Version 44.7 by Xiaoling on 2022/06/14 10:04

Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="404" width="404"]]
3
4
5
6
7 **Table of Contents:**
8
9 {{toc/}}
10
11
12
13
14
15 = 1.Introduction =
16
17 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
18
19 (((
20
21 )))
22
23 (((
24 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
25 )))
26
27 (((
28 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
29 )))
30
31 (((
32 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
33 )))
34
35 (((
36 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
37 )))
38
39 (((
40 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
41 )))
42
43 (((
44 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
45 )))
46
47 (((
48 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
49 )))
50
51 [[image:1652953304999-717.png||height="424" width="733"]]
52
53
54
55 == 1.2 Specifications ==
56
57
58 **Hardware System:**
59
60 * STM32L072CZT6 MCU
61 * SX1276/78 Wireless Chip 
62 * Power Consumption (exclude RS485 device):
63 ** Idle: 6uA@3.3v
64 ** 20dB Transmit: 130mA@3.3v
65
66
67 **Interface for Model:**
68
69 * 1 x RS485 Interface
70 * 1 x TTL Serial , 3.3v or 5v.
71 * 1 x I2C Interface, 3.3v or 5v.
72 * 1 x one wire interface
73 * 1 x Interrupt Interface
74 * 1 x Controllable 5V output, max
75
76
77 **LoRa Spec:**
78
79 * Frequency Range:
80 ** Band 1 (HF): 862 ~~ 1020 Mhz
81 ** Band 2 (LF): 410 ~~ 528 Mhz
82 * 168 dB maximum link budget.
83 * +20 dBm - 100 mW constant RF output vs.
84 * Programmable bit rate up to 300 kbps.
85 * High sensitivity: down to -148 dBm.
86 * Bullet-proof front end: IIP3 = -12.5 dBm.
87 * Excellent blocking immunity.
88 * Fully integrated synthesizer with a resolution of 61 Hz.
89 * LoRa modulation.
90 * Built-in bit synchronizer for clock recovery.
91 * Preamble detection.
92 * 127 dB Dynamic Range RSSI.
93 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
94
95
96
97
98 == 1.3 Features ==
99
100 * LoRaWAN Class A & Class C protocol (default Class A)
101 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
102 * AT Commands to change parameters
103 * Remote configure parameters via LoRaWAN Downlink
104 * Firmware upgradable via program port
105 * Support multiply RS485 devices by flexible rules
106 * Support Modbus protocol
107 * Support Interrupt uplink
108
109
110
111
112 == 1.4 Applications ==
113
114 * Smart Buildings & Home Automation
115 * Logistics and Supply Chain Management
116 * Smart Metering
117 * Smart Agriculture
118 * Smart Cities
119 * Smart Factory
120
121
122
123
124 == 1.5 Firmware Change log ==
125
126 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
127
128
129 == 1.6 Hardware Change log ==
130
131 (((
132
133
134 (((
135 v1.4
136 )))
137 )))
138
139 (((
140 (((
141 ~1. Change Power IC to TPS22916
142 )))
143 )))
144
145 (((
146
147 )))
148
149 (((
150 (((
151 v1.3
152 )))
153 )))
154
155 (((
156 (((
157 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
158 )))
159 )))
160
161 (((
162
163 )))
164
165 (((
166 (((
167 v1.2
168 )))
169 )))
170
171 (((
172 (((
173 Release version ​​​​​
174 )))
175
176
177 )))
178
179 = 2. Pin mapping and Power ON Device =
180
181 (((
182 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
183 )))
184
185 [[image:1652953055962-143.png||height="387" width="728"]]
186
187
188 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
189
190
191 = 3. Operation Mode =
192
193 == 3.1 How it works? ==
194
195 (((
196 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
197
198
199 )))
200
201 == 3.2 Example to join LoRaWAN network ==
202
203 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
204
205 [[image:1652953414711-647.png||height="337" width="723"]]
206
207
208 (((
209 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
210 )))
211
212 (((
213 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
214 )))
215
216 (((
217 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
218 )))
219
220 (((
221 Each RS485-BL is shipped with a sticker with unique device EUI:
222 )))
223
224 [[image:1652953462722-299.png]]
225
226 (((
227 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
228 )))
229
230 (((
231 Add APP EUI in the application.
232 )))
233
234
235 [[image:image-20220519174512-1.png]]
236
237 [[image:image-20220519174512-2.png||height="328" width="731"]]
238
239 [[image:image-20220519174512-3.png||height="556" width="724"]]
240
241 [[image:image-20220519174512-4.png]]
242
243 You can also choose to create the device manually.
244
245 [[image:1652953542269-423.png||height="710" width="723"]]
246
247 Add APP KEY and DEV EUI
248
249 [[image:1652953553383-907.png||height="514" width="724"]]
250
251
252 (((
253 **Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
254 )))
255
256 [[image:1652953568895-172.png||height="232" width="724"]]
257
258
259 == 3.3 Configure Commands to read data ==
260
261 (((
262 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
263
264
265 )))
266
267 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
268
269 (((
270 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
271 )))
272
273 (((
274 **~1. RS485-MODBUS mode:**
275 )))
276
277 (((
278 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
279 )))
280
281 (((
282 **2. TTL mode:**
283 )))
284
285 (((
286 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
287 )))
288
289 (((
290 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
291 )))
292
293 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
294 |=(% style="width: 80px;" %)(((
295 (((
296 **AT Commands**
297 )))
298 )))|=(% style="width: 210px;" %)(((
299 (((
300 **Description**
301 )))
302 )))|=(% style="width: 210px;" %)(((
303 (((
304 **Example**
305 )))
306 )))
307 |(% style="width:80px" %)(((
308 (((
309 AT+BAUDR
310 )))
311 )))|(% style="width:210px" %)(((
312 (((
313 Set the baud rate (for RS485 connection). Default Value is: 9600.
314 )))
315 )))|(% style="width:210px" %)(((
316 (((
317 (((
318 AT+BAUDR=9600
319 )))
320 )))
321
322 (((
323 (((
324 Options: (1200,2400,4800,14400,19200,115200)
325 )))
326 )))
327 )))
328 |(% style="width:80px" %)(((
329 (((
330 AT+PARITY
331 )))
332 )))|(% style="width:210px" %)(((
333 (((
334 (((
335 Set UART parity (for RS485 connection)
336 )))
337 )))
338
339 (((
340 (((
341 Default Value is: no parity.
342 )))
343 )))
344 )))|(% style="width:210px" %)(((
345 (((
346 (((
347 AT+PARITY=0
348 )))
349 )))
350
351 (((
352 (((
353 Option: 0: no parity, 1: odd parity, 2: even parity
354 )))
355 )))
356 )))
357 |(% style="width:80px" %)(((
358 (((
359 AT+STOPBIT
360 )))
361 )))|(% style="width:210px" %)(((
362 (((
363 (((
364 Set serial stopbit (for RS485 connection)
365 )))
366 )))
367
368 (((
369 (((
370 Default Value is: 1bit.
371 )))
372 )))
373 )))|(% style="width:210px" %)(((
374 (((
375 (((
376 AT+STOPBIT=0 for 1bit
377 )))
378 )))
379
380 (((
381 (((
382 AT+STOPBIT=1 for 1.5 bit
383 )))
384 )))
385
386 (((
387 (((
388 AT+STOPBIT=2 for 2 bits
389 )))
390 )))
391 )))
392
393 === 3.3.2 Configure sensors ===
394
395 (((
396 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
397 )))
398
399 (((
400 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
401 )))
402
403 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
404 |=(% style="width: 80px;" %)**AT Commands**|=(% style="width: 210px;" %)**Description**|=(% style="width: 210px;" %)**Example**
405 |AT+CFGDEV|(% style="width:80px" %)(((
406 (((
407 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
408 )))
409
410 (((
411 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
412 )))
413
414 (((
415 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
416 )))
417 )))|(% style="width:210px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
418
419 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
420
421
422
423 === 3.3.3 Configure read commands for each sampling ===
424
425 (((
426 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
427 )))
428
429 (((
430 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
431 )))
432
433 (((
434 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
435 )))
436
437 (((
438 This section describes how to achieve above goals.
439 )))
440
441 (((
442 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
443 )))
444
445 (((
446 **Command from RS485-BL to Sensor:**
447 )))
448
449 (((
450 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
451 )))
452
453 (((
454 **Handle return from sensors to RS485-BL**:
455 )))
456
457 (((
458 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
459 )))
460
461 * (((
462 **AT+DATACUT**
463 )))
464
465 (((
466 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
467 )))
468
469 * (((
470 **AT+SEARCH**
471 )))
472
473 (((
474 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
475 )))
476
477 (((
478 **Define wait timeout:**
479 )))
480
481 (((
482 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
483 )))
484
485 (((
486 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
487 )))
488
489 (((
490 **Examples:**
491 )))
492
493 (((
494 Below are examples for the how above AT Commands works.
495 )))
496
497 (((
498 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
499 )))
500
501 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
502 |(% style="width:498px" %)(((
503 (((
504 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
505 )))
506
507 (((
508 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
509 )))
510
511 (((
512 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
513 )))
514 )))
515
516 (((
517 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
518 )))
519
520 (((
521 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
522 )))
523
524 (((
525
526 )))
527
528 (((
529 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
530 )))
531
532 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
533 |(% style="width:577px" %)(((
534 (((
535 **AT+SEARCHx=aa,xx xx xx xx xx**
536 )))
537
538 * (((
539 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
540 )))
541 * (((
542 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
543 )))
544 )))
545
546 (((
547 **Examples:**
548 )))
549
550 (((
551 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
552 )))
553
554 (((
555 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
556 )))
557
558 (((
559 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
560 )))
561
562 (((
563 [[image:1653271044481-711.png]]
564 )))
565
566 (((
567 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
568 )))
569
570 (((
571 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
572 )))
573
574 (((
575 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
576 )))
577
578 (((
579 [[image:1653271276735-972.png]]
580 )))
581
582 (((
583 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
584 )))
585
586 (% style="background-color:#4f81bd; color:white; width:510px" %)
587 |(% style="width:726px" %)(((
588 (((
589 **AT+DATACUTx=a,b,c**
590 )))
591
592 * (((
593 **a: length for the return of AT+COMMAND**
594 )))
595 * (((
596 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
597 )))
598 * (((
599 **c: define the position for valid value.  **
600 )))
601 )))
602
603 (((
604 **Examples:**
605 )))
606
607 * (((
608 Grab bytes:
609 )))
610
611 (((
612 [[image:1653271581490-837.png||height="313" width="722"]]
613 )))
614
615 (((
616
617 )))
618
619 * (((
620 Grab a section.
621 )))
622
623 (((
624 [[image:1653271648378-342.png||height="326" width="720"]]
625 )))
626
627 (((
628
629 )))
630
631 * (((
632 Grab different sections.
633 )))
634
635 (((
636 [[image:1653271657255-576.png||height="305" width="730"]]
637 )))
638
639 (((
640 (((
641 (% style="color:red" %)**Note:**
642 )))
643 )))
644
645 (((
646 (((
647 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
648 )))
649 )))
650
651 (((
652 (((
653 **Example:**
654 )))
655 )))
656
657 (((
658 (((
659 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
660 )))
661 )))
662
663 (((
664 (((
665 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
666 )))
667 )))
668
669 (((
670 (((
671 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
672 )))
673 )))
674
675 (((
676 (((
677 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
678 )))
679 )))
680
681 (((
682 (((
683 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
684 )))
685 )))
686
687 (((
688 (((
689 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
690 )))
691 )))
692
693 (((
694 [[image:1653271763403-806.png]]
695 )))
696
697
698 === 3.3.4 Compose the uplink payload ===
699
700 (((
701 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
702
703
704 )))
705
706 (((
707 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
708
709
710 )))
711
712 (((
713 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
714 )))
715
716 (((
717 Final Payload is
718 )))
719
720 (((
721 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
722 )))
723
724 (((
725 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
726 )))
727
728 [[image:1653272787040-634.png||height="515" width="719"]]
729
730
731
732 (((
733 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
734
735
736 )))
737
738 (((
739 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
740 )))
741
742 (((
743 Final Payload is
744 )))
745
746 (((
747 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
748 )))
749
750 1. (((
751 Battery Info (2 bytes): Battery voltage
752 )))
753 1. (((
754 PAYVER (1 byte): Defined by AT+PAYVER
755 )))
756 1. (((
757 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
758 )))
759 1. (((
760 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
761 )))
762 1. (((
763 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
764 )))
765
766 [[image:1653272817147-600.png||height="437" width="717"]]
767
768 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
769
770
771 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
772
773 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
774
775 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
776
777
778 Below are the uplink payloads:
779
780 [[image:1653272901032-107.png]]
781
782
783 (% style="color:red" %)Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
784
785 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
786
787 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
788
789 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
790
791 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
792
793
794
795 === 3.3.5 Uplink on demand ===
796
797 (((
798 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
799 )))
800
801 (((
802 Downlink control command:
803 )))
804
805 (((
806 **0x08 command**: Poll an uplink with current command set in RS485-BL.
807 )))
808
809 (((
810 **0xA8 command**: Send a command to RS485-BL and uplink the output from sensors.
811
812
813 )))
814
815 === 3.3.6 Uplink on Interrupt ===
816
817 Put the interrupt sensor between 3.3v_out and GPIO ext.
818
819 [[image:1653273818896-432.png]]
820
821
822 (((
823 AT+INTMOD=0  Disable Interrupt
824 )))
825
826 (((
827 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
828 )))
829
830 (((
831 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
832 )))
833
834 (((
835 AT+INTMOD=3  Interrupt trigger by rising edge.
836
837
838 )))
839
840 == 3.4 Uplink Payload ==
841
842 [[image:image-20220606105412-1.png]]
843
844 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
845
846 (((
847 {{{function Decoder(bytes, port) {}}}
848 )))
849
850 (((
851 {{{//Payload Formats of RS485-BL Deceive}}}
852 )))
853
854 (((
855 {{{return {}}}
856 )))
857
858 (((
859 {{{ //Battery,units:V}}}
860 )))
861
862 (((
863 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
864 )))
865
866 (((
867 {{{ //GPIO_EXTI }}}
868 )))
869
870 (((
871 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
872 )))
873
874 (((
875 {{{ //payload of version}}}
876 )))
877
878 (((
879 {{{ Pay_ver:bytes[2],}}}
880 )))
881
882 (((
883 {{{ }; }}}
884 )))
885
886 (((
887 **}**
888
889
890 )))
891
892 (((
893 TTN V3 uplink screen shot.
894 )))
895
896 [[image:1653274001211-372.png||height="192" width="732"]]
897
898
899 == 3.5 Configure RS485-BL via AT or Downlink ==
900
901 (((
902 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
903 )))
904
905 (((
906 There are two kinds of Commands:
907 )))
908
909 * (((
910 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
911 )))
912
913 * (((
914 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
915 )))
916
917 === 3.5.1 Common Commands: ===
918
919 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
920
921
922 === 3.5.2 Sensor related commands: ===
923
924
925
926 ==== **Choose Device Type (RS485 or TTL)** ====
927
928 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
929
930 * **AT Command**
931
932 (% class="box infomessage" %)
933 (((
934 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
935 )))
936
937 (% class="box infomessage" %)
938 (((
939 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
940 )))
941
942
943 * **Downlink Payload**
944
945 **0A aa**  ~-~->  same as AT+MOD=aa
946
947
948
949
950 ==== **RS485 Debug Command (AT+CFGDEV)** ====
951
952 (((
953 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
954 )))
955
956 * (((
957 **AT Command**
958 )))
959
960 (% class="box infomessage" %)
961 (((
962 (((
963 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
964 )))
965 )))
966
967 (((
968 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
969 )))
970
971 (((
972
973 )))
974
975 * (((
976 **Downlink Payload**
977 )))
978
979 (((
980 Format: A8 MM NN XX XX XX XX YY
981 )))
982
983 (((
984 Where:
985 )))
986
987 * (((
988 MM: 1: add CRC-16/MODBUS ; 0: no CRC
989 )))
990 * (((
991 NN: The length of RS485 command
992 )))
993 * (((
994 XX XX XX XX: RS485 command total NN bytes
995 )))
996 * (((
997 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
998 )))
999
1000 (((
1001 **Example 1:**
1002 )))
1003
1004 (((
1005 To connect a Modbus Alarm with below commands.
1006 )))
1007
1008 * (((
1009 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
1010 )))
1011
1012 * (((
1013 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1014 )))
1015
1016 (((
1017 So if user want to use downlink command to control to RS485 Alarm, he can use:
1018 )))
1019
1020 (((
1021 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1022 )))
1023
1024 (((
1025 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1026 )))
1027
1028 (((
1029 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
1030 )))
1031
1032 (((
1033
1034 )))
1035
1036 (((
1037 **Example 2:**
1038 )))
1039
1040 (((
1041 Check TTL Sensor return:
1042 )))
1043
1044 (((
1045 [[image:1654132684752-193.png]]
1046 )))
1047
1048
1049
1050
1051
1052 ==== **Set Payload version** ====
1053
1054 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1055
1056 * **AT Command:**
1057
1058 (% class="box infomessage" %)
1059 (((
1060 **AT+PAYVER: Set PAYVER field = 1**
1061 )))
1062
1063
1064 * **Downlink Payload:**
1065
1066 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
1067
1068 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
1069
1070
1071
1072
1073 ==== **Set RS485 Sampling Commands** ====
1074
1075 (((
1076 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1077 )))
1078
1079 (((
1080 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1081 )))
1082
1083 (((
1084
1085 )))
1086
1087 * (((
1088 **AT Command:**
1089 )))
1090
1091 (% class="box infomessage" %)
1092 (((
1093 (((
1094 **AT+COMMANDx: Configure RS485 read command to sensor.**
1095 )))
1096 )))
1097
1098 (% class="box infomessage" %)
1099 (((
1100 (((
1101 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
1102 )))
1103 )))
1104
1105 (% class="box infomessage" %)
1106 (((
1107 (((
1108 **AT+SEARCHx: Configure search command**
1109 )))
1110 )))
1111
1112 (((
1113
1114 )))
1115
1116 * (((
1117 **Downlink Payload:**
1118 )))
1119
1120 (((
1121 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1122 )))
1123
1124 (((
1125 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
1126 )))
1127
1128 (((
1129 Format: AF MM NN LL XX XX XX XX YY
1130 )))
1131
1132 (((
1133 Where:
1134 )))
1135
1136 * (((
1137 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1138 )))
1139 * (((
1140 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1141 )))
1142 * (((
1143 LL:  The length of AT+COMMAND or AT+DATACUT command
1144 )))
1145 * (((
1146 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1147 )))
1148 * (((
1149 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1150 )))
1151
1152 (((
1153 **Example:**
1154 )))
1155
1156 (((
1157 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1158 )))
1159
1160 (((
1161 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1162 )))
1163
1164 (((
1165 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1166 )))
1167
1168 (((
1169
1170 )))
1171
1172 (((
1173 **0xAB** downlink command can be used for set AT+SEARCHx
1174 )))
1175
1176 (((
1177 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1178 )))
1179
1180 * (((
1181 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1182 )))
1183 * (((
1184 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1185 )))
1186
1187 (((
1188 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1189 )))
1190
1191
1192
1193
1194 ==== **Fast command to handle MODBUS device** ====
1195
1196 (((
1197 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1198 )))
1199
1200 (((
1201 This command is valid since v1.3 firmware version
1202 )))
1203
1204 (((
1205
1206 )))
1207
1208 (((
1209 **AT+MBFUN has only two value:**
1210 )))
1211
1212 * (((
1213 **AT+MBFUN=1**: Enable Modbus reading. And get response base on the MODBUS return
1214 )))
1215
1216 (((
1217 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1218 )))
1219
1220 * (((
1221 **AT+MBFUN=0**: Disable Modbus fast reading.
1222 )))
1223
1224 (((
1225 **Example:**
1226 )))
1227
1228 * (((
1229 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1230 )))
1231 * (((
1232 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1233 )))
1234 * (((
1235 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1236 )))
1237
1238 [[image:1654133913295-597.png]]
1239
1240
1241 [[image:1654133954153-643.png]]
1242
1243
1244 * (((
1245 **Downlink Commands:**
1246 )))
1247
1248 (((
1249 **A9 aa** ~-~-> Same as AT+MBFUN=aa
1250 )))
1251
1252
1253
1254
1255 ==== **RS485 command timeout** ====
1256
1257 (((
1258 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1259 )))
1260
1261 (((
1262 Default value: 0, range:  0 ~~ 5 seconds
1263 )))
1264
1265 (((
1266
1267 )))
1268
1269 * (((
1270 **AT Command:**
1271 )))
1272
1273 (% class="box infomessage" %)
1274 (((
1275 (((
1276 **AT+CMDDLaa=hex(bb cc)**
1277 )))
1278 )))
1279
1280 (((
1281 **Example:**
1282 )))
1283
1284 (((
1285 **AT+CMDDL1=1000** to send the open time to 1000ms
1286 )))
1287
1288 (((
1289
1290 )))
1291
1292 * (((
1293 **Downlink Payload:**
1294 )))
1295
1296 (((
1297 0x AA aa bb cc
1298 )))
1299
1300 (((
1301 Same as: AT+CMDDLaa=hex(bb cc)
1302 )))
1303
1304 (((
1305 **Example:**
1306 )))
1307
1308 (((
1309 **0xAA 01 03 E8**  ~-~-> Same as **AT+CMDDL1=1000 ms**
1310 )))
1311
1312
1313
1314
1315 ==== **Uplink payload mode** ====
1316
1317 (((
1318 Define to use one uplink or multiple uplinks for the sampling.
1319 )))
1320
1321 (((
1322 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1323 )))
1324
1325 * (((
1326 **AT Command:**
1327 )))
1328
1329 (% class="box infomessage" %)
1330 (((
1331 (((
1332 **AT+DATAUP=0**
1333 )))
1334 )))
1335
1336 (% class="box infomessage" %)
1337 (((
1338 (((
1339 **AT+DATAUP=1**
1340 )))
1341 )))
1342
1343 (((
1344
1345 )))
1346
1347 * (((
1348 **Downlink Payload:**
1349 )))
1350
1351 (((
1352 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
1353 )))
1354
1355 (((
1356 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
1357 )))
1358
1359
1360
1361
1362 ==== **Manually trigger an Uplink** ====
1363
1364 Ask device to send an uplink immediately.
1365
1366 * **Downlink Payload:**
1367
1368 **0x08 FF**, RS485-BL will immediately send an uplink.
1369
1370
1371
1372
1373 ==== **Clear RS485 Command** ====
1374
1375 (((
1376 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1377 )))
1378
1379 (((
1380
1381 )))
1382
1383 * (((
1384 **AT Command:**
1385 )))
1386
1387 (((
1388 (% style="color:#037691" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1389 )))
1390
1391 (((
1392 Example screen shot after clear all RS485 commands. 
1393 )))
1394
1395 (((
1396
1397 )))
1398
1399 (((
1400 The uplink screen shot is:
1401 )))
1402
1403 (((
1404 [[image:1654134704555-320.png]]
1405 )))
1406
1407 (((
1408
1409 )))
1410
1411 * (((
1412 **Downlink Payload:**
1413 )))
1414
1415 (((
1416 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1417 )))
1418
1419
1420
1421
1422 ==== **Set Serial Communication Parameters** ====
1423
1424 (((
1425 Set the Rs485 serial communication parameters:
1426 )))
1427
1428 * (((
1429 **AT Command:**
1430 )))
1431
1432 (((
1433 Set Baud Rate:
1434 )))
1435
1436 (% class="box infomessage" %)
1437 (((
1438 (((
1439 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1440
1441 Set UART Parity
1442 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1443
1444 Set STOPBIT
1445
1446 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1447 )))
1448 )))
1449
1450
1451 * (((
1452 **Downlink Payload:**
1453 )))
1454
1455 (((
1456 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1457 )))
1458
1459 (((
1460 **Example:**
1461 )))
1462
1463 * (((
1464 A7 01 00 60   same as AT+BAUDR=9600
1465 )))
1466 * (((
1467 A7 01 04 80  same as AT+BAUDR=115200
1468 )))
1469
1470 (((
1471 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1472 )))
1473
1474 (((
1475 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1476 )))
1477
1478
1479
1480
1481 ==== **Control output power duration** ====
1482
1483 (((
1484 User can set the output power duration before each sampling.
1485 )))
1486
1487 * (((
1488 **AT Command:**
1489 )))
1490
1491 (((
1492 **Example:**
1493 )))
1494
1495 (((
1496 **AT+3V3T=1000**  ~/~/ 3V3 output power will open 1s before each sampling.
1497 )))
1498
1499 (((
1500 **AT+5VT=1000**  ~/~/ +5V output power will open 1s before each sampling.
1501 )))
1502
1503 (((
1504
1505 )))
1506
1507 * (((
1508 **LoRaWAN Downlink Command:**
1509 )))
1510
1511 (((
1512 **07 01 aa bb**  Same as AT+5VT=(aa bb)
1513 )))
1514
1515 (((
1516 **07 02 aa bb**  Same as AT+3V3T=(aa bb)
1517 )))
1518
1519
1520
1521 == 3.6 Buttons ==
1522
1523 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:233px" %)
1524 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1525 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1526
1527 == 3.7 +3V3 Output ==
1528
1529 (((
1530 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1531 )))
1532
1533 (((
1534 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1535 )))
1536
1537 (((
1538 The +3V3 output time can be controlled by AT Command.
1539 )))
1540
1541 (((
1542
1543 )))
1544
1545 (((
1546 (% style="color:#037691" %)**AT+3V3T=1000**
1547 )))
1548
1549 (((
1550
1551 )))
1552
1553 (((
1554 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1555 )))
1556
1557 (((
1558 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1559 )))
1560
1561
1562 == 3.8 +5V Output ==
1563
1564 (((
1565 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1566 )))
1567
1568 (((
1569 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1570 )))
1571
1572 (((
1573 The 5V output time can be controlled by AT Command.
1574 )))
1575
1576 (((
1577
1578 )))
1579
1580 (((
1581 (% style="color:#037691" %)**AT+5VT=1000**
1582 )))
1583
1584 (((
1585
1586 )))
1587
1588 (((
1589 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1590 )))
1591
1592 (((
1593 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1594 )))
1595
1596
1597
1598 == 3.9 LEDs ==
1599
1600 (% border="1" style="background-color:#ffffcc; color:green; width:332px" %)
1601 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1602 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1603
1604 == 3.10 Switch Jumper ==
1605
1606 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:463px" %)
1607 |=(% style="width: 123px;" %)**Switch Jumper**|=(% style="width: 336px;" %)**Feature**
1608 |(% style="width:123px" %)**SW1**|(% style="width:336px" %)ISP position: Upgrade firmware via UART
1609 Flash position: Configure device, check running status.
1610 |(% style="width:123px" %)**SW2**|(% style="width:336px" %)5V position: set to compatible with 5v I/O.
1611 3.3v position: set to compatible with 3.3v I/O.,
1612
1613 (((
1614 **+3.3V**: is always ON
1615 )))
1616
1617 (((
1618 **+5V**: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1619 )))
1620
1621
1622 = 4. Case Study =
1623
1624 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1625
1626
1627 = 5. Use AT Command =
1628
1629 == 5.1 Access AT Command ==
1630
1631 (((
1632 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1633 )))
1634
1635 [[image:1654135840598-282.png]]
1636
1637
1638 (((
1639 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1640 )))
1641
1642 [[image:1654136105500-922.png]]
1643
1644
1645 (((
1646 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1647 )))
1648
1649
1650 == 5.2 Common AT Command Sequence ==
1651
1652 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1653
1654 If device has not joined network yet:
1655
1656 (% class="box infomessage" %)
1657 (((
1658 **AT+FDR**
1659 **AT+NJM=0**
1660 **ATZ**
1661 )))
1662
1663
1664 (((
1665 If device already joined network:
1666 )))
1667
1668 (% class="box infomessage" %)
1669 (((
1670 **AT+NJM=0**
1671 )))
1672
1673 (% class="box infomessage" %)
1674 (((
1675 **ATZ**
1676 )))
1677
1678
1679 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1680
1681
1682 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1683
1684 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1685
1686 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1687
1688 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%)Set Data Rate
1689
1690 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1691
1692 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1693
1694 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1695
1696 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1697
1698 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1699
1700 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1701
1702
1703 (% style="color:red" %)**Note:**
1704
1705 (((
1706 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1707 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1708 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1709 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1710 )))
1711
1712 [[image:1654136435598-589.png]]
1713
1714
1715 = 6. FAQ =
1716
1717 == 6.1 How to upgrade the image? ==
1718
1719 (((
1720 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1721 )))
1722
1723 * (((
1724 Support new features
1725 )))
1726 * (((
1727 For bug fix
1728 )))
1729 * (((
1730 Change LoRaWAN bands.
1731 )))
1732
1733 (((
1734 Below shows the hardware connection for how to upload an image to RS485-BL:
1735 )))
1736
1737 [[image:1654136646995-976.png]]
1738
1739 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1740
1741 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1742
1743 **Step3: **Open flashloader; choose the correct COM port to update.
1744
1745 [[image:image-20220602102605-1.png]]
1746
1747
1748 [[image:image-20220602102637-2.png]]
1749
1750
1751 [[image:image-20220602102715-3.png]]
1752
1753
1754
1755 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1756
1757 (((
1758 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1759 )))
1760
1761
1762
1763 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1764
1765 (((
1766 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1767 )))
1768
1769
1770
1771 = 7. Trouble Shooting =
1772
1773
1774 == 7.1 Downlink doesn’t work, how to solve it? ==
1775
1776 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1777
1778
1779 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1780
1781 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1782
1783
1784 = 8. Order Info =
1785
1786 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
1787
1788 (% style="color:blue" %)**XXX:**
1789
1790 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1791 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1792 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1793 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1794 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1795 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1796 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1797 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1798 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1799 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1800
1801 = 9. Packing Info =
1802
1803 (((
1804 **Package Includes**:
1805 )))
1806
1807 * (((
1808 RS485-BL x 1
1809 )))
1810 * (((
1811 Stick Antenna for LoRa RF part x 1
1812 )))
1813 * (((
1814 Program cable x 1
1815 )))
1816
1817 (((
1818 **Dimension and weight**:
1819 )))
1820
1821 * (((
1822 Device Size: 13.5 x 7 x 3 cm
1823 )))
1824 * (((
1825 Device Weight: 105g
1826 )))
1827 * (((
1828 Package Size / pcs : 14.5 x 8 x 5 cm
1829 )))
1830 * (((
1831 Weight / pcs : 170g
1832
1833
1834 )))
1835
1836 = 10. Support =
1837
1838 * (((
1839 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1840 )))
1841 * (((
1842 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1843 )))