Version 44.6 by Xiaoling on 2022/06/14 09:57

Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="404" width="404"]]
3
4
5
6
7 **Table of Contents:**
8
9 {{toc/}}
10
11
12
13
14
15 = 1.Introduction =
16
17 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
18
19 (((
20
21 )))
22
23 (((
24 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
25 )))
26
27 (((
28 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
29 )))
30
31 (((
32 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
33 )))
34
35 (((
36 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
37 )))
38
39 (((
40 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
41 )))
42
43 (((
44 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
45 )))
46
47 (((
48 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
49 )))
50
51 [[image:1652953304999-717.png||height="424" width="733"]]
52
53
54
55 == 1.2 Specifications ==
56
57
58 **Hardware System:**
59
60 * STM32L072CZT6 MCU
61 * SX1276/78 Wireless Chip 
62 * Power Consumption (exclude RS485 device):
63 ** Idle: 6uA@3.3v
64 ** 20dB Transmit: 130mA@3.3v
65
66
67 **Interface for Model:**
68
69 * 1 x RS485 Interface
70 * 1 x TTL Serial , 3.3v or 5v.
71 * 1 x I2C Interface, 3.3v or 5v.
72 * 1 x one wire interface
73 * 1 x Interrupt Interface
74 * 1 x Controllable 5V output, max
75
76
77 **LoRa Spec:**
78
79 * Frequency Range:
80 ** Band 1 (HF): 862 ~~ 1020 Mhz
81 ** Band 2 (LF): 410 ~~ 528 Mhz
82 * 168 dB maximum link budget.
83 * +20 dBm - 100 mW constant RF output vs.
84 * Programmable bit rate up to 300 kbps.
85 * High sensitivity: down to -148 dBm.
86 * Bullet-proof front end: IIP3 = -12.5 dBm.
87 * Excellent blocking immunity.
88 * Fully integrated synthesizer with a resolution of 61 Hz.
89 * LoRa modulation.
90 * Built-in bit synchronizer for clock recovery.
91 * Preamble detection.
92 * 127 dB Dynamic Range RSSI.
93 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
94
95
96
97
98 == 1.3 Features ==
99
100 * LoRaWAN Class A & Class C protocol (default Class A)
101 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
102 * AT Commands to change parameters
103 * Remote configure parameters via LoRaWAN Downlink
104 * Firmware upgradable via program port
105 * Support multiply RS485 devices by flexible rules
106 * Support Modbus protocol
107 * Support Interrupt uplink
108
109
110
111
112 == 1.4 Applications ==
113
114 * Smart Buildings & Home Automation
115 * Logistics and Supply Chain Management
116 * Smart Metering
117 * Smart Agriculture
118 * Smart Cities
119 * Smart Factory
120
121
122
123
124 == 1.5 Firmware Change log ==
125
126 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
127
128
129 == 1.6 Hardware Change log ==
130
131 (((
132
133
134 (((
135 v1.4
136 )))
137 )))
138
139 (((
140 (((
141 ~1. Change Power IC to TPS22916
142 )))
143 )))
144
145 (((
146
147 )))
148
149 (((
150 (((
151 v1.3
152 )))
153 )))
154
155 (((
156 (((
157 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
158 )))
159 )))
160
161 (((
162
163 )))
164
165 (((
166 (((
167 v1.2
168 )))
169 )))
170
171 (((
172 (((
173 Release version ​​​​​
174 )))
175
176
177 )))
178
179 = 2. Pin mapping and Power ON Device =
180
181 (((
182 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
183 )))
184
185 [[image:1652953055962-143.png||height="387" width="728"]]
186
187
188 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
189
190
191 = 3. Operation Mode =
192
193 == 3.1 How it works? ==
194
195 (((
196 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
197
198
199 )))
200
201 == 3.2 Example to join LoRaWAN network ==
202
203 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
204
205 [[image:1652953414711-647.png||height="337" width="723"]]
206
207 (((
208 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
209 )))
210
211 (((
212 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
213 )))
214
215 (((
216 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
217 )))
218
219 (((
220 Each RS485-BL is shipped with a sticker with unique device EUI:
221 )))
222
223 [[image:1652953462722-299.png]]
224
225 (((
226 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
227 )))
228
229 (((
230 Add APP EUI in the application.
231 )))
232
233
234 [[image:image-20220519174512-1.png]]
235
236 [[image:image-20220519174512-2.png||height="328" width="731"]]
237
238 [[image:image-20220519174512-3.png||height="556" width="724"]]
239
240 [[image:image-20220519174512-4.png]]
241
242 You can also choose to create the device manually.
243
244 [[image:1652953542269-423.png||height="710" width="723"]]
245
246 Add APP KEY and DEV EUI
247
248 [[image:1652953553383-907.png||height="514" width="724"]]
249
250
251 (((
252 **Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
253 )))
254
255 [[image:1652953568895-172.png||height="232" width="724"]]
256
257
258 == 3.3 Configure Commands to read data ==
259
260 (((
261 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
262
263
264 )))
265
266 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
267
268 (((
269 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
270 )))
271
272 (((
273 **~1. RS485-MODBUS mode:**
274 )))
275
276 (((
277 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
278 )))
279
280 (((
281 **2. TTL mode:**
282 )))
283
284 (((
285 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
286 )))
287
288 (((
289 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
290 )))
291
292 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
293 |=(% style="width: 80px;" %)(((
294 (((
295 **AT Commands**
296 )))
297 )))|=(% style="width: 210px;" %)(((
298 (((
299 **Description**
300 )))
301 )))|=(% style="width: 210px;" %)(((
302 (((
303 **Example**
304 )))
305 )))
306 |(% style="width:80px" %)(((
307 (((
308 AT+BAUDR
309 )))
310 )))|(% style="width:210px" %)(((
311 (((
312 Set the baud rate (for RS485 connection). Default Value is: 9600.
313 )))
314 )))|(% style="width:210px" %)(((
315 (((
316 (((
317 AT+BAUDR=9600
318 )))
319 )))
320
321 (((
322 (((
323 Options: (1200,2400,4800,14400,19200,115200)
324 )))
325 )))
326 )))
327 |(% style="width:80px" %)(((
328 (((
329 AT+PARITY
330 )))
331 )))|(% style="width:210px" %)(((
332 (((
333 (((
334 Set UART parity (for RS485 connection)
335 )))
336 )))
337
338 (((
339 (((
340 Default Value is: no parity.
341 )))
342 )))
343 )))|(% style="width:210px" %)(((
344 (((
345 (((
346 AT+PARITY=0
347 )))
348 )))
349
350 (((
351 (((
352 Option: 0: no parity, 1: odd parity, 2: even parity
353 )))
354 )))
355 )))
356 |(% style="width:80px" %)(((
357 (((
358 AT+STOPBIT
359 )))
360 )))|(% style="width:210px" %)(((
361 (((
362 (((
363 Set serial stopbit (for RS485 connection)
364 )))
365 )))
366
367 (((
368 (((
369 Default Value is: 1bit.
370 )))
371 )))
372 )))|(% style="width:210px" %)(((
373 (((
374 (((
375 AT+STOPBIT=0 for 1bit
376 )))
377 )))
378
379 (((
380 (((
381 AT+STOPBIT=1 for 1.5 bit
382 )))
383 )))
384
385 (((
386 (((
387 AT+STOPBIT=2 for 2 bits
388 )))
389 )))
390 )))
391
392 === 3.3.2 Configure sensors ===
393
394 (((
395 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
396 )))
397
398 (((
399 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
400 )))
401
402 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
403 |=(% style="width: 80px;" %)**AT Commands**|=(% style="width: 210px;" %)**Description**|=(% style="width: 210px;" %)**Example**
404 |AT+CFGDEV|(% style="width:80px" %)(((
405 (((
406 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
407 )))
408
409 (((
410 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
411 )))
412
413 (((
414 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
415 )))
416 )))|(% style="width:210px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
417
418 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
419
420
421
422 === 3.3.3 Configure read commands for each sampling ===
423
424 (((
425 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
426 )))
427
428 (((
429 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
430 )))
431
432 (((
433 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
434 )))
435
436 (((
437 This section describes how to achieve above goals.
438 )))
439
440 (((
441 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
442 )))
443
444 (((
445 **Command from RS485-BL to Sensor:**
446 )))
447
448 (((
449 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
450 )))
451
452 (((
453 **Handle return from sensors to RS485-BL**:
454 )))
455
456 (((
457 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
458 )))
459
460 * (((
461 **AT+DATACUT**
462 )))
463
464 (((
465 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
466 )))
467
468 * (((
469 **AT+SEARCH**
470 )))
471
472 (((
473 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
474 )))
475
476 (((
477 **Define wait timeout:**
478 )))
479
480 (((
481 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
482 )))
483
484 (((
485 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
486 )))
487
488 (((
489 **Examples:**
490 )))
491
492 (((
493 Below are examples for the how above AT Commands works.
494 )))
495
496 (((
497 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
498 )))
499
500 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
501 |(% style="width:498px" %)(((
502 (((
503 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
504 )))
505
506 (((
507 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
508 )))
509
510 (((
511 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
512 )))
513 )))
514
515 (((
516 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
517 )))
518
519 (((
520 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
521 )))
522
523 (((
524
525 )))
526
527 (((
528 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
529 )))
530
531 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
532 |(% style="width:577px" %)(((
533 (((
534 **AT+SEARCHx=aa,xx xx xx xx xx**
535 )))
536
537 * (((
538 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
539 )))
540 * (((
541 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
542 )))
543 )))
544
545 (((
546 **Examples:**
547 )))
548
549 (((
550 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
551 )))
552
553 (((
554 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
555 )))
556
557 (((
558 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
559 )))
560
561 (((
562 [[image:1653271044481-711.png]]
563 )))
564
565 (((
566 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
567 )))
568
569 (((
570 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
571 )))
572
573 (((
574 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
575 )))
576
577 (((
578 [[image:1653271276735-972.png]]
579 )))
580
581 (((
582 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
583 )))
584
585 (% style="background-color:#4f81bd; color:white; width:510px" %)
586 |(% style="width:726px" %)(((
587 (((
588 **AT+DATACUTx=a,b,c**
589 )))
590
591 * (((
592 **a: length for the return of AT+COMMAND**
593 )))
594 * (((
595 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
596 )))
597 * (((
598 **c: define the position for valid value.  **
599 )))
600 )))
601
602 (((
603 **Examples:**
604 )))
605
606 * (((
607 Grab bytes:
608 )))
609
610 (((
611 [[image:1653271581490-837.png||height="313" width="722"]]
612 )))
613
614 (((
615
616 )))
617
618 * (((
619 Grab a section.
620 )))
621
622 (((
623 [[image:1653271648378-342.png||height="326" width="720"]]
624 )))
625
626 (((
627
628 )))
629
630 * (((
631 Grab different sections.
632 )))
633
634 (((
635 [[image:1653271657255-576.png||height="305" width="730"]]
636 )))
637
638 (((
639 (((
640 (% style="color:red" %)**Note:**
641 )))
642 )))
643
644 (((
645 (((
646 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
647 )))
648 )))
649
650 (((
651 (((
652 **Example:**
653 )))
654 )))
655
656 (((
657 (((
658 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
659 )))
660 )))
661
662 (((
663 (((
664 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
665 )))
666 )))
667
668 (((
669 (((
670 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
671 )))
672 )))
673
674 (((
675 (((
676 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
677 )))
678 )))
679
680 (((
681 (((
682 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
683 )))
684 )))
685
686 (((
687 (((
688 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
689 )))
690 )))
691
692 (((
693 [[image:1653271763403-806.png]]
694 )))
695
696
697 === 3.3.4 Compose the uplink payload ===
698
699 (((
700 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
701
702
703 )))
704
705 (((
706 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
707
708
709 )))
710
711 (((
712 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
713 )))
714
715 (((
716 Final Payload is
717 )))
718
719 (((
720 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
721 )))
722
723 (((
724 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
725 )))
726
727 [[image:1653272787040-634.png||height="515" width="719"]]
728
729
730
731 (((
732 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
733
734
735 )))
736
737 (((
738 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
739 )))
740
741 (((
742 Final Payload is
743 )))
744
745 (((
746 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
747 )))
748
749 1. (((
750 Battery Info (2 bytes): Battery voltage
751 )))
752 1. (((
753 PAYVER (1 byte): Defined by AT+PAYVER
754 )))
755 1. (((
756 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
757 )))
758 1. (((
759 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
760 )))
761 1. (((
762 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
763 )))
764
765 [[image:1653272817147-600.png||height="437" width="717"]]
766
767 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
768
769
770 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
771
772 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
773
774 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
775
776
777 Below are the uplink payloads:
778
779 [[image:1653272901032-107.png]]
780
781
782 (% style="color:red" %)Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
783
784 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
785
786 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
787
788 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
789
790 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
791
792
793
794 === 3.3.5 Uplink on demand ===
795
796 (((
797 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
798 )))
799
800 (((
801 Downlink control command:
802 )))
803
804 (((
805 **0x08 command**: Poll an uplink with current command set in RS485-BL.
806 )))
807
808 (((
809 **0xA8 command**: Send a command to RS485-BL and uplink the output from sensors.
810
811
812 )))
813
814 === 3.3.6 Uplink on Interrupt ===
815
816 Put the interrupt sensor between 3.3v_out and GPIO ext.
817
818 [[image:1653273818896-432.png]]
819
820
821 (((
822 AT+INTMOD=0  Disable Interrupt
823 )))
824
825 (((
826 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
827 )))
828
829 (((
830 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
831 )))
832
833 (((
834 AT+INTMOD=3  Interrupt trigger by rising edge.
835
836
837 )))
838
839 == 3.4 Uplink Payload ==
840
841 [[image:image-20220606105412-1.png]]
842
843 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
844
845 (((
846 {{{function Decoder(bytes, port) {}}}
847 )))
848
849 (((
850 {{{//Payload Formats of RS485-BL Deceive}}}
851 )))
852
853 (((
854 {{{return {}}}
855 )))
856
857 (((
858 {{{ //Battery,units:V}}}
859 )))
860
861 (((
862 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
863 )))
864
865 (((
866 {{{ //GPIO_EXTI }}}
867 )))
868
869 (((
870 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
871 )))
872
873 (((
874 {{{ //payload of version}}}
875 )))
876
877 (((
878 {{{ Pay_ver:bytes[2],}}}
879 )))
880
881 (((
882 {{{ }; }}}
883 )))
884
885 (((
886 **}**
887
888
889 )))
890
891 (((
892 TTN V3 uplink screen shot.
893 )))
894
895 [[image:1653274001211-372.png||height="192" width="732"]]
896
897
898 == 3.5 Configure RS485-BL via AT or Downlink ==
899
900 (((
901 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
902 )))
903
904 (((
905 There are two kinds of Commands:
906 )))
907
908 * (((
909 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
910 )))
911
912 * (((
913 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
914 )))
915
916 === 3.5.1 Common Commands: ===
917
918 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
919
920
921 === 3.5.2 Sensor related commands: ===
922
923
924
925 ==== **Choose Device Type (RS485 or TTL)** ====
926
927 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
928
929 * **AT Command**
930
931 (% class="box infomessage" %)
932 (((
933 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
934 )))
935
936 (% class="box infomessage" %)
937 (((
938 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
939 )))
940
941
942 * **Downlink Payload**
943
944 **0A aa**  ~-~->  same as AT+MOD=aa
945
946
947
948
949 ==== **RS485 Debug Command (AT+CFGDEV)** ====
950
951 (((
952 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
953 )))
954
955 * (((
956 **AT Command**
957 )))
958
959 (% class="box infomessage" %)
960 (((
961 (((
962 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
963 )))
964 )))
965
966 (((
967 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
968 )))
969
970 (((
971
972 )))
973
974 * (((
975 **Downlink Payload**
976 )))
977
978 (((
979 Format: A8 MM NN XX XX XX XX YY
980 )))
981
982 (((
983 Where:
984 )))
985
986 * (((
987 MM: 1: add CRC-16/MODBUS ; 0: no CRC
988 )))
989 * (((
990 NN: The length of RS485 command
991 )))
992 * (((
993 XX XX XX XX: RS485 command total NN bytes
994 )))
995 * (((
996 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
997 )))
998
999 (((
1000 **Example 1:**
1001 )))
1002
1003 (((
1004 To connect a Modbus Alarm with below commands.
1005 )))
1006
1007 * (((
1008 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
1009 )))
1010
1011 * (((
1012 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1013 )))
1014
1015 (((
1016 So if user want to use downlink command to control to RS485 Alarm, he can use:
1017 )))
1018
1019 (((
1020 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1021 )))
1022
1023 (((
1024 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1025 )))
1026
1027 (((
1028 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
1029 )))
1030
1031 (((
1032
1033 )))
1034
1035 (((
1036 **Example 2:**
1037 )))
1038
1039 (((
1040 Check TTL Sensor return:
1041 )))
1042
1043 (((
1044 [[image:1654132684752-193.png]]
1045 )))
1046
1047
1048
1049
1050
1051 ==== **Set Payload version** ====
1052
1053 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1054
1055 * **AT Command:**
1056
1057 (% class="box infomessage" %)
1058 (((
1059 **AT+PAYVER: Set PAYVER field = 1**
1060 )))
1061
1062
1063 * **Downlink Payload:**
1064
1065 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
1066
1067 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
1068
1069
1070
1071
1072 ==== **Set RS485 Sampling Commands** ====
1073
1074 (((
1075 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1076 )))
1077
1078 (((
1079 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1080 )))
1081
1082 (((
1083
1084 )))
1085
1086 * (((
1087 **AT Command:**
1088 )))
1089
1090 (% class="box infomessage" %)
1091 (((
1092 (((
1093 **AT+COMMANDx: Configure RS485 read command to sensor.**
1094 )))
1095 )))
1096
1097 (% class="box infomessage" %)
1098 (((
1099 (((
1100 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
1101 )))
1102 )))
1103
1104 (% class="box infomessage" %)
1105 (((
1106 (((
1107 **AT+SEARCHx: Configure search command**
1108 )))
1109 )))
1110
1111 (((
1112
1113 )))
1114
1115 * (((
1116 **Downlink Payload:**
1117 )))
1118
1119 (((
1120 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1121 )))
1122
1123 (((
1124 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
1125 )))
1126
1127 (((
1128 Format: AF MM NN LL XX XX XX XX YY
1129 )))
1130
1131 (((
1132 Where:
1133 )))
1134
1135 * (((
1136 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1137 )))
1138 * (((
1139 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1140 )))
1141 * (((
1142 LL:  The length of AT+COMMAND or AT+DATACUT command
1143 )))
1144 * (((
1145 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1146 )))
1147 * (((
1148 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1149 )))
1150
1151 (((
1152 **Example:**
1153 )))
1154
1155 (((
1156 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1157 )))
1158
1159 (((
1160 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1161 )))
1162
1163 (((
1164 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1165 )))
1166
1167 (((
1168
1169 )))
1170
1171 (((
1172 **0xAB** downlink command can be used for set AT+SEARCHx
1173 )))
1174
1175 (((
1176 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1177 )))
1178
1179 * (((
1180 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1181 )))
1182 * (((
1183 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1184 )))
1185
1186 (((
1187 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1188 )))
1189
1190
1191
1192
1193 ==== **Fast command to handle MODBUS device** ====
1194
1195 (((
1196 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1197 )))
1198
1199 (((
1200 This command is valid since v1.3 firmware version
1201 )))
1202
1203 (((
1204
1205 )))
1206
1207 (((
1208 **AT+MBFUN has only two value:**
1209 )))
1210
1211 * (((
1212 **AT+MBFUN=1**: Enable Modbus reading. And get response base on the MODBUS return
1213 )))
1214
1215 (((
1216 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1217 )))
1218
1219 * (((
1220 **AT+MBFUN=0**: Disable Modbus fast reading.
1221 )))
1222
1223 (((
1224 **Example:**
1225 )))
1226
1227 * (((
1228 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1229 )))
1230 * (((
1231 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1232 )))
1233 * (((
1234 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1235 )))
1236
1237 [[image:1654133913295-597.png]]
1238
1239
1240 [[image:1654133954153-643.png]]
1241
1242
1243 * (((
1244 **Downlink Commands:**
1245 )))
1246
1247 (((
1248 **A9 aa** ~-~-> Same as AT+MBFUN=aa
1249 )))
1250
1251
1252
1253
1254 ==== **RS485 command timeout** ====
1255
1256 (((
1257 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1258 )))
1259
1260 (((
1261 Default value: 0, range:  0 ~~ 5 seconds
1262 )))
1263
1264 (((
1265
1266 )))
1267
1268 * (((
1269 **AT Command:**
1270 )))
1271
1272 (% class="box infomessage" %)
1273 (((
1274 (((
1275 **AT+CMDDLaa=hex(bb cc)**
1276 )))
1277 )))
1278
1279 (((
1280 **Example:**
1281 )))
1282
1283 (((
1284 **AT+CMDDL1=1000** to send the open time to 1000ms
1285 )))
1286
1287 (((
1288
1289 )))
1290
1291 * (((
1292 **Downlink Payload:**
1293 )))
1294
1295 (((
1296 0x AA aa bb cc
1297 )))
1298
1299 (((
1300 Same as: AT+CMDDLaa=hex(bb cc)
1301 )))
1302
1303 (((
1304 **Example:**
1305 )))
1306
1307 (((
1308 **0xAA 01 03 E8**  ~-~-> Same as **AT+CMDDL1=1000 ms**
1309 )))
1310
1311
1312
1313
1314 ==== **Uplink payload mode** ====
1315
1316 (((
1317 Define to use one uplink or multiple uplinks for the sampling.
1318 )))
1319
1320 (((
1321 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1322 )))
1323
1324 * (((
1325 **AT Command:**
1326 )))
1327
1328 (% class="box infomessage" %)
1329 (((
1330 (((
1331 **AT+DATAUP=0**
1332 )))
1333 )))
1334
1335 (% class="box infomessage" %)
1336 (((
1337 (((
1338 **AT+DATAUP=1**
1339 )))
1340 )))
1341
1342 (((
1343
1344 )))
1345
1346 * (((
1347 **Downlink Payload:**
1348 )))
1349
1350 (((
1351 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
1352 )))
1353
1354 (((
1355 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
1356 )))
1357
1358
1359
1360
1361 ==== **Manually trigger an Uplink** ====
1362
1363 Ask device to send an uplink immediately.
1364
1365 * **Downlink Payload:**
1366
1367 **0x08 FF**, RS485-BL will immediately send an uplink.
1368
1369
1370
1371
1372 ==== **Clear RS485 Command** ====
1373
1374 (((
1375 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1376 )))
1377
1378 (((
1379
1380 )))
1381
1382 * (((
1383 **AT Command:**
1384 )))
1385
1386 (((
1387 (% style="color:#037691" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1388 )))
1389
1390 (((
1391 Example screen shot after clear all RS485 commands. 
1392 )))
1393
1394 (((
1395
1396 )))
1397
1398 (((
1399 The uplink screen shot is:
1400 )))
1401
1402 (((
1403 [[image:1654134704555-320.png]]
1404 )))
1405
1406 (((
1407
1408 )))
1409
1410 * (((
1411 **Downlink Payload:**
1412 )))
1413
1414 (((
1415 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1416 )))
1417
1418
1419
1420
1421 ==== **Set Serial Communication Parameters** ====
1422
1423 (((
1424 Set the Rs485 serial communication parameters:
1425 )))
1426
1427 * (((
1428 **AT Command:**
1429 )))
1430
1431 (((
1432 Set Baud Rate:
1433 )))
1434
1435 (% class="box infomessage" %)
1436 (((
1437 (((
1438 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1439
1440 Set UART Parity
1441 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1442
1443 Set STOPBIT
1444
1445 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1446 )))
1447 )))
1448
1449
1450 * (((
1451 **Downlink Payload:**
1452 )))
1453
1454 (((
1455 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1456 )))
1457
1458 (((
1459 **Example:**
1460 )))
1461
1462 * (((
1463 A7 01 00 60   same as AT+BAUDR=9600
1464 )))
1465 * (((
1466 A7 01 04 80  same as AT+BAUDR=115200
1467 )))
1468
1469 (((
1470 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1471 )))
1472
1473 (((
1474 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1475 )))
1476
1477
1478
1479
1480 ==== **Control output power duration** ====
1481
1482 (((
1483 User can set the output power duration before each sampling.
1484 )))
1485
1486 * (((
1487 **AT Command:**
1488 )))
1489
1490 (((
1491 **Example:**
1492 )))
1493
1494 (((
1495 **AT+3V3T=1000**  ~/~/ 3V3 output power will open 1s before each sampling.
1496 )))
1497
1498 (((
1499 **AT+5VT=1000**  ~/~/ +5V output power will open 1s before each sampling.
1500 )))
1501
1502 (((
1503
1504 )))
1505
1506 * (((
1507 **LoRaWAN Downlink Command:**
1508 )))
1509
1510 (((
1511 **07 01 aa bb**  Same as AT+5VT=(aa bb)
1512 )))
1513
1514 (((
1515 **07 02 aa bb**  Same as AT+3V3T=(aa bb)
1516 )))
1517
1518
1519
1520 == 3.6 Buttons ==
1521
1522 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:233px" %)
1523 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1524 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1525
1526 == 3.7 +3V3 Output ==
1527
1528 (((
1529 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1530 )))
1531
1532 (((
1533 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1534 )))
1535
1536 (((
1537 The +3V3 output time can be controlled by AT Command.
1538 )))
1539
1540 (((
1541
1542 )))
1543
1544 (((
1545 (% style="color:#037691" %)**AT+3V3T=1000**
1546 )))
1547
1548 (((
1549
1550 )))
1551
1552 (((
1553 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1554 )))
1555
1556 (((
1557 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1558 )))
1559
1560
1561 == 3.8 +5V Output ==
1562
1563 (((
1564 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1565 )))
1566
1567 (((
1568 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1569 )))
1570
1571 (((
1572 The 5V output time can be controlled by AT Command.
1573 )))
1574
1575 (((
1576
1577 )))
1578
1579 (((
1580 (% style="color:#037691" %)**AT+5VT=1000**
1581 )))
1582
1583 (((
1584
1585 )))
1586
1587 (((
1588 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1589 )))
1590
1591 (((
1592 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1593 )))
1594
1595
1596
1597 == 3.9 LEDs ==
1598
1599 (% border="1" style="background-color:#ffffcc; color:green; width:332px" %)
1600 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1601 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1602
1603 == 3.10 Switch Jumper ==
1604
1605 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:463px" %)
1606 |=(% style="width: 123px;" %)**Switch Jumper**|=(% style="width: 336px;" %)**Feature**
1607 |(% style="width:123px" %)**SW1**|(% style="width:336px" %)ISP position: Upgrade firmware via UART
1608 Flash position: Configure device, check running status.
1609 |(% style="width:123px" %)**SW2**|(% style="width:336px" %)5V position: set to compatible with 5v I/O.
1610 3.3v position: set to compatible with 3.3v I/O.,
1611
1612 (((
1613 **+3.3V**: is always ON
1614 )))
1615
1616 (((
1617 **+5V**: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1618 )))
1619
1620
1621 = 4. Case Study =
1622
1623 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1624
1625
1626 = 5. Use AT Command =
1627
1628 == 5.1 Access AT Command ==
1629
1630 (((
1631 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1632 )))
1633
1634 [[image:1654135840598-282.png]]
1635
1636
1637 (((
1638 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1639 )))
1640
1641 [[image:1654136105500-922.png]]
1642
1643
1644 (((
1645 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1646 )))
1647
1648
1649 == 5.2 Common AT Command Sequence ==
1650
1651 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1652
1653 If device has not joined network yet:
1654
1655 (% class="box infomessage" %)
1656 (((
1657 **AT+FDR**
1658 **AT+NJM=0**
1659 **ATZ**
1660 )))
1661
1662
1663 (((
1664 If device already joined network:
1665 )))
1666
1667 (% class="box infomessage" %)
1668 (((
1669 **AT+NJM=0**
1670 )))
1671
1672 (% class="box infomessage" %)
1673 (((
1674 **ATZ**
1675 )))
1676
1677
1678 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1679
1680
1681 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1682
1683 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1684
1685 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1686
1687 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%)Set Data Rate
1688
1689 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1690
1691 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1692
1693 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1694
1695 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1696
1697 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1698
1699 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1700
1701
1702 (% style="color:red" %)**Note:**
1703
1704 (((
1705 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1706 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1707 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1708 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1709 )))
1710
1711 [[image:1654136435598-589.png]]
1712
1713
1714 = 6. FAQ =
1715
1716 == 6.1 How to upgrade the image? ==
1717
1718 (((
1719 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1720 )))
1721
1722 * (((
1723 Support new features
1724 )))
1725 * (((
1726 For bug fix
1727 )))
1728 * (((
1729 Change LoRaWAN bands.
1730 )))
1731
1732 (((
1733 Below shows the hardware connection for how to upload an image to RS485-BL:
1734 )))
1735
1736 [[image:1654136646995-976.png]]
1737
1738 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1739
1740 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1741
1742 **Step3: **Open flashloader; choose the correct COM port to update.
1743
1744 [[image:image-20220602102605-1.png]]
1745
1746
1747 [[image:image-20220602102637-2.png]]
1748
1749
1750 [[image:image-20220602102715-3.png]]
1751
1752
1753
1754 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1755
1756 (((
1757 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1758 )))
1759
1760
1761
1762 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1763
1764 (((
1765 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1766 )))
1767
1768
1769
1770 = 7. Trouble Shooting =
1771
1772
1773 == 7.1 Downlink doesn’t work, how to solve it? ==
1774
1775 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1776
1777
1778 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1779
1780 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1781
1782
1783 = 8. Order Info =
1784
1785 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
1786
1787 (% style="color:blue" %)**XXX:**
1788
1789 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1790 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1791 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1792 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1793 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1794 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1795 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1796 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1797 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1798 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1799
1800 = 9. Packing Info =
1801
1802 (((
1803 **Package Includes**:
1804 )))
1805
1806 * (((
1807 RS485-BL x 1
1808 )))
1809 * (((
1810 Stick Antenna for LoRa RF part x 1
1811 )))
1812 * (((
1813 Program cable x 1
1814 )))
1815
1816 (((
1817 **Dimension and weight**:
1818 )))
1819
1820 * (((
1821 Device Size: 13.5 x 7 x 3 cm
1822 )))
1823 * (((
1824 Device Weight: 105g
1825 )))
1826 * (((
1827 Package Size / pcs : 14.5 x 8 x 5 cm
1828 )))
1829 * (((
1830 Weight / pcs : 170g
1831
1832
1833 )))
1834
1835 = 10. Support =
1836
1837 * (((
1838 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1839 )))
1840 * (((
1841 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1842 )))