 (((
1089 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1090 )))
1091
1092 (((
1093
1094 )))
1095
1096 * (((
1097 (% style="color:#037691" %)**AT Command:**
1098 )))
1099
1100 **AT+COMMANDx:  Configure RS485 read command to sensor.**
1101
1102 **AT+DATACUTx:  Configure how to handle return from RS485 devices.**
1103
1104 **AT+SEARCHx:  Configure search command**
1105
1106
1107 * (((
1108 (% style="color:#037691" %)**Downlink Payload:**
1109 )))
1110
1111 (((
1112 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1113 )))
1114
1115 (((
1116 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
1117 )))
1118
1119 (((
1120 Format: AF MM NN LL XX XX XX XX YY
1121 )))
1122
1123 (((
1124 Where:
1125 )))
1126
1127 * (((
1128 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1129 )))
1130 * (((
1131 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1132 )))
1133 * (((
1134 LL:  The length of AT+COMMAND or AT+DATACUT command
1135 )))
1136 * (((
1137 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1138 )))
1139 * (((
1140 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1141 )))
1142
1143 (((
1144 **Example:**
1145 )))
1146
1147 (((
1148 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1149 )))
1150
1151 (((
1152 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1153 )))
1154
1155 (((
1156 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1157 )))
1158
1159 (((
1160
1161 )))
1162
1163 (((
1164 **0xAB** downlink command can be used for set AT+SEARCHx
1165 )))
1166
1167 (((
1168 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1169 )))
1170
1171 * (((
1172 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1173 )))
1174 * (((
1175 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1176 )))
1177
1178 (((
1179 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1180 )))
1181
1182
1183
1184
1185 ==== (% style="color:blue" %)**Fast command to handle MODBUS device**(%%) ====
1186
1187 (((
1188 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1189 )))
1190
1191 (((
1192 This command is valid since v1.3 firmware version
1193 )))
1194
1195 (((
1196
1197 )))
1198
1199 (((
1200 (% style="color:#037691" %)**AT+MBFUN has only two value:**
1201 )))
1202
1203 * (((
1204 **AT+MBFUN=1**: Enable Modbus reading. And get response base on the MODBUS return
1205 )))
1206
1207 (((
1208 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1209 )))
1210
1211 * (((
1212 **AT+MBFUN=0**: Disable Modbus fast reading.
1213 )))
1214
1215 (((
1216
1217
1218 **Example:**
1219 )))
1220
1221 * (((
1222 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1223 )))
1224 * (((
1225 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1226 )))
1227 * (((
1228 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1229 )))
1230
1231 [[image:1654133913295-597.png]]
1232
1233
1234 [[image:1654133954153-643.png]]
1235
1236
1237 * (((
1238 (% style="color:#037691" %)**Downlink Commands:**
1239 )))
1240
1241 (((
1242 **A9 aa** ~-~-> Same as AT+MBFUN=aa
1243 )))
1244
1245
1246
1247
1248 ==== (% style="color:blue" %)**RS485 command timeout**(%%) ====
1249
1250 (((
1251 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1252 )))
1253
1254 (((
1255 Default value: 0, range:  0 ~~ 5 seconds
1256 )))
1257
1258 (((
1259
1260 )))
1261
1262 * (((
1263 (% style="color:#037691" %)**AT Command:**
1264
1265 **AT+CMDDLaa=hex(bb cc)**
1266
1267
1268 )))
1269
1270 (((
1271 **Example:**
1272 )))
1273
1274 (((
1275 **AT+CMDDL1=1000** to send the open time to 1000ms
1276 )))
1277
1278 (((
1279
1280 )))
1281
1282 * (((
1283 (% style="color:#037691" %)**Downlink Payload:**
1284 )))
1285
1286 (((
1287 0x AA aa bb cc
1288 )))
1289
1290 (((
1291 Same as: AT+CMDDLaa=hex(bb cc)
1292 )))
1293
1294 (((
1295 **Example:**
1296 )))
1297
1298 (((
1299 **0xAA 01 03 E8**  ~-~-> Same as **AT+CMDDL1=1000 ms**
1300 )))
1301
1302
1303
1304
1305 ==== (% style="color:blue" %)**Uplink payload mode**(%%) ====
1306
1307 (((
1308 Define to use one uplink or multiple uplinks for the sampling.
1309 )))
1310
1311 (((
1312 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1313 )))
1314
1315 * (((
1316 (% style="color:#037691" %)**AT Command:**
1317
1318 **AT+DATAUP=0**
1319
1320 **AT+DATAUP=1**
1321 )))
1322
1323 (((
1324
1325 )))
1326
1327 * (((
1328 (% style="color:#037691" %)**Downlink Payload:**
1329 )))
1330
1331 (((
1332 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
1333 )))
1334
1335 (((
1336 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
1337 )))
1338
1339
1340
1341
1342 ==== (% style="color:blue" %)**Manually trigger an Uplink**(%%) ====
1343
1344 Ask device to send an uplink immediately.
1345
1346 * (% style="color:#037691" %)**Downlink Payload:**
1347
1348 **0x08 FF**, RS485-BL will immediately send an uplink.
1349
1350
1351
1352
1353 ==== (% style="color:blue" %)**Clear RS485 Command**(%%) ====
1354
1355 (((
1356 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1357 )))
1358
1359 (((
1360
1361 )))
1362
1363 * (((
1364 (% style="color:#037691" %)**AT Command:**
1365 )))
1366
1367 (((
1368 (% style="color:#037691" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1369 )))
1370
1371 (((
1372 Example screen shot after clear all RS485 commands. 
1373 )))
1374
1375 (((
1376
1377 )))
1378
1379 (((
1380 The uplink screen shot is:
1381 )))
1382
1383 (((
1384 [[image:1654134704555-320.png]]
1385 )))
1386
1387 (((
1388
1389 )))
1390
1391 * (((
1392 (% style="color:#037691" %)**Downlink Payload:**
1393 )))
1394
1395 (((
1396 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1397 )))
1398
1399
1400
1401
1402 ==== (% style="color:blue" %)**Set Serial Communication Parameters**(%%) ====
1403
1404 (((
1405 Set the Rs485 serial communication parameters:
1406 )))
1407
1408 * (((
1409 (% style="color:#037691" %)**AT Command:**
1410 )))
1411
1412 (((
1413
1414
1415 * Set Baud Rate:
1416 )))
1417
1418 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1419
1420
1421 * Set UART Parity
1422
1423 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1424
1425
1426 * Set STOPBIT
1427
1428 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1429
1430
1431 * (((
1432 (% style="color:#037691" %)**Downlink Payload:**
1433 )))
1434
1435 (((
1436 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1437 )))
1438
1439 (((
1440
1441
1442 **Example:**
1443 )))
1444
1445 * (((
1446 A7 01 00 60   same as AT+BAUDR=9600
1447 )))
1448 * (((
1449 A7 01 04 80  same as AT+BAUDR=115200
1450 )))
1451
1452 (((
1453 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1454 )))
1455
1456 (((
1457 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1458 )))
1459
1460
1461
1462
1463 ==== (% style="color:blue" %)**Control output power duration**(%%) ====
1464
1465 (((
1466 User can set the output power duration before each sampling.
1467 )))
1468
1469 * (((
1470 (% style="color:#037691" %)**AT Command:**
1471 )))
1472
1473 (((
1474 **Example:**
1475 )))
1476
1477 (((
1478 **AT+3V3T=1000**  ~/~/ 3V3 output power will open 1s before each sampling.
1479 )))
1480
1481 (((
1482 **AT+5VT=1000**  ~/~/ +5V output power will open 1s before each sampling.
1483 )))
1484
1485 (((
1486
1487 )))
1488
1489 * (((
1490 (% style="color:#037691" %)**LoRaWAN Downlink Command:**
1491 )))
1492
1493 (((
1494 **07 01 aa bb**  Same as AT+5VT=(aa bb)
1495 )))
1496
1497 (((
1498 **07 02 aa bb**  Same as AT+3V3T=(aa bb)
1499 )))
1500
1501
1502
1503 == 3.6 Buttons ==
1504
1505 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:233px" %)
1506 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1507 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1508
1509
1510 == 3.7 +3V3 Output ==
1511
1512 (((
1513 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1514 )))
1515
1516 (((
1517 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1518 )))
1519
1520 (((
1521 The +3V3 output time can be controlled by AT Command.
1522 )))
1523
1524 (((
1525
1526 )))
1527
1528 (((
1529 (% style="color:#037691" %)**AT+3V3T=1000**
1530 )))
1531
1532 (((
1533
1534 )))
1535
1536 (((
1537 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1538 )))
1539
1540 (((
1541 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1542 )))
1543
1544
1545 == 3.8 +5V Output ==
1546
1547 (((
1548 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1549 )))
1550
1551 (((
1552 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1553 )))
1554
1555 (((
1556 The 5V output time can be controlled by AT Command.
1557 )))
1558
1559 (((
1560
1561 )))
1562
1563 (((
1564 (% style="color:#037691" %)**AT+5VT=1000**
1565 )))
1566
1567 (((
1568
1569 )))
1570
1571 (((
1572 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1573 )))
1574
1575 (((
1576 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1577 )))
1578
1579
1580
1581 == 3.9 LEDs ==
1582
1583 (% border="1" style="background-color:#ffffcc; color:green; width:332px" %)
1584 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1585 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1586
1587
1588 == 3.10 Switch Jumper ==
1589
1590 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:463px" %)
1591 |=(% style="width: 123px;" %)**Switch Jumper**|=(% style="width: 336px;" %)**Feature**
1592 |(% style="width:123px" %)**SW1**|(% style="width:336px" %)ISP position: Upgrade firmware via UART
1593 Flash position: Configure device, check running status.
1594 |(% style="width:123px" %)**SW2**|(% style="width:336px" %)5V position: set to compatible with 5v I/O.
1595 3.3v position: set to compatible with 3.3v I/O.,
1596
1597 (((
1598 **+3.3V**: is always ON
1599 )))
1600
1601 (((
1602 **+5V**: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1603 )))
1604
1605
1606 = 4. Case Study =
1607
1608 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1609
1610
1611 = 5. Use AT Command =
1612
1613 == 5.1 Access AT Command ==
1614
1615 (((
1616 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1617 )))
1618
1619 [[image:1654135840598-282.png]]
1620
1621
1622 (((
1623 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1624 )))
1625
1626 [[image:1654136105500-922.png]]
1627
1628
1629 (((
1630 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1631 )))
1632
1633
1634 == 5.2 Common AT Command Sequence ==
1635
1636
1637 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1638
1639 If device has not joined network yet:
1640
1641 * (% style="color:#037691" %)**AT+FDR**
1642 * (% style="color:#037691" %)**AT+NJM=0**
1643 * (% style="color:#037691" %)**ATZ**
1644
1645 (((
1646
1647
1648 If device already joined network:
1649
1650 * (% style="color:#037691" %)**AT+NJM=0**
1651 * (% style="color:#037691" %)**ATZ**
1652 )))
1653
1654
1655
1656 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1657
1658
1659 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1660
1661 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%) Set to ABP mode
1662
1663 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) Set the Adaptive Data Rate Off
1664
1665 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%) Set Data Rate
1666
1667 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1668
1669 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%)  Set transmit frequency to 868.4Mhz
1670
1671 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1672
1673 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1674
1675 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1676
1677 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1678
1679
1680 (% style="color:red" %)**Note:**
1681
1682 (((
1683 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1684 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1685 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1686 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1687 )))
1688
1689 [[image:1654136435598-589.png]]
1690
1691
1692
1693 = 6. FAQ =
1694
1695 == 6.1 How to upgrade the image? ==
1696
1697 (((
1698 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1699 )))
1700
1701 * (((
1702 Support new features
1703 )))
1704 * (((
1705 For bug fix
1706 )))
1707 * (((
1708 Change LoRaWAN bands.
1709 )))
1710
1711 (((
1712 Below shows the hardware connection for how to upload an image to RS485-BL:
1713 )))
1714
1715 [[image:1654136646995-976.png]]
1716
1717 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1718
1719 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1720
1721 (% style="color:blue" %)**Step3**(%%)**: **Open flashloader; choose the correct COM port to update.
1722
1723 [[image:image-20220602102605-1.png]]
1724
1725
1726 [[image:image-20220602102637-2.png]]
1727
1728
1729 [[image:image-20220602102715-3.png]]
1730
1731
1732
1733 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1734
1735 (((
1736 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1737 )))
1738
1739
1740
1741 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1742
1743 (((
1744 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1745 )))
1746
1747
1748
1749 = 7. Trouble Shooting =
1750
1751
1752 == 7.1 Downlink doesn’t work, how to solve it? ==
1753
1754 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1755
1756
1757 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1758
1759 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1760
1761
1762 = 8. Order Info =
1763
1764 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
1765
1766 (% style="color:blue" %)**XXX:**
1767
1768 * (% style="color:red" %)**EU433**(%%): frequency bands EU433
1769 * (% style="color:red" %)**EU868**(%%): frequency bands EU868
1770 * (% style="color:red" %)**KR920**(%%): frequency bands KR920
1771 * (% style="color:red" %)**CN470**(%%): frequency bands CN470
1772 * (% style="color:red" %)**AS923**(%%): frequency bands AS923
1773 * (% style="color:red" %)**AU915**(%%): frequency bands AU915
1774 * (% style="color:red" %)**US915**(%%): frequency bands US915
1775 * (% style="color:red" %)**IN865**(%%): frequency bands IN865
1776 * (% style="color:red" %)**RU864**(%%): frequency bands RU864
1777 * (% style="color:red" %)**KZ865**(%%): frequency bands KZ865
1778
1779
1780
1781
1782
1783 = 9. Packing Info =
1784
1785 (((
1786 **Package Includes**:
1787 )))
1788
1789 * (((
1790 RS485-BL x 1
1791 )))
1792 * (((
1793 Stick Antenna for LoRa RF part x 1
1794 )))
1795 * (((
1796 Program cable x 1
1797 )))
1798
1799 (((
1800 **Dimension and weight**:
1801 )))
1802
1803 * (((
1804 Device Size: 13.5 x 7 x 3 cm
1805 )))
1806 * (((
1807 Device Weight: 105g
1808 )))
1809 * (((
1810 Package Size / pcs : 14.5 x 8 x 5 cm
1811 )))
1812 * (((
1813 Weight / pcs : 170g
1814 )))
1815
1816
1817
1818
1819
1820 = 10. Support =
1821
1822 * (((
1823 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1824 )))
1825 * (((
1826 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1827 )))
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0