Version 44.9 by Xiaoling on 2022/06/14 10:04

Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="404" width="404"]]
3
4
5
6
7 **Table of Contents:**
8
9 {{toc/}}
10
11
12
13
14
15 = 1.Introduction =
16
17 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
18
19 (((
20
21 )))
22
23 (((
24 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
25 )))
26
27 (((
28 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
29 )))
30
31 (((
32 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
33 )))
34
35 (((
36 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
37 )))
38
39 (((
40 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
41 )))
42
43 (((
44 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
45 )))
46
47 (((
48 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
49 )))
50
51 [[image:1652953304999-717.png||height="424" width="733"]]
52
53
54
55 == 1.2 Specifications ==
56
57
58 **Hardware System:**
59
60 * STM32L072CZT6 MCU
61 * SX1276/78 Wireless Chip 
62 * Power Consumption (exclude RS485 device):
63 ** Idle: 6uA@3.3v
64 ** 20dB Transmit: 130mA@3.3v
65
66
67 **Interface for Model:**
68
69 * 1 x RS485 Interface
70 * 1 x TTL Serial , 3.3v or 5v.
71 * 1 x I2C Interface, 3.3v or 5v.
72 * 1 x one wire interface
73 * 1 x Interrupt Interface
74 * 1 x Controllable 5V output, max
75
76
77 **LoRa Spec:**
78
79 * Frequency Range:
80 ** Band 1 (HF): 862 ~~ 1020 Mhz
81 ** Band 2 (LF): 410 ~~ 528 Mhz
82 * 168 dB maximum link budget.
83 * +20 dBm - 100 mW constant RF output vs.
84 * Programmable bit rate up to 300 kbps.
85 * High sensitivity: down to -148 dBm.
86 * Bullet-proof front end: IIP3 = -12.5 dBm.
87 * Excellent blocking immunity.
88 * Fully integrated synthesizer with a resolution of 61 Hz.
89 * LoRa modulation.
90 * Built-in bit synchronizer for clock recovery.
91 * Preamble detection.
92 * 127 dB Dynamic Range RSSI.
93 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
94
95
96
97
98 == 1.3 Features ==
99
100 * LoRaWAN Class A & Class C protocol (default Class A)
101 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
102 * AT Commands to change parameters
103 * Remote configure parameters via LoRaWAN Downlink
104 * Firmware upgradable via program port
105 * Support multiply RS485 devices by flexible rules
106 * Support Modbus protocol
107 * Support Interrupt uplink
108
109
110
111
112 == 1.4 Applications ==
113
114 * Smart Buildings & Home Automation
115 * Logistics and Supply Chain Management
116 * Smart Metering
117 * Smart Agriculture
118 * Smart Cities
119 * Smart Factory
120
121
122
123
124 == 1.5 Firmware Change log ==
125
126 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
127
128
129 == 1.6 Hardware Change log ==
130
131 (((
132
133
134 (((
135 v1.4
136 )))
137 )))
138
139 (((
140 (((
141 ~1. Change Power IC to TPS22916
142 )))
143 )))
144
145 (((
146
147 )))
148
149 (((
150 (((
151 v1.3
152 )))
153 )))
154
155 (((
156 (((
157 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
158 )))
159 )))
160
161 (((
162
163 )))
164
165 (((
166 (((
167 v1.2
168 )))
169 )))
170
171 (((
172 (((
173 Release version ​​​​​
174 )))
175
176
177 )))
178
179 = 2. Pin mapping and Power ON Device =
180
181 (((
182 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
183 )))
184
185 [[image:1652953055962-143.png||height="387" width="728"]]
186
187
188 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
189
190
191 = 3. Operation Mode =
192
193 == 3.1 How it works? ==
194
195 (((
196 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
197
198
199 )))
200
201 == 3.2 Example to join LoRaWAN network ==
202
203 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
204
205 [[image:1652953414711-647.png||height="337" width="723"]]
206
207
208 (((
209 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
210 )))
211
212 (((
213 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
214 )))
215
216 (((
217 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
218 )))
219
220 (((
221 Each RS485-BL is shipped with a sticker with unique device EUI:
222 )))
223
224 [[image:1652953462722-299.png]]
225
226
227 (((
228 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
229 )))
230
231 (((
232 **Add APP EUI in the application.**
233 )))
234
235
236 [[image:image-20220519174512-1.png]]
237
238 [[image:image-20220519174512-2.png||height="328" width="731"]]
239
240 [[image:image-20220519174512-3.png||height="556" width="724"]]
241
242 [[image:image-20220519174512-4.png]]
243
244
245 You can also choose to create the device manually.
246
247 [[image:1652953542269-423.png||height="710" width="723"]]
248
249 Add APP KEY and DEV EUI
250
251 [[image:1652953553383-907.png||height="514" width="724"]]
252
253
254 (((
255 **Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
256 )))
257
258 [[image:1652953568895-172.png||height="232" width="724"]]
259
260
261 == 3.3 Configure Commands to read data ==
262
263 (((
264 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
265
266
267 )))
268
269 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
270
271 (((
272 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
273 )))
274
275 (((
276 **~1. RS485-MODBUS mode:**
277 )))
278
279 (((
280 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
281 )))
282
283 (((
284 **2. TTL mode:**
285 )))
286
287 (((
288 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
289 )))
290
291 (((
292 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
293 )))
294
295 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
296 |=(% style="width: 80px;" %)(((
297 (((
298 **AT Commands**
299 )))
300 )))|=(% style="width: 210px;" %)(((
301 (((
302 **Description**
303 )))
304 )))|=(% style="width: 210px;" %)(((
305 (((
306 **Example**
307 )))
308 )))
309 |(% style="width:80px" %)(((
310 (((
311 AT+BAUDR
312 )))
313 )))|(% style="width:210px" %)(((
314 (((
315 Set the baud rate (for RS485 connection). Default Value is: 9600.
316 )))
317 )))|(% style="width:210px" %)(((
318 (((
319 (((
320 AT+BAUDR=9600
321 )))
322 )))
323
324 (((
325 (((
326 Options: (1200,2400,4800,14400,19200,115200)
327 )))
328 )))
329 )))
330 |(% style="width:80px" %)(((
331 (((
332 AT+PARITY
333 )))
334 )))|(% style="width:210px" %)(((
335 (((
336 (((
337 Set UART parity (for RS485 connection)
338 )))
339 )))
340
341 (((
342 (((
343 Default Value is: no parity.
344 )))
345 )))
346 )))|(% style="width:210px" %)(((
347 (((
348 (((
349 AT+PARITY=0
350 )))
351 )))
352
353 (((
354 (((
355 Option: 0: no parity, 1: odd parity, 2: even parity
356 )))
357 )))
358 )))
359 |(% style="width:80px" %)(((
360 (((
361 AT+STOPBIT
362 )))
363 )))|(% style="width:210px" %)(((
364 (((
365 (((
366 Set serial stopbit (for RS485 connection)
367 )))
368 )))
369
370 (((
371 (((
372 Default Value is: 1bit.
373 )))
374 )))
375 )))|(% style="width:210px" %)(((
376 (((
377 (((
378 AT+STOPBIT=0 for 1bit
379 )))
380 )))
381
382 (((
383 (((
384 AT+STOPBIT=1 for 1.5 bit
385 )))
386 )))
387
388 (((
389 (((
390 AT+STOPBIT=2 for 2 bits
391 )))
392 )))
393 )))
394
395 === 3.3.2 Configure sensors ===
396
397 (((
398 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
399 )))
400
401 (((
402 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
403 )))
404
405 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
406 |=(% style="width: 80px;" %)**AT Commands**|=(% style="width: 210px;" %)**Description**|=(% style="width: 210px;" %)**Example**
407 |AT+CFGDEV|(% style="width:80px" %)(((
408 (((
409 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
410 )))
411
412 (((
413 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
414 )))
415
416 (((
417 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
418 )))
419 )))|(% style="width:210px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
420
421 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
422
423
424
425 === 3.3.3 Configure read commands for each sampling ===
426
427 (((
428 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
429 )))
430
431 (((
432 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
433 )))
434
435 (((
436 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
437 )))
438
439 (((
440 This section describes how to achieve above goals.
441 )))
442
443 (((
444 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
445 )))
446
447 (((
448 **Command from RS485-BL to Sensor:**
449 )))
450
451 (((
452 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
453 )))
454
455 (((
456 **Handle return from sensors to RS485-BL**:
457 )))
458
459 (((
460 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
461 )))
462
463 * (((
464 **AT+DATACUT**
465 )))
466
467 (((
468 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
469 )))
470
471 * (((
472 **AT+SEARCH**
473 )))
474
475 (((
476 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
477 )))
478
479 (((
480 **Define wait timeout:**
481 )))
482
483 (((
484 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
485 )))
486
487 (((
488 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
489 )))
490
491 (((
492 **Examples:**
493 )))
494
495 (((
496 Below are examples for the how above AT Commands works.
497 )))
498
499 (((
500 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
501 )))
502
503 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
504 |(% style="width:498px" %)(((
505 (((
506 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
507 )))
508
509 (((
510 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
511 )))
512
513 (((
514 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
515 )))
516 )))
517
518 (((
519 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
520 )))
521
522 (((
523 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
524 )))
525
526 (((
527
528 )))
529
530 (((
531 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
532 )))
533
534 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
535 |(% style="width:577px" %)(((
536 (((
537 **AT+SEARCHx=aa,xx xx xx xx xx**
538 )))
539
540 * (((
541 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
542 )))
543 * (((
544 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
545 )))
546 )))
547
548 (((
549 **Examples:**
550 )))
551
552 (((
553 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
554 )))
555
556 (((
557 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
558 )))
559
560 (((
561 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
562 )))
563
564 (((
565 [[image:1653271044481-711.png]]
566 )))
567
568 (((
569 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
570 )))
571
572 (((
573 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
574 )))
575
576 (((
577 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
578 )))
579
580 (((
581 [[image:1653271276735-972.png]]
582 )))
583
584 (((
585 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
586 )))
587
588 (% style="background-color:#4f81bd; color:white; width:510px" %)
589 |(% style="width:726px" %)(((
590 (((
591 **AT+DATACUTx=a,b,c**
592 )))
593
594 * (((
595 **a: length for the return of AT+COMMAND**
596 )))
597 * (((
598 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
599 )))
600 * (((
601 **c: define the position for valid value.  **
602 )))
603 )))
604
605 (((
606 **Examples:**
607 )))
608
609 * (((
610 Grab bytes:
611 )))
612
613 (((
614 [[image:1653271581490-837.png||height="313" width="722"]]
615 )))
616
617 (((
618
619 )))
620
621 * (((
622 Grab a section.
623 )))
624
625 (((
626 [[image:1653271648378-342.png||height="326" width="720"]]
627 )))
628
629 (((
630
631 )))
632
633 * (((
634 Grab different sections.
635 )))
636
637 (((
638 [[image:1653271657255-576.png||height="305" width="730"]]
639 )))
640
641 (((
642 (((
643 (% style="color:red" %)**Note:**
644 )))
645 )))
646
647 (((
648 (((
649 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
650 )))
651 )))
652
653 (((
654 (((
655 **Example:**
656 )))
657 )))
658
659 (((
660 (((
661 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
662 )))
663 )))
664
665 (((
666 (((
667 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
668 )))
669 )))
670
671 (((
672 (((
673 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
674 )))
675 )))
676
677 (((
678 (((
679 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
680 )))
681 )))
682
683 (((
684 (((
685 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
686 )))
687 )))
688
689 (((
690 (((
691 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
692 )))
693 )))
694
695 (((
696 [[image:1653271763403-806.png]]
697 )))
698
699
700 === 3.3.4 Compose the uplink payload ===
701
702 (((
703 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
704
705
706 )))
707
708 (((
709 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
710
711
712 )))
713
714 (((
715 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
716 )))
717
718 (((
719 Final Payload is
720 )))
721
722 (((
723 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
724 )))
725
726 (((
727 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
728 )))
729
730 [[image:1653272787040-634.png||height="515" width="719"]]
731
732
733
734 (((
735 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
736
737
738 )))
739
740 (((
741 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
742 )))
743
744 (((
745 Final Payload is
746 )))
747
748 (((
749 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
750 )))
751
752 1. (((
753 Battery Info (2 bytes): Battery voltage
754 )))
755 1. (((
756 PAYVER (1 byte): Defined by AT+PAYVER
757 )))
758 1. (((
759 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
760 )))
761 1. (((
762 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
763 )))
764 1. (((
765 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
766 )))
767
768 [[image:1653272817147-600.png||height="437" width="717"]]
769
770 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
771
772
773 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
774
775 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
776
777 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
778
779
780 Below are the uplink payloads:
781
782 [[image:1653272901032-107.png]]
783
784
785 (% style="color:red" %)Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
786
787 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
788
789 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
790
791 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
792
793 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
794
795
796
797 === 3.3.5 Uplink on demand ===
798
799 (((
800 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
801 )))
802
803 (((
804 Downlink control command:
805 )))
806
807 (((
808 **0x08 command**: Poll an uplink with current command set in RS485-BL.
809 )))
810
811 (((
812 **0xA8 command**: Send a command to RS485-BL and uplink the output from sensors.
813
814
815 )))
816
817 === 3.3.6 Uplink on Interrupt ===
818
819 Put the interrupt sensor between 3.3v_out and GPIO ext.
820
821 [[image:1653273818896-432.png]]
822
823
824 (((
825 AT+INTMOD=0  Disable Interrupt
826 )))
827
828 (((
829 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
830 )))
831
832 (((
833 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
834 )))
835
836 (((
837 AT+INTMOD=3  Interrupt trigger by rising edge.
838
839
840 )))
841
842 == 3.4 Uplink Payload ==
843
844 [[image:image-20220606105412-1.png]]
845
846 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
847
848 (((
849 {{{function Decoder(bytes, port) {}}}
850 )))
851
852 (((
853 {{{//Payload Formats of RS485-BL Deceive}}}
854 )))
855
856 (((
857 {{{return {}}}
858 )))
859
860 (((
861 {{{ //Battery,units:V}}}
862 )))
863
864 (((
865 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
866 )))
867
868 (((
869 {{{ //GPIO_EXTI }}}
870 )))
871
872 (((
873 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
874 )))
875
876 (((
877 {{{ //payload of version}}}
878 )))
879
880 (((
881 {{{ Pay_ver:bytes[2],}}}
882 )))
883
884 (((
885 {{{ }; }}}
886 )))
887
888 (((
889 **}**
890
891
892 )))
893
894 (((
895 TTN V3 uplink screen shot.
896 )))
897
898 [[image:1653274001211-372.png||height="192" width="732"]]
899
900
901 == 3.5 Configure RS485-BL via AT or Downlink ==
902
903 (((
904 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
905 )))
906
907 (((
908 There are two kinds of Commands:
909 )))
910
911 * (((
912 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
913 )))
914
915 * (((
916 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
917 )))
918
919 === 3.5.1 Common Commands: ===
920
921 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
922
923
924 === 3.5.2 Sensor related commands: ===
925
926
927
928 ==== **Choose Device Type (RS485 or TTL)** ====
929
930 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
931
932 * **AT Command**
933
934 (% class="box infomessage" %)
935 (((
936 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
937 )))
938
939 (% class="box infomessage" %)
940 (((
941 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
942 )))
943
944
945 * **Downlink Payload**
946
947 **0A aa**  ~-~->  same as AT+MOD=aa
948
949
950
951
952 ==== **RS485 Debug Command (AT+CFGDEV)** ====
953
954 (((
955 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
956 )))
957
958 * (((
959 **AT Command**
960 )))
961
962 (% class="box infomessage" %)
963 (((
964 (((
965 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
966 )))
967 )))
968
969 (((
970 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
971 )))
972
973 (((
974
975 )))
976
977 * (((
978 **Downlink Payload**
979 )))
980
981 (((
982 Format: A8 MM NN XX XX XX XX YY
983 )))
984
985 (((
986 Where:
987 )))
988
989 * (((
990 MM: 1: add CRC-16/MODBUS ; 0: no CRC
991 )))
992 * (((
993 NN: The length of RS485 command
994 )))
995 * (((
996 XX XX XX XX: RS485 command total NN bytes
997 )))
998 * (((
999 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
1000 )))
1001
1002 (((
1003 **Example 1:**
1004 )))
1005
1006 (((
1007 To connect a Modbus Alarm with below commands.
1008 )))
1009
1010 * (((
1011 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
1012 )))
1013
1014 * (((
1015 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1016 )))
1017
1018 (((
1019 So if user want to use downlink command to control to RS485 Alarm, he can use:
1020 )))
1021
1022 (((
1023 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1024 )))
1025
1026 (((
1027 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1028 )))
1029
1030 (((
1031 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
1032 )))
1033
1034 (((
1035
1036 )))
1037
1038 (((
1039 **Example 2:**
1040 )))
1041
1042 (((
1043 Check TTL Sensor return:
1044 )))
1045
1046 (((
1047 [[image:1654132684752-193.png]]
1048 )))
1049
1050
1051
1052
1053
1054 ==== **Set Payload version** ====
1055
1056 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1057
1058 * **AT Command:**
1059
1060 (% class="box infomessage" %)
1061 (((
1062 **AT+PAYVER: Set PAYVER field = 1**
1063 )))
1064
1065
1066 * **Downlink Payload:**
1067
1068 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
1069
1070 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
1071
1072
1073
1074
1075 ==== **Set RS485 Sampling Commands** ====
1076
1077 (((
1078 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1079 )))
1080
1081 (((
1082 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1083 )))
1084
1085 (((
1086
1087 )))
1088
1089 * (((
1090 **AT Command:**
1091 )))
1092
1093 (% class="box infomessage" %)
1094 (((
1095 (((
1096 **AT+COMMANDx: Configure RS485 read command to sensor.**
1097 )))
1098 )))
1099
1100 (% class="box infomessage" %)
1101 (((
1102 (((
1103 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
1104 )))
1105 )))
1106
1107 (% class="box infomessage" %)
1108 (((
1109 (((
1110 **AT+SEARCHx: Configure search command**
1111 )))
1112 )))
1113
1114 (((
1115
1116 )))
1117
1118 * (((
1119 **Downlink Payload:**
1120 )))
1121
1122 (((
1123 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1124 )))
1125
1126 (((
1127 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
1128 )))
1129
1130 (((
1131 Format: AF MM NN LL XX XX XX XX YY
1132 )))
1133
1134 (((
1135 Where:
1136 )))
1137
1138 * (((
1139 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1140 )))
1141 * (((
1142 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1143 )))
1144 * (((
1145 LL:  The length of AT+COMMAND or AT+DATACUT command
1146 )))
1147 * (((
1148 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1149 )))
1150 * (((
1151 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1152 )))
1153
1154 (((
1155 **Example:**
1156 )))
1157
1158 (((
1159 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1160 )))
1161
1162 (((
1163 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1164 )))
1165
1166 (((
1167 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1168 )))
1169
1170 (((
1171
1172 )))
1173
1174 (((
1175 **0xAB** downlink command can be used for set AT+SEARCHx
1176 )))
1177
1178 (((
1179 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1180 )))
1181
1182 * (((
1183 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1184 )))
1185 * (((
1186 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1187 )))
1188
1189 (((
1190 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1191 )))
1192
1193
1194
1195
1196 ==== **Fast command to handle MODBUS device** ====
1197
1198 (((
1199 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1200 )))
1201
1202 (((
1203 This command is valid since v1.3 firmware version
1204 )))
1205
1206 (((
1207
1208 )))
1209
1210 (((
1211 **AT+MBFUN has only two value:**
1212 )))
1213
1214 * (((
1215 **AT+MBFUN=1**: Enable Modbus reading. And get response base on the MODBUS return
1216 )))
1217
1218 (((
1219 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1220 )))
1221
1222 * (((
1223 **AT+MBFUN=0**: Disable Modbus fast reading.
1224 )))
1225
1226 (((
1227 **Example:**
1228 )))
1229
1230 * (((
1231 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1232 )))
1233 * (((
1234 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1235 )))
1236 * (((
1237 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1238 )))
1239
1240 [[image:1654133913295-597.png]]
1241
1242
1243 [[image:1654133954153-643.png]]
1244
1245
1246 * (((
1247 **Downlink Commands:**
1248 )))
1249
1250 (((
1251 **A9 aa** ~-~-> Same as AT+MBFUN=aa
1252 )))
1253
1254
1255
1256
1257 ==== **RS485 command timeout** ====
1258
1259 (((
1260 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1261 )))
1262
1263 (((
1264 Default value: 0, range:  0 ~~ 5 seconds
1265 )))
1266
1267 (((
1268
1269 )))
1270
1271 * (((
1272 **AT Command:**
1273 )))
1274
1275 (% class="box infomessage" %)
1276 (((
1277 (((
1278 **AT+CMDDLaa=hex(bb cc)**
1279 )))
1280 )))
1281
1282 (((
1283 **Example:**
1284 )))
1285
1286 (((
1287 **AT+CMDDL1=1000** to send the open time to 1000ms
1288 )))
1289
1290 (((
1291
1292 )))
1293
1294 * (((
1295 **Downlink Payload:**
1296 )))
1297
1298 (((
1299 0x AA aa bb cc
1300 )))
1301
1302 (((
1303 Same as: AT+CMDDLaa=hex(bb cc)
1304 )))
1305
1306 (((
1307 **Example:**
1308 )))
1309
1310 (((
1311 **0xAA 01 03 E8**  ~-~-> Same as **AT+CMDDL1=1000 ms**
1312 )))
1313
1314
1315
1316
1317 ==== **Uplink payload mode** ====
1318
1319 (((
1320 Define to use one uplink or multiple uplinks for the sampling.
1321 )))
1322
1323 (((
1324 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1325 )))
1326
1327 * (((
1328 **AT Command:**
1329 )))
1330
1331 (% class="box infomessage" %)
1332 (((
1333 (((
1334 **AT+DATAUP=0**
1335 )))
1336 )))
1337
1338 (% class="box infomessage" %)
1339 (((
1340 (((
1341 **AT+DATAUP=1**
1342 )))
1343 )))
1344
1345 (((
1346
1347 )))
1348
1349 * (((
1350 **Downlink Payload:**
1351 )))
1352
1353 (((
1354 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
1355 )))
1356
1357 (((
1358 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
1359 )))
1360
1361
1362
1363
1364 ==== **Manually trigger an Uplink** ====
1365
1366 Ask device to send an uplink immediately.
1367
1368 * **Downlink Payload:**
1369
1370 **0x08 FF**, RS485-BL will immediately send an uplink.
1371
1372
1373
1374
1375 ==== **Clear RS485 Command** ====
1376
1377 (((
1378 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1379 )))
1380
1381 (((
1382
1383 )))
1384
1385 * (((
1386 **AT Command:**
1387 )))
1388
1389 (((
1390 (% style="color:#037691" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1391 )))
1392
1393 (((
1394 Example screen shot after clear all RS485 commands. 
1395 )))
1396
1397 (((
1398
1399 )))
1400
1401 (((
1402 The uplink screen shot is:
1403 )))
1404
1405 (((
1406 [[image:1654134704555-320.png]]
1407 )))
1408
1409 (((
1410
1411 )))
1412
1413 * (((
1414 **Downlink Payload:**
1415 )))
1416
1417 (((
1418 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1419 )))
1420
1421
1422
1423
1424 ==== **Set Serial Communication Parameters** ====
1425
1426 (((
1427 Set the Rs485 serial communication parameters:
1428 )))
1429
1430 * (((
1431 **AT Command:**
1432 )))
1433
1434 (((
1435 Set Baud Rate:
1436 )))
1437
1438 (% class="box infomessage" %)
1439 (((
1440 (((
1441 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1442
1443 Set UART Parity
1444 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1445
1446 Set STOPBIT
1447
1448 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1449 )))
1450 )))
1451
1452
1453 * (((
1454 **Downlink Payload:**
1455 )))
1456
1457 (((
1458 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1459 )))
1460
1461 (((
1462 **Example:**
1463 )))
1464
1465 * (((
1466 A7 01 00 60   same as AT+BAUDR=9600
1467 )))
1468 * (((
1469 A7 01 04 80  same as AT+BAUDR=115200
1470 )))
1471
1472 (((
1473 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1474 )))
1475
1476 (((
1477 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1478 )))
1479
1480
1481
1482
1483 ==== **Control output power duration** ====
1484
1485 (((
1486 User can set the output power duration before each sampling.
1487 )))
1488
1489 * (((
1490 **AT Command:**
1491 )))
1492
1493 (((
1494 **Example:**
1495 )))
1496
1497 (((
1498 **AT+3V3T=1000**  ~/~/ 3V3 output power will open 1s before each sampling.
1499 )))
1500
1501 (((
1502 **AT+5VT=1000**  ~/~/ +5V output power will open 1s before each sampling.
1503 )))
1504
1505 (((
1506
1507 )))
1508
1509 * (((
1510 **LoRaWAN Downlink Command:**
1511 )))
1512
1513 (((
1514 **07 01 aa bb**  Same as AT+5VT=(aa bb)
1515 )))
1516
1517 (((
1518 **07 02 aa bb**  Same as AT+3V3T=(aa bb)
1519 )))
1520
1521
1522
1523 == 3.6 Buttons ==
1524
1525 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:233px" %)
1526 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1527 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1528
1529 == 3.7 +3V3 Output ==
1530
1531 (((
1532 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1533 )))
1534
1535 (((
1536 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1537 )))
1538
1539 (((
1540 The +3V3 output time can be controlled by AT Command.
1541 )))
1542
1543 (((
1544
1545 )))
1546
1547 (((
1548 (% style="color:#037691" %)**AT+3V3T=1000**
1549 )))
1550
1551 (((
1552
1553 )))
1554
1555 (((
1556 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1557 )))
1558
1559 (((
1560 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1561 )))
1562
1563
1564 == 3.8 +5V Output ==
1565
1566 (((
1567 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1568 )))
1569
1570 (((
1571 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1572 )))
1573
1574 (((
1575 The 5V output time can be controlled by AT Command.
1576 )))
1577
1578 (((
1579
1580 )))
1581
1582 (((
1583 (% style="color:#037691" %)**AT+5VT=1000**
1584 )))
1585
1586 (((
1587
1588 )))
1589
1590 (((
1591 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1592 )))
1593
1594 (((
1595 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1596 )))
1597
1598
1599
1600 == 3.9 LEDs ==
1601
1602 (% border="1" style="background-color:#ffffcc; color:green; width:332px" %)
1603 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1604 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1605
1606 == 3.10 Switch Jumper ==
1607
1608 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:463px" %)
1609 |=(% style="width: 123px;" %)**Switch Jumper**|=(% style="width: 336px;" %)**Feature**
1610 |(% style="width:123px" %)**SW1**|(% style="width:336px" %)ISP position: Upgrade firmware via UART
1611 Flash position: Configure device, check running status.
1612 |(% style="width:123px" %)**SW2**|(% style="width:336px" %)5V position: set to compatible with 5v I/O.
1613 3.3v position: set to compatible with 3.3v I/O.,
1614
1615 (((
1616 **+3.3V**: is always ON
1617 )))
1618
1619 (((
1620 **+5V**: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1621 )))
1622
1623
1624 = 4. Case Study =
1625
1626 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1627
1628
1629 = 5. Use AT Command =
1630
1631 == 5.1 Access AT Command ==
1632
1633 (((
1634 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1635 )))
1636
1637 [[image:1654135840598-282.png]]
1638
1639
1640 (((
1641 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1642 )))
1643
1644 [[image:1654136105500-922.png]]
1645
1646
1647 (((
1648 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1649 )))
1650
1651
1652 == 5.2 Common AT Command Sequence ==
1653
1654 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1655
1656 If device has not joined network yet:
1657
1658 (% class="box infomessage" %)
1659 (((
1660 **AT+FDR**
1661 **AT+NJM=0**
1662 **ATZ**
1663 )))
1664
1665
1666 (((
1667 If device already joined network:
1668 )))
1669
1670 (% class="box infomessage" %)
1671 (((
1672 **AT+NJM=0**
1673 )))
1674
1675 (% class="box infomessage" %)
1676 (((
1677 **ATZ**
1678 )))
1679
1680
1681 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1682
1683
1684 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1685
1686 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1687
1688 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1689
1690 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%)Set Data Rate
1691
1692 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1693
1694 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1695
1696 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1697
1698 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1699
1700 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1701
1702 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1703
1704
1705 (% style="color:red" %)**Note:**
1706
1707 (((
1708 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1709 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1710 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1711 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1712 )))
1713
1714 [[image:1654136435598-589.png]]
1715
1716
1717 = 6. FAQ =
1718
1719 == 6.1 How to upgrade the image? ==
1720
1721 (((
1722 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1723 )))
1724
1725 * (((
1726 Support new features
1727 )))
1728 * (((
1729 For bug fix
1730 )))
1731 * (((
1732 Change LoRaWAN bands.
1733 )))
1734
1735 (((
1736 Below shows the hardware connection for how to upload an image to RS485-BL:
1737 )))
1738
1739 [[image:1654136646995-976.png]]
1740
1741 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1742
1743 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1744
1745 **Step3: **Open flashloader; choose the correct COM port to update.
1746
1747 [[image:image-20220602102605-1.png]]
1748
1749
1750 [[image:image-20220602102637-2.png]]
1751
1752
1753 [[image:image-20220602102715-3.png]]
1754
1755
1756
1757 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1758
1759 (((
1760 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1761 )))
1762
1763
1764
1765 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1766
1767 (((
1768 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1769 )))
1770
1771
1772
1773 = 7. Trouble Shooting =
1774
1775
1776 == 7.1 Downlink doesn’t work, how to solve it? ==
1777
1778 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1779
1780
1781 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1782
1783 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1784
1785
1786 = 8. Order Info =
1787
1788 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
1789
1790 (% style="color:blue" %)**XXX:**
1791
1792 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1793 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1794 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1795 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1796 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1797 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1798 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1799 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1800 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1801 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1802
1803 = 9. Packing Info =
1804
1805 (((
1806 **Package Includes**:
1807 )))
1808
1809 * (((
1810 RS485-BL x 1
1811 )))
1812 * (((
1813 Stick Antenna for LoRa RF part x 1
1814 )))
1815 * (((
1816 Program cable x 1
1817 )))
1818
1819 (((
1820 **Dimension and weight**:
1821 )))
1822
1823 * (((
1824 Device Size: 13.5 x 7 x 3 cm
1825 )))
1826 * (((
1827 Device Weight: 105g
1828 )))
1829 * (((
1830 Package Size / pcs : 14.5 x 8 x 5 cm
1831 )))
1832 * (((
1833 Weight / pcs : 170g
1834
1835
1836 )))
1837
1838 = 10. Support =
1839
1840 * (((
1841 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1842 )))
1843 * (((
1844 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1845 )))