Version 44.8 by Xiaoling on 2022/06/14 10:04

Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="404" width="404"]]
3
4
5
6
7 **Table of Contents:**
8
9 {{toc/}}
10
11
12
13
14
15 = 1.Introduction =
16
17 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
18
19 (((
20
21 )))
22
23 (((
24 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
25 )))
26
27 (((
28 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
29 )))
30
31 (((
32 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
33 )))
34
35 (((
36 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
37 )))
38
39 (((
40 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
41 )))
42
43 (((
44 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
45 )))
46
47 (((
48 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
49 )))
50
51 [[image:1652953304999-717.png||height="424" width="733"]]
52
53
54
55 == 1.2 Specifications ==
56
57
58 **Hardware System:**
59
60 * STM32L072CZT6 MCU
61 * SX1276/78 Wireless Chip 
62 * Power Consumption (exclude RS485 device):
63 ** Idle: 6uA@3.3v
64 ** 20dB Transmit: 130mA@3.3v
65
66
67 **Interface for Model:**
68
69 * 1 x RS485 Interface
70 * 1 x TTL Serial , 3.3v or 5v.
71 * 1 x I2C Interface, 3.3v or 5v.
72 * 1 x one wire interface
73 * 1 x Interrupt Interface
74 * 1 x Controllable 5V output, max
75
76
77 **LoRa Spec:**
78
79 * Frequency Range:
80 ** Band 1 (HF): 862 ~~ 1020 Mhz
81 ** Band 2 (LF): 410 ~~ 528 Mhz
82 * 168 dB maximum link budget.
83 * +20 dBm - 100 mW constant RF output vs.
84 * Programmable bit rate up to 300 kbps.
85 * High sensitivity: down to -148 dBm.
86 * Bullet-proof front end: IIP3 = -12.5 dBm.
87 * Excellent blocking immunity.
88 * Fully integrated synthesizer with a resolution of 61 Hz.
89 * LoRa modulation.
90 * Built-in bit synchronizer for clock recovery.
91 * Preamble detection.
92 * 127 dB Dynamic Range RSSI.
93 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
94
95
96
97
98 == 1.3 Features ==
99
100 * LoRaWAN Class A & Class C protocol (default Class A)
101 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
102 * AT Commands to change parameters
103 * Remote configure parameters via LoRaWAN Downlink
104 * Firmware upgradable via program port
105 * Support multiply RS485 devices by flexible rules
106 * Support Modbus protocol
107 * Support Interrupt uplink
108
109
110
111
112 == 1.4 Applications ==
113
114 * Smart Buildings & Home Automation
115 * Logistics and Supply Chain Management
116 * Smart Metering
117 * Smart Agriculture
118 * Smart Cities
119 * Smart Factory
120
121
122
123
124 == 1.5 Firmware Change log ==
125
126 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
127
128
129 == 1.6 Hardware Change log ==
130
131 (((
132
133
134 (((
135 v1.4
136 )))
137 )))
138
139 (((
140 (((
141 ~1. Change Power IC to TPS22916
142 )))
143 )))
144
145 (((
146
147 )))
148
149 (((
150 (((
151 v1.3
152 )))
153 )))
154
155 (((
156 (((
157 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
158 )))
159 )))
160
161 (((
162
163 )))
164
165 (((
166 (((
167 v1.2
168 )))
169 )))
170
171 (((
172 (((
173 Release version ​​​​​
174 )))
175
176
177 )))
178
179 = 2. Pin mapping and Power ON Device =
180
181 (((
182 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
183 )))
184
185 [[image:1652953055962-143.png||height="387" width="728"]]
186
187
188 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
189
190
191 = 3. Operation Mode =
192
193 == 3.1 How it works? ==
194
195 (((
196 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
197
198
199 )))
200
201 == 3.2 Example to join LoRaWAN network ==
202
203 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
204
205 [[image:1652953414711-647.png||height="337" width="723"]]
206
207
208 (((
209 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
210 )))
211
212 (((
213 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
214 )))
215
216 (((
217 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
218 )))
219
220 (((
221 Each RS485-BL is shipped with a sticker with unique device EUI:
222 )))
223
224 [[image:1652953462722-299.png]]
225
226
227 (((
228 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
229 )))
230
231 (((
232 Add APP EUI in the application.
233 )))
234
235
236 [[image:image-20220519174512-1.png]]
237
238 [[image:image-20220519174512-2.png||height="328" width="731"]]
239
240 [[image:image-20220519174512-3.png||height="556" width="724"]]
241
242 [[image:image-20220519174512-4.png]]
243
244 You can also choose to create the device manually.
245
246 [[image:1652953542269-423.png||height="710" width="723"]]
247
248 Add APP KEY and DEV EUI
249
250 [[image:1652953553383-907.png||height="514" width="724"]]
251
252
253 (((
254 **Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
255 )))
256
257 [[image:1652953568895-172.png||height="232" width="724"]]
258
259
260 == 3.3 Configure Commands to read data ==
261
262 (((
263 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
264
265
266 )))
267
268 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
269
270 (((
271 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
272 )))
273
274 (((
275 **~1. RS485-MODBUS mode:**
276 )))
277
278 (((
279 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
280 )))
281
282 (((
283 **2. TTL mode:**
284 )))
285
286 (((
287 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
288 )))
289
290 (((
291 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
292 )))
293
294 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
295 |=(% style="width: 80px;" %)(((
296 (((
297 **AT Commands**
298 )))
299 )))|=(% style="width: 210px;" %)(((
300 (((
301 **Description**
302 )))
303 )))|=(% style="width: 210px;" %)(((
304 (((
305 **Example**
306 )))
307 )))
308 |(% style="width:80px" %)(((
309 (((
310 AT+BAUDR
311 )))
312 )))|(% style="width:210px" %)(((
313 (((
314 Set the baud rate (for RS485 connection). Default Value is: 9600.
315 )))
316 )))|(% style="width:210px" %)(((
317 (((
318 (((
319 AT+BAUDR=9600
320 )))
321 )))
322
323 (((
324 (((
325 Options: (1200,2400,4800,14400,19200,115200)
326 )))
327 )))
328 )))
329 |(% style="width:80px" %)(((
330 (((
331 AT+PARITY
332 )))
333 )))|(% style="width:210px" %)(((
334 (((
335 (((
336 Set UART parity (for RS485 connection)
337 )))
338 )))
339
340 (((
341 (((
342 Default Value is: no parity.
343 )))
344 )))
345 )))|(% style="width:210px" %)(((
346 (((
347 (((
348 AT+PARITY=0
349 )))
350 )))
351
352 (((
353 (((
354 Option: 0: no parity, 1: odd parity, 2: even parity
355 )))
356 )))
357 )))
358 |(% style="width:80px" %)(((
359 (((
360 AT+STOPBIT
361 )))
362 )))|(% style="width:210px" %)(((
363 (((
364 (((
365 Set serial stopbit (for RS485 connection)
366 )))
367 )))
368
369 (((
370 (((
371 Default Value is: 1bit.
372 )))
373 )))
374 )))|(% style="width:210px" %)(((
375 (((
376 (((
377 AT+STOPBIT=0 for 1bit
378 )))
379 )))
380
381 (((
382 (((
383 AT+STOPBIT=1 for 1.5 bit
384 )))
385 )))
386
387 (((
388 (((
389 AT+STOPBIT=2 for 2 bits
390 )))
391 )))
392 )))
393
394 === 3.3.2 Configure sensors ===
395
396 (((
397 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
398 )))
399
400 (((
401 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
402 )))
403
404 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
405 |=(% style="width: 80px;" %)**AT Commands**|=(% style="width: 210px;" %)**Description**|=(% style="width: 210px;" %)**Example**
406 |AT+CFGDEV|(% style="width:80px" %)(((
407 (((
408 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
409 )))
410
411 (((
412 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
413 )))
414
415 (((
416 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
417 )))
418 )))|(% style="width:210px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
419
420 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
421
422
423
424 === 3.3.3 Configure read commands for each sampling ===
425
426 (((
427 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
428 )))
429
430 (((
431 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
432 )))
433
434 (((
435 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
436 )))
437
438 (((
439 This section describes how to achieve above goals.
440 )))
441
442 (((
443 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
444 )))
445
446 (((
447 **Command from RS485-BL to Sensor:**
448 )))
449
450 (((
451 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
452 )))
453
454 (((
455 **Handle return from sensors to RS485-BL**:
456 )))
457
458 (((
459 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
460 )))
461
462 * (((
463 **AT+DATACUT**
464 )))
465
466 (((
467 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
468 )))
469
470 * (((
471 **AT+SEARCH**
472 )))
473
474 (((
475 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
476 )))
477
478 (((
479 **Define wait timeout:**
480 )))
481
482 (((
483 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
484 )))
485
486 (((
487 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
488 )))
489
490 (((
491 **Examples:**
492 )))
493
494 (((
495 Below are examples for the how above AT Commands works.
496 )))
497
498 (((
499 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
500 )))
501
502 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
503 |(% style="width:498px" %)(((
504 (((
505 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
506 )))
507
508 (((
509 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
510 )))
511
512 (((
513 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
514 )))
515 )))
516
517 (((
518 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
519 )))
520
521 (((
522 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
523 )))
524
525 (((
526
527 )))
528
529 (((
530 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
531 )))
532
533 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
534 |(% style="width:577px" %)(((
535 (((
536 **AT+SEARCHx=aa,xx xx xx xx xx**
537 )))
538
539 * (((
540 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
541 )))
542 * (((
543 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
544 )))
545 )))
546
547 (((
548 **Examples:**
549 )))
550
551 (((
552 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
553 )))
554
555 (((
556 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
557 )))
558
559 (((
560 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
561 )))
562
563 (((
564 [[image:1653271044481-711.png]]
565 )))
566
567 (((
568 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
569 )))
570
571 (((
572 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
573 )))
574
575 (((
576 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
577 )))
578
579 (((
580 [[image:1653271276735-972.png]]
581 )))
582
583 (((
584 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
585 )))
586
587 (% style="background-color:#4f81bd; color:white; width:510px" %)
588 |(% style="width:726px" %)(((
589 (((
590 **AT+DATACUTx=a,b,c**
591 )))
592
593 * (((
594 **a: length for the return of AT+COMMAND**
595 )))
596 * (((
597 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
598 )))
599 * (((
600 **c: define the position for valid value.  **
601 )))
602 )))
603
604 (((
605 **Examples:**
606 )))
607
608 * (((
609 Grab bytes:
610 )))
611
612 (((
613 [[image:1653271581490-837.png||height="313" width="722"]]
614 )))
615
616 (((
617
618 )))
619
620 * (((
621 Grab a section.
622 )))
623
624 (((
625 [[image:1653271648378-342.png||height="326" width="720"]]
626 )))
627
628 (((
629
630 )))
631
632 * (((
633 Grab different sections.
634 )))
635
636 (((
637 [[image:1653271657255-576.png||height="305" width="730"]]
638 )))
639
640 (((
641 (((
642 (% style="color:red" %)**Note:**
643 )))
644 )))
645
646 (((
647 (((
648 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
649 )))
650 )))
651
652 (((
653 (((
654 **Example:**
655 )))
656 )))
657
658 (((
659 (((
660 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
661 )))
662 )))
663
664 (((
665 (((
666 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
667 )))
668 )))
669
670 (((
671 (((
672 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
673 )))
674 )))
675
676 (((
677 (((
678 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
679 )))
680 )))
681
682 (((
683 (((
684 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
685 )))
686 )))
687
688 (((
689 (((
690 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
691 )))
692 )))
693
694 (((
695 [[image:1653271763403-806.png]]
696 )))
697
698
699 === 3.3.4 Compose the uplink payload ===
700
701 (((
702 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
703
704
705 )))
706
707 (((
708 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
709
710
711 )))
712
713 (((
714 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
715 )))
716
717 (((
718 Final Payload is
719 )))
720
721 (((
722 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
723 )))
724
725 (((
726 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
727 )))
728
729 [[image:1653272787040-634.png||height="515" width="719"]]
730
731
732
733 (((
734 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
735
736
737 )))
738
739 (((
740 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
741 )))
742
743 (((
744 Final Payload is
745 )))
746
747 (((
748 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
749 )))
750
751 1. (((
752 Battery Info (2 bytes): Battery voltage
753 )))
754 1. (((
755 PAYVER (1 byte): Defined by AT+PAYVER
756 )))
757 1. (((
758 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
759 )))
760 1. (((
761 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
762 )))
763 1. (((
764 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
765 )))
766
767 [[image:1653272817147-600.png||height="437" width="717"]]
768
769 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
770
771
772 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
773
774 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
775
776 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
777
778
779 Below are the uplink payloads:
780
781 [[image:1653272901032-107.png]]
782
783
784 (% style="color:red" %)Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
785
786 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
787
788 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
789
790 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
791
792 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
793
794
795
796 === 3.3.5 Uplink on demand ===
797
798 (((
799 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
800 )))
801
802 (((
803 Downlink control command:
804 )))
805
806 (((
807 **0x08 command**: Poll an uplink with current command set in RS485-BL.
808 )))
809
810 (((
811 **0xA8 command**: Send a command to RS485-BL and uplink the output from sensors.
812
813
814 )))
815
816 === 3.3.6 Uplink on Interrupt ===
817
818 Put the interrupt sensor between 3.3v_out and GPIO ext.
819
820 [[image:1653273818896-432.png]]
821
822
823 (((
824 AT+INTMOD=0  Disable Interrupt
825 )))
826
827 (((
828 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
829 )))
830
831 (((
832 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
833 )))
834
835 (((
836 AT+INTMOD=3  Interrupt trigger by rising edge.
837
838
839 )))
840
841 == 3.4 Uplink Payload ==
842
843 [[image:image-20220606105412-1.png]]
844
845 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
846
847 (((
848 {{{function Decoder(bytes, port) {}}}
849 )))
850
851 (((
852 {{{//Payload Formats of RS485-BL Deceive}}}
853 )))
854
855 (((
856 {{{return {}}}
857 )))
858
859 (((
860 {{{ //Battery,units:V}}}
861 )))
862
863 (((
864 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
865 )))
866
867 (((
868 {{{ //GPIO_EXTI }}}
869 )))
870
871 (((
872 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
873 )))
874
875 (((
876 {{{ //payload of version}}}
877 )))
878
879 (((
880 {{{ Pay_ver:bytes[2],}}}
881 )))
882
883 (((
884 {{{ }; }}}
885 )))
886
887 (((
888 **}**
889
890
891 )))
892
893 (((
894 TTN V3 uplink screen shot.
895 )))
896
897 [[image:1653274001211-372.png||height="192" width="732"]]
898
899
900 == 3.5 Configure RS485-BL via AT or Downlink ==
901
902 (((
903 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
904 )))
905
906 (((
907 There are two kinds of Commands:
908 )))
909
910 * (((
911 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
912 )))
913
914 * (((
915 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
916 )))
917
918 === 3.5.1 Common Commands: ===
919
920 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
921
922
923 === 3.5.2 Sensor related commands: ===
924
925
926
927 ==== **Choose Device Type (RS485 or TTL)** ====
928
929 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
930
931 * **AT Command**
932
933 (% class="box infomessage" %)
934 (((
935 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
936 )))
937
938 (% class="box infomessage" %)
939 (((
940 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
941 )))
942
943
944 * **Downlink Payload**
945
946 **0A aa**  ~-~->  same as AT+MOD=aa
947
948
949
950
951 ==== **RS485 Debug Command (AT+CFGDEV)** ====
952
953 (((
954 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
955 )))
956
957 * (((
958 **AT Command**
959 )))
960
961 (% class="box infomessage" %)
962 (((
963 (((
964 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
965 )))
966 )))
967
968 (((
969 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
970 )))
971
972 (((
973
974 )))
975
976 * (((
977 **Downlink Payload**
978 )))
979
980 (((
981 Format: A8 MM NN XX XX XX XX YY
982 )))
983
984 (((
985 Where:
986 )))
987
988 * (((
989 MM: 1: add CRC-16/MODBUS ; 0: no CRC
990 )))
991 * (((
992 NN: The length of RS485 command
993 )))
994 * (((
995 XX XX XX XX: RS485 command total NN bytes
996 )))
997 * (((
998 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
999 )))
1000
1001 (((
1002 **Example 1:**
1003 )))
1004
1005 (((
1006 To connect a Modbus Alarm with below commands.
1007 )))
1008
1009 * (((
1010 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
1011 )))
1012
1013 * (((
1014 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1015 )))
1016
1017 (((
1018 So if user want to use downlink command to control to RS485 Alarm, he can use:
1019 )))
1020
1021 (((
1022 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1023 )))
1024
1025 (((
1026 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1027 )))
1028
1029 (((
1030 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
1031 )))
1032
1033 (((
1034
1035 )))
1036
1037 (((
1038 **Example 2:**
1039 )))
1040
1041 (((
1042 Check TTL Sensor return:
1043 )))
1044
1045 (((
1046 [[image:1654132684752-193.png]]
1047 )))
1048
1049
1050
1051
1052
1053 ==== **Set Payload version** ====
1054
1055 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1056
1057 * **AT Command:**
1058
1059 (% class="box infomessage" %)
1060 (((
1061 **AT+PAYVER: Set PAYVER field = 1**
1062 )))
1063
1064
1065 * **Downlink Payload:**
1066
1067 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
1068
1069 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
1070
1071
1072
1073
1074 ==== **Set RS485 Sampling Commands** ====
1075
1076 (((
1077 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1078 )))
1079
1080 (((
1081 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1082 )))
1083
1084 (((
1085
1086 )))
1087
1088 * (((
1089 **AT Command:**
1090 )))
1091
1092 (% class="box infomessage" %)
1093 (((
1094 (((
1095 **AT+COMMANDx: Configure RS485 read command to sensor.**
1096 )))
1097 )))
1098
1099 (% class="box infomessage" %)
1100 (((
1101 (((
1102 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
1103 )))
1104 )))
1105
1106 (% class="box infomessage" %)
1107 (((
1108 (((
1109 **AT+SEARCHx: Configure search command**
1110 )))
1111 )))
1112
1113 (((
1114
1115 )))
1116
1117 * (((
1118 **Downlink Payload:**
1119 )))
1120
1121 (((
1122 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1123 )))
1124
1125 (((
1126 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
1127 )))
1128
1129 (((
1130 Format: AF MM NN LL XX XX XX XX YY
1131 )))
1132
1133 (((
1134 Where:
1135 )))
1136
1137 * (((
1138 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1139 )))
1140 * (((
1141 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1142 )))
1143 * (((
1144 LL:  The length of AT+COMMAND or AT+DATACUT command
1145 )))
1146 * (((
1147 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1148 )))
1149 * (((
1150 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1151 )))
1152
1153 (((
1154 **Example:**
1155 )))
1156
1157 (((
1158 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1159 )))
1160
1161 (((
1162 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1163 )))
1164
1165 (((
1166 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1167 )))
1168
1169 (((
1170
1171 )))
1172
1173 (((
1174 **0xAB** downlink command can be used for set AT+SEARCHx
1175 )))
1176
1177 (((
1178 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1179 )))
1180
1181 * (((
1182 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1183 )))
1184 * (((
1185 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1186 )))
1187
1188 (((
1189 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1190 )))
1191
1192
1193
1194
1195 ==== **Fast command to handle MODBUS device** ====
1196
1197 (((
1198 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1199 )))
1200
1201 (((
1202 This command is valid since v1.3 firmware version
1203 )))
1204
1205 (((
1206
1207 )))
1208
1209 (((
1210 **AT+MBFUN has only two value:**
1211 )))
1212
1213 * (((
1214 **AT+MBFUN=1**: Enable Modbus reading. And get response base on the MODBUS return
1215 )))
1216
1217 (((
1218 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1219 )))
1220
1221 * (((
1222 **AT+MBFUN=0**: Disable Modbus fast reading.
1223 )))
1224
1225 (((
1226 **Example:**
1227 )))
1228
1229 * (((
1230 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1231 )))
1232 * (((
1233 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1234 )))
1235 * (((
1236 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1237 )))
1238
1239 [[image:1654133913295-597.png]]
1240
1241
1242 [[image:1654133954153-643.png]]
1243
1244
1245 * (((
1246 **Downlink Commands:**
1247 )))
1248
1249 (((
1250 **A9 aa** ~-~-> Same as AT+MBFUN=aa
1251 )))
1252
1253
1254
1255
1256 ==== **RS485 command timeout** ====
1257
1258 (((
1259 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1260 )))
1261
1262 (((
1263 Default value: 0, range:  0 ~~ 5 seconds
1264 )))
1265
1266 (((
1267
1268 )))
1269
1270 * (((
1271 **AT Command:**
1272 )))
1273
1274 (% class="box infomessage" %)
1275 (((
1276 (((
1277 **AT+CMDDLaa=hex(bb cc)**
1278 )))
1279 )))
1280
1281 (((
1282 **Example:**
1283 )))
1284
1285 (((
1286 **AT+CMDDL1=1000** to send the open time to 1000ms
1287 )))
1288
1289 (((
1290
1291 )))
1292
1293 * (((
1294 **Downlink Payload:**
1295 )))
1296
1297 (((
1298 0x AA aa bb cc
1299 )))
1300
1301 (((
1302 Same as: AT+CMDDLaa=hex(bb cc)
1303 )))
1304
1305 (((
1306 **Example:**
1307 )))
1308
1309 (((
1310 **0xAA 01 03 E8**  ~-~-> Same as **AT+CMDDL1=1000 ms**
1311 )))
1312
1313
1314
1315
1316 ==== **Uplink payload mode** ====
1317
1318 (((
1319 Define to use one uplink or multiple uplinks for the sampling.
1320 )))
1321
1322 (((
1323 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1324 )))
1325
1326 * (((
1327 **AT Command:**
1328 )))
1329
1330 (% class="box infomessage" %)
1331 (((
1332 (((
1333 **AT+DATAUP=0**
1334 )))
1335 )))
1336
1337 (% class="box infomessage" %)
1338 (((
1339 (((
1340 **AT+DATAUP=1**
1341 )))
1342 )))
1343
1344 (((
1345
1346 )))
1347
1348 * (((
1349 **Downlink Payload:**
1350 )))
1351
1352 (((
1353 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
1354 )))
1355
1356 (((
1357 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
1358 )))
1359
1360
1361
1362
1363 ==== **Manually trigger an Uplink** ====
1364
1365 Ask device to send an uplink immediately.
1366
1367 * **Downlink Payload:**
1368
1369 **0x08 FF**, RS485-BL will immediately send an uplink.
1370
1371
1372
1373
1374 ==== **Clear RS485 Command** ====
1375
1376 (((
1377 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1378 )))
1379
1380 (((
1381
1382 )))
1383
1384 * (((
1385 **AT Command:**
1386 )))
1387
1388 (((
1389 (% style="color:#037691" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1390 )))
1391
1392 (((
1393 Example screen shot after clear all RS485 commands. 
1394 )))
1395
1396 (((
1397
1398 )))
1399
1400 (((
1401 The uplink screen shot is:
1402 )))
1403
1404 (((
1405 [[image:1654134704555-320.png]]
1406 )))
1407
1408 (((
1409
1410 )))
1411
1412 * (((
1413 **Downlink Payload:**
1414 )))
1415
1416 (((
1417 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1418 )))
1419
1420
1421
1422
1423 ==== **Set Serial Communication Parameters** ====
1424
1425 (((
1426 Set the Rs485 serial communication parameters:
1427 )))
1428
1429 * (((
1430 **AT Command:**
1431 )))
1432
1433 (((
1434 Set Baud Rate:
1435 )))
1436
1437 (% class="box infomessage" %)
1438 (((
1439 (((
1440 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1441
1442 Set UART Parity
1443 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1444
1445 Set STOPBIT
1446
1447 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1448 )))
1449 )))
1450
1451
1452 * (((
1453 **Downlink Payload:**
1454 )))
1455
1456 (((
1457 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1458 )))
1459
1460 (((
1461 **Example:**
1462 )))
1463
1464 * (((
1465 A7 01 00 60   same as AT+BAUDR=9600
1466 )))
1467 * (((
1468 A7 01 04 80  same as AT+BAUDR=115200
1469 )))
1470
1471 (((
1472 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1473 )))
1474
1475 (((
1476 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1477 )))
1478
1479
1480
1481
1482 ==== **Control output power duration** ====
1483
1484 (((
1485 User can set the output power duration before each sampling.
1486 )))
1487
1488 * (((
1489 **AT Command:**
1490 )))
1491
1492 (((
1493 **Example:**
1494 )))
1495
1496 (((
1497 **AT+3V3T=1000**  ~/~/ 3V3 output power will open 1s before each sampling.
1498 )))
1499
1500 (((
1501 **AT+5VT=1000**  ~/~/ +5V output power will open 1s before each sampling.
1502 )))
1503
1504 (((
1505
1506 )))
1507
1508 * (((
1509 **LoRaWAN Downlink Command:**
1510 )))
1511
1512 (((
1513 **07 01 aa bb**  Same as AT+5VT=(aa bb)
1514 )))
1515
1516 (((
1517 **07 02 aa bb**  Same as AT+3V3T=(aa bb)
1518 )))
1519
1520
1521
1522 == 3.6 Buttons ==
1523
1524 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:233px" %)
1525 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1526 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1527
1528 == 3.7 +3V3 Output ==
1529
1530 (((
1531 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1532 )))
1533
1534 (((
1535 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1536 )))
1537
1538 (((
1539 The +3V3 output time can be controlled by AT Command.
1540 )))
1541
1542 (((
1543
1544 )))
1545
1546 (((
1547 (% style="color:#037691" %)**AT+3V3T=1000**
1548 )))
1549
1550 (((
1551
1552 )))
1553
1554 (((
1555 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1556 )))
1557
1558 (((
1559 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1560 )))
1561
1562
1563 == 3.8 +5V Output ==
1564
1565 (((
1566 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1567 )))
1568
1569 (((
1570 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1571 )))
1572
1573 (((
1574 The 5V output time can be controlled by AT Command.
1575 )))
1576
1577 (((
1578
1579 )))
1580
1581 (((
1582 (% style="color:#037691" %)**AT+5VT=1000**
1583 )))
1584
1585 (((
1586
1587 )))
1588
1589 (((
1590 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1591 )))
1592
1593 (((
1594 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1595 )))
1596
1597
1598
1599 == 3.9 LEDs ==
1600
1601 (% border="1" style="background-color:#ffffcc; color:green; width:332px" %)
1602 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1603 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1604
1605 == 3.10 Switch Jumper ==
1606
1607 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:463px" %)
1608 |=(% style="width: 123px;" %)**Switch Jumper**|=(% style="width: 336px;" %)**Feature**
1609 |(% style="width:123px" %)**SW1**|(% style="width:336px" %)ISP position: Upgrade firmware via UART
1610 Flash position: Configure device, check running status.
1611 |(% style="width:123px" %)**SW2**|(% style="width:336px" %)5V position: set to compatible with 5v I/O.
1612 3.3v position: set to compatible with 3.3v I/O.,
1613
1614 (((
1615 **+3.3V**: is always ON
1616 )))
1617
1618 (((
1619 **+5V**: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1620 )))
1621
1622
1623 = 4. Case Study =
1624
1625 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1626
1627
1628 = 5. Use AT Command =
1629
1630 == 5.1 Access AT Command ==
1631
1632 (((
1633 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1634 )))
1635
1636 [[image:1654135840598-282.png]]
1637
1638
1639 (((
1640 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1641 )))
1642
1643 [[image:1654136105500-922.png]]
1644
1645
1646 (((
1647 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1648 )))
1649
1650
1651 == 5.2 Common AT Command Sequence ==
1652
1653 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1654
1655 If device has not joined network yet:
1656
1657 (% class="box infomessage" %)
1658 (((
1659 **AT+FDR**
1660 **AT+NJM=0**
1661 **ATZ**
1662 )))
1663
1664
1665 (((
1666 If device already joined network:
1667 )))
1668
1669 (% class="box infomessage" %)
1670 (((
1671 **AT+NJM=0**
1672 )))
1673
1674 (% class="box infomessage" %)
1675 (((
1676 **ATZ**
1677 )))
1678
1679
1680 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1681
1682
1683 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1684
1685 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1686
1687 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1688
1689 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%)Set Data Rate
1690
1691 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1692
1693 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1694
1695 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1696
1697 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1698
1699 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1700
1701 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1702
1703
1704 (% style="color:red" %)**Note:**
1705
1706 (((
1707 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1708 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1709 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1710 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1711 )))
1712
1713 [[image:1654136435598-589.png]]
1714
1715
1716 = 6. FAQ =
1717
1718 == 6.1 How to upgrade the image? ==
1719
1720 (((
1721 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1722 )))
1723
1724 * (((
1725 Support new features
1726 )))
1727 * (((
1728 For bug fix
1729 )))
1730 * (((
1731 Change LoRaWAN bands.
1732 )))
1733
1734 (((
1735 Below shows the hardware connection for how to upload an image to RS485-BL:
1736 )))
1737
1738 [[image:1654136646995-976.png]]
1739
1740 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1741
1742 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1743
1744 **Step3: **Open flashloader; choose the correct COM port to update.
1745
1746 [[image:image-20220602102605-1.png]]
1747
1748
1749 [[image:image-20220602102637-2.png]]
1750
1751
1752 [[image:image-20220602102715-3.png]]
1753
1754
1755
1756 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1757
1758 (((
1759 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1760 )))
1761
1762
1763
1764 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1765
1766 (((
1767 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1768 )))
1769
1770
1771
1772 = 7. Trouble Shooting =
1773
1774
1775 == 7.1 Downlink doesn’t work, how to solve it? ==
1776
1777 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1778
1779
1780 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1781
1782 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1783
1784
1785 = 8. Order Info =
1786
1787 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
1788
1789 (% style="color:blue" %)**XXX:**
1790
1791 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1792 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1793 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1794 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1795 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1796 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1797 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1798 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1799 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1800 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1801
1802 = 9. Packing Info =
1803
1804 (((
1805 **Package Includes**:
1806 )))
1807
1808 * (((
1809 RS485-BL x 1
1810 )))
1811 * (((
1812 Stick Antenna for LoRa RF part x 1
1813 )))
1814 * (((
1815 Program cable x 1
1816 )))
1817
1818 (((
1819 **Dimension and weight**:
1820 )))
1821
1822 * (((
1823 Device Size: 13.5 x 7 x 3 cm
1824 )))
1825 * (((
1826 Device Weight: 105g
1827 )))
1828 * (((
1829 Package Size / pcs : 14.5 x 8 x 5 cm
1830 )))
1831 * (((
1832 Weight / pcs : 170g
1833
1834
1835 )))
1836
1837 = 10. Support =
1838
1839 * (((
1840 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1841 )))
1842 * (((
1843 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1844 )))