Version 44.5 by Xiaoling on 2022/06/14 09:56

Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="404" width="404"]]
3
4
5
6
7 **Table of Contents:**
8
9 {{toc/}}
10
11
12
13
14
15 = 1.Introduction =
16
17 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
18
19 (((
20
21 )))
22
23 (((
24 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
25 )))
26
27 (((
28 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
29 )))
30
31 (((
32 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
33 )))
34
35 (((
36 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
37 )))
38
39 (((
40 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
41 )))
42
43 (((
44 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
45 )))
46
47 (((
48 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
49 )))
50
51 [[image:1652953304999-717.png||height="424" width="733"]]
52
53
54
55 == 1.2 Specifications ==
56
57
58 **Hardware System:**
59
60 * STM32L072CZT6 MCU
61 * SX1276/78 Wireless Chip 
62 * Power Consumption (exclude RS485 device):
63 ** Idle: 6uA@3.3v
64 ** 20dB Transmit: 130mA@3.3v
65
66 **Interface for Model:**
67
68 * 1 x RS485 Interface
69 * 1 x TTL Serial , 3.3v or 5v.
70 * 1 x I2C Interface, 3.3v or 5v.
71 * 1 x one wire interface
72 * 1 x Interrupt Interface
73 * 1 x Controllable 5V output, max
74
75 **LoRa Spec:**
76
77 * Frequency Range:
78 ** Band 1 (HF): 862 ~~ 1020 Mhz
79 ** Band 2 (LF): 410 ~~ 528 Mhz
80 * 168 dB maximum link budget.
81 * +20 dBm - 100 mW constant RF output vs.
82 * Programmable bit rate up to 300 kbps.
83 * High sensitivity: down to -148 dBm.
84 * Bullet-proof front end: IIP3 = -12.5 dBm.
85 * Excellent blocking immunity.
86 * Fully integrated synthesizer with a resolution of 61 Hz.
87 * LoRa modulation.
88 * Built-in bit synchronizer for clock recovery.
89 * Preamble detection.
90 * 127 dB Dynamic Range RSSI.
91 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
92
93
94
95
96 == 1.3 Features ==
97
98 * LoRaWAN Class A & Class C protocol (default Class A)
99 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
100 * AT Commands to change parameters
101 * Remote configure parameters via LoRaWAN Downlink
102 * Firmware upgradable via program port
103 * Support multiply RS485 devices by flexible rules
104 * Support Modbus protocol
105 * Support Interrupt uplink
106
107
108
109
110 == 1.4 Applications ==
111
112 * Smart Buildings & Home Automation
113 * Logistics and Supply Chain Management
114 * Smart Metering
115 * Smart Agriculture
116 * Smart Cities
117 * Smart Factory
118
119
120
121
122 == 1.5 Firmware Change log ==
123
124 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
125
126
127 == 1.6 Hardware Change log ==
128
129 (((
130
131
132 (((
133 v1.4
134 )))
135 )))
136
137 (((
138 (((
139 ~1. Change Power IC to TPS22916
140 )))
141 )))
142
143 (((
144
145 )))
146
147 (((
148 (((
149 v1.3
150 )))
151 )))
152
153 (((
154 (((
155 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
156 )))
157 )))
158
159 (((
160
161 )))
162
163 (((
164 (((
165 v1.2
166 )))
167 )))
168
169 (((
170 (((
171 Release version ​​​​​
172 )))
173
174
175 )))
176
177 = 2. Pin mapping and Power ON Device =
178
179 (((
180 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
181 )))
182
183 [[image:1652953055962-143.png||height="387" width="728"]]
184
185
186 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
187
188
189 = 3. Operation Mode =
190
191 == 3.1 How it works? ==
192
193 (((
194 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
195
196
197 )))
198
199 == 3.2 Example to join LoRaWAN network ==
200
201 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
202
203 [[image:1652953414711-647.png||height="337" width="723"]]
204
205 (((
206 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
207 )))
208
209 (((
210 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
211 )))
212
213 (((
214 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
215 )))
216
217 (((
218 Each RS485-BL is shipped with a sticker with unique device EUI:
219 )))
220
221 [[image:1652953462722-299.png]]
222
223 (((
224 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
225 )))
226
227 (((
228 Add APP EUI in the application.
229 )))
230
231
232 [[image:image-20220519174512-1.png]]
233
234 [[image:image-20220519174512-2.png||height="328" width="731"]]
235
236 [[image:image-20220519174512-3.png||height="556" width="724"]]
237
238 [[image:image-20220519174512-4.png]]
239
240 You can also choose to create the device manually.
241
242 [[image:1652953542269-423.png||height="710" width="723"]]
243
244 Add APP KEY and DEV EUI
245
246 [[image:1652953553383-907.png||height="514" width="724"]]
247
248
249 (((
250 **Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
251 )))
252
253 [[image:1652953568895-172.png||height="232" width="724"]]
254
255
256 == 3.3 Configure Commands to read data ==
257
258 (((
259 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
260
261
262 )))
263
264 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
265
266 (((
267 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
268 )))
269
270 (((
271 **~1. RS485-MODBUS mode:**
272 )))
273
274 (((
275 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
276 )))
277
278 (((
279 **2. TTL mode:**
280 )))
281
282 (((
283 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
284 )))
285
286 (((
287 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
288 )))
289
290 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
291 |=(% style="width: 80px;" %)(((
292 (((
293 **AT Commands**
294 )))
295 )))|=(% style="width: 210px;" %)(((
296 (((
297 **Description**
298 )))
299 )))|=(% style="width: 210px;" %)(((
300 (((
301 **Example**
302 )))
303 )))
304 |(% style="width:80px" %)(((
305 (((
306 AT+BAUDR
307 )))
308 )))|(% style="width:210px" %)(((
309 (((
310 Set the baud rate (for RS485 connection). Default Value is: 9600.
311 )))
312 )))|(% style="width:210px" %)(((
313 (((
314 (((
315 AT+BAUDR=9600
316 )))
317 )))
318
319 (((
320 (((
321 Options: (1200,2400,4800,14400,19200,115200)
322 )))
323 )))
324 )))
325 |(% style="width:80px" %)(((
326 (((
327 AT+PARITY
328 )))
329 )))|(% style="width:210px" %)(((
330 (((
331 (((
332 Set UART parity (for RS485 connection)
333 )))
334 )))
335
336 (((
337 (((
338 Default Value is: no parity.
339 )))
340 )))
341 )))|(% style="width:210px" %)(((
342 (((
343 (((
344 AT+PARITY=0
345 )))
346 )))
347
348 (((
349 (((
350 Option: 0: no parity, 1: odd parity, 2: even parity
351 )))
352 )))
353 )))
354 |(% style="width:80px" %)(((
355 (((
356 AT+STOPBIT
357 )))
358 )))|(% style="width:210px" %)(((
359 (((
360 (((
361 Set serial stopbit (for RS485 connection)
362 )))
363 )))
364
365 (((
366 (((
367 Default Value is: 1bit.
368 )))
369 )))
370 )))|(% style="width:210px" %)(((
371 (((
372 (((
373 AT+STOPBIT=0 for 1bit
374 )))
375 )))
376
377 (((
378 (((
379 AT+STOPBIT=1 for 1.5 bit
380 )))
381 )))
382
383 (((
384 (((
385 AT+STOPBIT=2 for 2 bits
386 )))
387 )))
388 )))
389
390 === 3.3.2 Configure sensors ===
391
392 (((
393 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
394 )))
395
396 (((
397 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
398 )))
399
400 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
401 |=(% style="width: 80px;" %)**AT Commands**|=(% style="width: 210px;" %)**Description**|=(% style="width: 210px;" %)**Example**
402 |AT+CFGDEV|(% style="width:80px" %)(((
403 (((
404 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
405 )))
406
407 (((
408 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
409 )))
410
411 (((
412 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
413 )))
414 )))|(% style="width:210px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
415
416 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
417
418
419
420 === 3.3.3 Configure read commands for each sampling ===
421
422 (((
423 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
424 )))
425
426 (((
427 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
428 )))
429
430 (((
431 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
432 )))
433
434 (((
435 This section describes how to achieve above goals.
436 )))
437
438 (((
439 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
440 )))
441
442 (((
443 **Command from RS485-BL to Sensor:**
444 )))
445
446 (((
447 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
448 )))
449
450 (((
451 **Handle return from sensors to RS485-BL**:
452 )))
453
454 (((
455 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
456 )))
457
458 * (((
459 **AT+DATACUT**
460 )))
461
462 (((
463 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
464 )))
465
466 * (((
467 **AT+SEARCH**
468 )))
469
470 (((
471 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
472 )))
473
474 (((
475 **Define wait timeout:**
476 )))
477
478 (((
479 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
480 )))
481
482 (((
483 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
484 )))
485
486 (((
487 **Examples:**
488 )))
489
490 (((
491 Below are examples for the how above AT Commands works.
492 )))
493
494 (((
495 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
496 )))
497
498 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
499 |(% style="width:498px" %)(((
500 (((
501 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
502 )))
503
504 (((
505 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
506 )))
507
508 (((
509 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
510 )))
511 )))
512
513 (((
514 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
515 )))
516
517 (((
518 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
519 )))
520
521 (((
522
523 )))
524
525 (((
526 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
527 )))
528
529 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
530 |(% style="width:577px" %)(((
531 (((
532 **AT+SEARCHx=aa,xx xx xx xx xx**
533 )))
534
535 * (((
536 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
537 )))
538 * (((
539 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
540 )))
541 )))
542
543 (((
544 **Examples:**
545 )))
546
547 (((
548 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
549 )))
550
551 (((
552 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
553 )))
554
555 (((
556 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
557 )))
558
559 (((
560 [[image:1653271044481-711.png]]
561 )))
562
563 (((
564 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
565 )))
566
567 (((
568 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
569 )))
570
571 (((
572 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
573 )))
574
575 (((
576 [[image:1653271276735-972.png]]
577 )))
578
579 (((
580 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
581 )))
582
583 (% style="background-color:#4f81bd; color:white; width:510px" %)
584 |(% style="width:726px" %)(((
585 (((
586 **AT+DATACUTx=a,b,c**
587 )))
588
589 * (((
590 **a: length for the return of AT+COMMAND**
591 )))
592 * (((
593 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
594 )))
595 * (((
596 **c: define the position for valid value.  **
597 )))
598 )))
599
600 (((
601 **Examples:**
602 )))
603
604 * (((
605 Grab bytes:
606 )))
607
608 (((
609 [[image:1653271581490-837.png||height="313" width="722"]]
610 )))
611
612 (((
613
614 )))
615
616 * (((
617 Grab a section.
618 )))
619
620 (((
621 [[image:1653271648378-342.png||height="326" width="720"]]
622 )))
623
624 (((
625
626 )))
627
628 * (((
629 Grab different sections.
630 )))
631
632 (((
633 [[image:1653271657255-576.png||height="305" width="730"]]
634 )))
635
636 (((
637 (((
638 (% style="color:red" %)**Note:**
639 )))
640 )))
641
642 (((
643 (((
644 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
645 )))
646 )))
647
648 (((
649 (((
650 **Example:**
651 )))
652 )))
653
654 (((
655 (((
656 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
657 )))
658 )))
659
660 (((
661 (((
662 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
663 )))
664 )))
665
666 (((
667 (((
668 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
669 )))
670 )))
671
672 (((
673 (((
674 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
675 )))
676 )))
677
678 (((
679 (((
680 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
681 )))
682 )))
683
684 (((
685 (((
686 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
687 )))
688 )))
689
690 (((
691 [[image:1653271763403-806.png]]
692 )))
693
694
695 === 3.3.4 Compose the uplink payload ===
696
697 (((
698 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
699
700
701 )))
702
703 (((
704 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
705
706
707 )))
708
709 (((
710 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
711 )))
712
713 (((
714 Final Payload is
715 )))
716
717 (((
718 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
719 )))
720
721 (((
722 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
723 )))
724
725 [[image:1653272787040-634.png||height="515" width="719"]]
726
727
728
729 (((
730 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
731
732
733 )))
734
735 (((
736 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
737 )))
738
739 (((
740 Final Payload is
741 )))
742
743 (((
744 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
745 )))
746
747 1. (((
748 Battery Info (2 bytes): Battery voltage
749 )))
750 1. (((
751 PAYVER (1 byte): Defined by AT+PAYVER
752 )))
753 1. (((
754 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
755 )))
756 1. (((
757 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
758 )))
759 1. (((
760 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
761 )))
762
763 [[image:1653272817147-600.png||height="437" width="717"]]
764
765 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
766
767
768 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
769
770 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
771
772 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
773
774
775 Below are the uplink payloads:
776
777 [[image:1653272901032-107.png]]
778
779
780 (% style="color:red" %)Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
781
782 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
783
784 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
785
786 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
787
788 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
789
790
791
792 === 3.3.5 Uplink on demand ===
793
794 (((
795 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
796 )))
797
798 (((
799 Downlink control command:
800 )))
801
802 (((
803 **0x08 command**: Poll an uplink with current command set in RS485-BL.
804 )))
805
806 (((
807 **0xA8 command**: Send a command to RS485-BL and uplink the output from sensors.
808
809
810 )))
811
812 === 3.3.6 Uplink on Interrupt ===
813
814 Put the interrupt sensor between 3.3v_out and GPIO ext.
815
816 [[image:1653273818896-432.png]]
817
818
819 (((
820 AT+INTMOD=0  Disable Interrupt
821 )))
822
823 (((
824 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
825 )))
826
827 (((
828 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
829 )))
830
831 (((
832 AT+INTMOD=3  Interrupt trigger by rising edge.
833
834
835 )))
836
837 == 3.4 Uplink Payload ==
838
839 [[image:image-20220606105412-1.png]]
840
841 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
842
843 (((
844 {{{function Decoder(bytes, port) {}}}
845 )))
846
847 (((
848 {{{//Payload Formats of RS485-BL Deceive}}}
849 )))
850
851 (((
852 {{{return {}}}
853 )))
854
855 (((
856 {{{ //Battery,units:V}}}
857 )))
858
859 (((
860 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
861 )))
862
863 (((
864 {{{ //GPIO_EXTI }}}
865 )))
866
867 (((
868 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
869 )))
870
871 (((
872 {{{ //payload of version}}}
873 )))
874
875 (((
876 {{{ Pay_ver:bytes[2],}}}
877 )))
878
879 (((
880 {{{ }; }}}
881 )))
882
883 (((
884 **}**
885
886
887 )))
888
889 (((
890 TTN V3 uplink screen shot.
891 )))
892
893 [[image:1653274001211-372.png||height="192" width="732"]]
894
895
896 == 3.5 Configure RS485-BL via AT or Downlink ==
897
898 (((
899 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
900 )))
901
902 (((
903 There are two kinds of Commands:
904 )))
905
906 * (((
907 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
908 )))
909
910 * (((
911 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
912 )))
913
914 === 3.5.1 Common Commands: ===
915
916 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
917
918
919 === 3.5.2 Sensor related commands: ===
920
921
922
923 ==== **Choose Device Type (RS485 or TTL)** ====
924
925 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
926
927 * **AT Command**
928
929 (% class="box infomessage" %)
930 (((
931 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
932 )))
933
934 (% class="box infomessage" %)
935 (((
936 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
937 )))
938
939
940 * **Downlink Payload**
941
942 **0A aa**  ~-~->  same as AT+MOD=aa
943
944
945
946
947 ==== **RS485 Debug Command (AT+CFGDEV)** ====
948
949 (((
950 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
951 )))
952
953 * (((
954 **AT Command**
955 )))
956
957 (% class="box infomessage" %)
958 (((
959 (((
960 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
961 )))
962 )))
963
964 (((
965 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
966 )))
967
968 (((
969
970 )))
971
972 * (((
973 **Downlink Payload**
974 )))
975
976 (((
977 Format: A8 MM NN XX XX XX XX YY
978 )))
979
980 (((
981 Where:
982 )))
983
984 * (((
985 MM: 1: add CRC-16/MODBUS ; 0: no CRC
986 )))
987 * (((
988 NN: The length of RS485 command
989 )))
990 * (((
991 XX XX XX XX: RS485 command total NN bytes
992 )))
993 * (((
994 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
995 )))
996
997 (((
998 **Example 1:**
999 )))
1000
1001 (((
1002 To connect a Modbus Alarm with below commands.
1003 )))
1004
1005 * (((
1006 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
1007 )))
1008
1009 * (((
1010 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1011 )))
1012
1013 (((
1014 So if user want to use downlink command to control to RS485 Alarm, he can use:
1015 )))
1016
1017 (((
1018 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1019 )))
1020
1021 (((
1022 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1023 )))
1024
1025 (((
1026 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
1027 )))
1028
1029 (((
1030
1031 )))
1032
1033 (((
1034 **Example 2:**
1035 )))
1036
1037 (((
1038 Check TTL Sensor return:
1039 )))
1040
1041 (((
1042 [[image:1654132684752-193.png]]
1043 )))
1044
1045
1046
1047
1048
1049 ==== **Set Payload version** ====
1050
1051 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1052
1053 * **AT Command:**
1054
1055 (% class="box infomessage" %)
1056 (((
1057 **AT+PAYVER: Set PAYVER field = 1**
1058 )))
1059
1060
1061 * **Downlink Payload:**
1062
1063 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
1064
1065 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
1066
1067
1068
1069
1070 ==== **Set RS485 Sampling Commands** ====
1071
1072 (((
1073 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1074 )))
1075
1076 (((
1077 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1078 )))
1079
1080 (((
1081
1082 )))
1083
1084 * (((
1085 **AT Command:**
1086 )))
1087
1088 (% class="box infomessage" %)
1089 (((
1090 (((
1091 **AT+COMMANDx: Configure RS485 read command to sensor.**
1092 )))
1093 )))
1094
1095 (% class="box infomessage" %)
1096 (((
1097 (((
1098 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
1099 )))
1100 )))
1101
1102 (% class="box infomessage" %)
1103 (((
1104 (((
1105 **AT+SEARCHx: Configure search command**
1106 )))
1107 )))
1108
1109 (((
1110
1111 )))
1112
1113 * (((
1114 **Downlink Payload:**
1115 )))
1116
1117 (((
1118 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1119 )))
1120
1121 (((
1122 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
1123 )))
1124
1125 (((
1126 Format: AF MM NN LL XX XX XX XX YY
1127 )))
1128
1129 (((
1130 Where:
1131 )))
1132
1133 * (((
1134 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1135 )))
1136 * (((
1137 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1138 )))
1139 * (((
1140 LL:  The length of AT+COMMAND or AT+DATACUT command
1141 )))
1142 * (((
1143 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1144 )))
1145 * (((
1146 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1147 )))
1148
1149 (((
1150 **Example:**
1151 )))
1152
1153 (((
1154 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1155 )))
1156
1157 (((
1158 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1159 )))
1160
1161 (((
1162 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1163 )))
1164
1165 (((
1166
1167 )))
1168
1169 (((
1170 **0xAB** downlink command can be used for set AT+SEARCHx
1171 )))
1172
1173 (((
1174 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1175 )))
1176
1177 * (((
1178 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1179 )))
1180 * (((
1181 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1182 )))
1183
1184 (((
1185 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1186 )))
1187
1188
1189
1190
1191 ==== **Fast command to handle MODBUS device** ====
1192
1193 (((
1194 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1195 )))
1196
1197 (((
1198 This command is valid since v1.3 firmware version
1199 )))
1200
1201 (((
1202
1203 )))
1204
1205 (((
1206 **AT+MBFUN has only two value:**
1207 )))
1208
1209 * (((
1210 **AT+MBFUN=1**: Enable Modbus reading. And get response base on the MODBUS return
1211 )))
1212
1213 (((
1214 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1215 )))
1216
1217 * (((
1218 **AT+MBFUN=0**: Disable Modbus fast reading.
1219 )))
1220
1221 (((
1222 **Example:**
1223 )))
1224
1225 * (((
1226 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1227 )))
1228 * (((
1229 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1230 )))
1231 * (((
1232 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1233 )))
1234
1235 [[image:1654133913295-597.png]]
1236
1237
1238 [[image:1654133954153-643.png]]
1239
1240
1241 * (((
1242 **Downlink Commands:**
1243 )))
1244
1245 (((
1246 **A9 aa** ~-~-> Same as AT+MBFUN=aa
1247 )))
1248
1249
1250
1251
1252 ==== **RS485 command timeout** ====
1253
1254 (((
1255 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1256 )))
1257
1258 (((
1259 Default value: 0, range:  0 ~~ 5 seconds
1260 )))
1261
1262 (((
1263
1264 )))
1265
1266 * (((
1267 **AT Command:**
1268 )))
1269
1270 (% class="box infomessage" %)
1271 (((
1272 (((
1273 **AT+CMDDLaa=hex(bb cc)**
1274 )))
1275 )))
1276
1277 (((
1278 **Example:**
1279 )))
1280
1281 (((
1282 **AT+CMDDL1=1000** to send the open time to 1000ms
1283 )))
1284
1285 (((
1286
1287 )))
1288
1289 * (((
1290 **Downlink Payload:**
1291 )))
1292
1293 (((
1294 0x AA aa bb cc
1295 )))
1296
1297 (((
1298 Same as: AT+CMDDLaa=hex(bb cc)
1299 )))
1300
1301 (((
1302 **Example:**
1303 )))
1304
1305 (((
1306 **0xAA 01 03 E8**  ~-~-> Same as **AT+CMDDL1=1000 ms**
1307 )))
1308
1309
1310
1311
1312 ==== **Uplink payload mode** ====
1313
1314 (((
1315 Define to use one uplink or multiple uplinks for the sampling.
1316 )))
1317
1318 (((
1319 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1320 )))
1321
1322 * (((
1323 **AT Command:**
1324 )))
1325
1326 (% class="box infomessage" %)
1327 (((
1328 (((
1329 **AT+DATAUP=0**
1330 )))
1331 )))
1332
1333 (% class="box infomessage" %)
1334 (((
1335 (((
1336 **AT+DATAUP=1**
1337 )))
1338 )))
1339
1340 (((
1341
1342 )))
1343
1344 * (((
1345 **Downlink Payload:**
1346 )))
1347
1348 (((
1349 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
1350 )))
1351
1352 (((
1353 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
1354 )))
1355
1356
1357
1358
1359 ==== **Manually trigger an Uplink** ====
1360
1361 Ask device to send an uplink immediately.
1362
1363 * **Downlink Payload:**
1364
1365 **0x08 FF**, RS485-BL will immediately send an uplink.
1366
1367
1368
1369
1370 ==== **Clear RS485 Command** ====
1371
1372 (((
1373 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1374 )))
1375
1376 (((
1377
1378 )))
1379
1380 * (((
1381 **AT Command:**
1382 )))
1383
1384 (((
1385 (% style="color:#037691" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1386 )))
1387
1388 (((
1389 Example screen shot after clear all RS485 commands. 
1390 )))
1391
1392 (((
1393
1394 )))
1395
1396 (((
1397 The uplink screen shot is:
1398 )))
1399
1400 (((
1401 [[image:1654134704555-320.png]]
1402 )))
1403
1404 (((
1405
1406 )))
1407
1408 * (((
1409 **Downlink Payload:**
1410 )))
1411
1412 (((
1413 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1414 )))
1415
1416
1417
1418
1419 ==== **Set Serial Communication Parameters** ====
1420
1421 (((
1422 Set the Rs485 serial communication parameters:
1423 )))
1424
1425 * (((
1426 **AT Command:**
1427 )))
1428
1429 (((
1430 Set Baud Rate:
1431 )))
1432
1433 (% class="box infomessage" %)
1434 (((
1435 (((
1436 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1437
1438 Set UART Parity
1439 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1440
1441 Set STOPBIT
1442
1443 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1444 )))
1445 )))
1446
1447
1448 * (((
1449 **Downlink Payload:**
1450 )))
1451
1452 (((
1453 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1454 )))
1455
1456 (((
1457 **Example:**
1458 )))
1459
1460 * (((
1461 A7 01 00 60   same as AT+BAUDR=9600
1462 )))
1463 * (((
1464 A7 01 04 80  same as AT+BAUDR=115200
1465 )))
1466
1467 (((
1468 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1469 )))
1470
1471 (((
1472 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1473 )))
1474
1475
1476
1477
1478 ==== **Control output power duration** ====
1479
1480 (((
1481 User can set the output power duration before each sampling.
1482 )))
1483
1484 * (((
1485 **AT Command:**
1486 )))
1487
1488 (((
1489 **Example:**
1490 )))
1491
1492 (((
1493 **AT+3V3T=1000**  ~/~/ 3V3 output power will open 1s before each sampling.
1494 )))
1495
1496 (((
1497 **AT+5VT=1000**  ~/~/ +5V output power will open 1s before each sampling.
1498 )))
1499
1500 (((
1501
1502 )))
1503
1504 * (((
1505 **LoRaWAN Downlink Command:**
1506 )))
1507
1508 (((
1509 **07 01 aa bb**  Same as AT+5VT=(aa bb)
1510 )))
1511
1512 (((
1513 **07 02 aa bb**  Same as AT+3V3T=(aa bb)
1514 )))
1515
1516
1517
1518 == 3.6 Buttons ==
1519
1520 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:233px" %)
1521 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1522 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1523
1524 == 3.7 +3V3 Output ==
1525
1526 (((
1527 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1528 )))
1529
1530 (((
1531 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1532 )))
1533
1534 (((
1535 The +3V3 output time can be controlled by AT Command.
1536 )))
1537
1538 (((
1539
1540 )))
1541
1542 (((
1543 (% style="color:#037691" %)**AT+3V3T=1000**
1544 )))
1545
1546 (((
1547
1548 )))
1549
1550 (((
1551 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1552 )))
1553
1554 (((
1555 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1556 )))
1557
1558
1559 == 3.8 +5V Output ==
1560
1561 (((
1562 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1563 )))
1564
1565 (((
1566 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1567 )))
1568
1569 (((
1570 The 5V output time can be controlled by AT Command.
1571 )))
1572
1573 (((
1574
1575 )))
1576
1577 (((
1578 (% style="color:#037691" %)**AT+5VT=1000**
1579 )))
1580
1581 (((
1582
1583 )))
1584
1585 (((
1586 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1587 )))
1588
1589 (((
1590 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1591 )))
1592
1593
1594
1595 == 3.9 LEDs ==
1596
1597 (% border="1" style="background-color:#ffffcc; color:green; width:332px" %)
1598 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1599 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1600
1601 == 3.10 Switch Jumper ==
1602
1603 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:463px" %)
1604 |=(% style="width: 123px;" %)**Switch Jumper**|=(% style="width: 336px;" %)**Feature**
1605 |(% style="width:123px" %)**SW1**|(% style="width:336px" %)ISP position: Upgrade firmware via UART
1606 Flash position: Configure device, check running status.
1607 |(% style="width:123px" %)**SW2**|(% style="width:336px" %)5V position: set to compatible with 5v I/O.
1608 3.3v position: set to compatible with 3.3v I/O.,
1609
1610 (((
1611 **+3.3V**: is always ON
1612 )))
1613
1614 (((
1615 **+5V**: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1616 )))
1617
1618
1619 = 4. Case Study =
1620
1621 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1622
1623
1624 = 5. Use AT Command =
1625
1626 == 5.1 Access AT Command ==
1627
1628 (((
1629 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1630 )))
1631
1632 [[image:1654135840598-282.png]]
1633
1634
1635 (((
1636 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1637 )))
1638
1639 [[image:1654136105500-922.png]]
1640
1641
1642 (((
1643 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1644 )))
1645
1646
1647 == 5.2 Common AT Command Sequence ==
1648
1649 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1650
1651 If device has not joined network yet:
1652
1653 (% class="box infomessage" %)
1654 (((
1655 **AT+FDR**
1656 **AT+NJM=0**
1657 **ATZ**
1658 )))
1659
1660
1661 (((
1662 If device already joined network:
1663 )))
1664
1665 (% class="box infomessage" %)
1666 (((
1667 **AT+NJM=0**
1668 )))
1669
1670 (% class="box infomessage" %)
1671 (((
1672 **ATZ**
1673 )))
1674
1675
1676 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1677
1678
1679 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1680
1681 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1682
1683 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1684
1685 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%)Set Data Rate
1686
1687 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1688
1689 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1690
1691 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1692
1693 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1694
1695 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1696
1697 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1698
1699
1700 (% style="color:red" %)**Note:**
1701
1702 (((
1703 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1704 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1705 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1706 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1707 )))
1708
1709 [[image:1654136435598-589.png]]
1710
1711
1712 = 6. FAQ =
1713
1714 == 6.1 How to upgrade the image? ==
1715
1716 (((
1717 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1718 )))
1719
1720 * (((
1721 Support new features
1722 )))
1723 * (((
1724 For bug fix
1725 )))
1726 * (((
1727 Change LoRaWAN bands.
1728 )))
1729
1730 (((
1731 Below shows the hardware connection for how to upload an image to RS485-BL:
1732 )))
1733
1734 [[image:1654136646995-976.png]]
1735
1736 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1737
1738 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1739
1740 **Step3: **Open flashloader; choose the correct COM port to update.
1741
1742 [[image:image-20220602102605-1.png]]
1743
1744
1745 [[image:image-20220602102637-2.png]]
1746
1747
1748 [[image:image-20220602102715-3.png]]
1749
1750
1751
1752 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1753
1754 (((
1755 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1756 )))
1757
1758
1759
1760 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1761
1762 (((
1763 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1764 )))
1765
1766
1767
1768 = 7. Trouble Shooting =
1769
1770
1771 == 7.1 Downlink doesn’t work, how to solve it? ==
1772
1773 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1774
1775
1776 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1777
1778 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1779
1780
1781 = 8. Order Info =
1782
1783 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
1784
1785 (% style="color:blue" %)**XXX:**
1786
1787 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1788 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1789 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1790 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1791 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1792 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1793 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1794 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1795 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1796 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1797
1798 = 9. Packing Info =
1799
1800 (((
1801 **Package Includes**:
1802 )))
1803
1804 * (((
1805 RS485-BL x 1
1806 )))
1807 * (((
1808 Stick Antenna for LoRa RF part x 1
1809 )))
1810 * (((
1811 Program cable x 1
1812 )))
1813
1814 (((
1815 **Dimension and weight**:
1816 )))
1817
1818 * (((
1819 Device Size: 13.5 x 7 x 3 cm
1820 )))
1821 * (((
1822 Device Weight: 105g
1823 )))
1824 * (((
1825 Package Size / pcs : 14.5 x 8 x 5 cm
1826 )))
1827 * (((
1828 Weight / pcs : 170g
1829
1830
1831 )))
1832
1833 = 10. Support =
1834
1835 * (((
1836 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1837 )))
1838 * (((
1839 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1840 )))