Version 44.28 by Xiaoling on 2022/06/14 10:29

Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="404" width="404"]]
3
4
5
6
7 **Table of Contents:**
8
9 {{toc/}}
10
11
12
13
14
15 = 1.Introduction =
16
17 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
18
19 (((
20
21 )))
22
23 (((
24 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
25 )))
26
27 (((
28 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
29 )))
30
31 (((
32 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
33 )))
34
35 (((
36 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
37 )))
38
39 (((
40 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
41 )))
42
43 (((
44 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
45 )))
46
47 (((
48 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
49 )))
50
51 [[image:1652953304999-717.png||height="424" width="733"]]
52
53
54
55 == 1.2 Specifications ==
56
57
58 **Hardware System:**
59
60 * STM32L072CZT6 MCU
61 * SX1276/78 Wireless Chip 
62 * Power Consumption (exclude RS485 device):
63 ** Idle: 6uA@3.3v
64 ** 20dB Transmit: 130mA@3.3v
65
66 **Interface for Model:**
67
68 * 1 x RS485 Interface
69 * 1 x TTL Serial , 3.3v or 5v.
70 * 1 x I2C Interface, 3.3v or 5v.
71 * 1 x one wire interface
72 * 1 x Interrupt Interface
73 * 1 x Controllable 5V output, max
74
75 **LoRa Spec:**
76
77 * Frequency Range:
78 ** Band 1 (HF): 862 ~~ 1020 Mhz
79 ** Band 2 (LF): 410 ~~ 528 Mhz
80 * 168 dB maximum link budget.
81 * +20 dBm - 100 mW constant RF output vs.
82 * Programmable bit rate up to 300 kbps.
83 * High sensitivity: down to -148 dBm.
84 * Bullet-proof front end: IIP3 = -12.5 dBm.
85 * Excellent blocking immunity.
86 * Fully integrated synthesizer with a resolution of 61 Hz.
87 * LoRa modulation.
88 * Built-in bit synchronizer for clock recovery.
89 * Preamble detection.
90 * 127 dB Dynamic Range RSSI.
91 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
92
93 == 1.3 Features ==
94
95 * LoRaWAN Class A & Class C protocol (default Class A)
96 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
97 * AT Commands to change parameters
98 * Remote configure parameters via LoRaWAN Downlink
99 * Firmware upgradable via program port
100 * Support multiply RS485 devices by flexible rules
101 * Support Modbus protocol
102 * Support Interrupt uplink
103
104 == 1.4 Applications ==
105
106 * Smart Buildings & Home Automation
107 * Logistics and Supply Chain Management
108 * Smart Metering
109 * Smart Agriculture
110 * Smart Cities
111 * Smart Factory
112
113 == 1.5 Firmware Change log ==
114
115 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
116
117
118 == 1.6 Hardware Change log ==
119
120 (((
121
122
123 (((
124 v1.4
125 )))
126 )))
127
128 (((
129 (((
130 ~1. Change Power IC to TPS22916
131 )))
132 )))
133
134 (((
135
136 )))
137
138 (((
139 (((
140 v1.3
141 )))
142 )))
143
144 (((
145 (((
146 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
147 )))
148 )))
149
150 (((
151
152 )))
153
154 (((
155 (((
156 v1.2
157 )))
158 )))
159
160 (((
161 (((
162 Release version ​​​​​
163 )))
164
165
166 )))
167
168 = 2. Pin mapping and Power ON Device =
169
170 (((
171 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
172 )))
173
174 [[image:1652953055962-143.png||height="387" width="728"]]
175
176
177 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
178
179
180 = 3. Operation Mode =
181
182 == 3.1 How it works? ==
183
184 (((
185 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
186
187
188 )))
189
190 == 3.2 Example to join LoRaWAN network ==
191
192 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
193
194 [[image:1652953414711-647.png||height="337" width="723"]]
195
196
197 (((
198 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
199 )))
200
201 (((
202 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
203 )))
204
205 (((
206 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from RS485-BL.
207 )))
208
209 (((
210 Each RS485-BL is shipped with a sticker with unique device EUI:
211 )))
212
213 [[image:1652953462722-299.png]]
214
215
216 (((
217 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
218 )))
219
220 (((
221 **Add APP EUI in the application.**
222 )))
223
224
225 [[image:image-20220519174512-1.png]]
226
227 [[image:image-20220519174512-2.png||height="328" width="731"]]
228
229 [[image:image-20220519174512-3.png||height="556" width="724"]]
230
231 [[image:image-20220519174512-4.png]]
232
233
234 You can also choose to create the device manually.
235
236 [[image:1652953542269-423.png||height="710" width="723"]]
237
238
239 Add APP KEY and DEV EUI
240
241 [[image:1652953553383-907.png||height="514" width="724"]]
242
243
244
245 (((
246 (% style="color:blue" %)**Step 2**(%%): Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
247 )))
248
249 [[image:1652953568895-172.png||height="232" width="724"]]
250
251
252 == 3.3 Configure Commands to read data ==
253
254 (((
255 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
256
257
258 )))
259
260 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
261
262 (((
263 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
264 )))
265
266 (((
267 **~1. RS485-MODBUS mode:**
268 )))
269
270 (((
271 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
272 )))
273
274 (((
275 **2. TTL mode:**
276 )))
277
278 (((
279 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
280 )))
281
282 (((
283 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
284 )))
285
286 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
287 |=(% style="width: 80px;" %)(((
288 (((
289 **AT Commands**
290 )))
291 )))|=(% style="width: 210px;" %)(((
292 (((
293 **Description**
294 )))
295 )))|=(% style="width: 210px;" %)(((
296 (((
297 **Example**
298 )))
299 )))
300 |(% style="width:80px" %)(((
301 (((
302 AT+BAUDR
303 )))
304 )))|(% style="width:210px" %)(((
305 (((
306 Set the baud rate (for RS485 connection). Default Value is: 9600.
307 )))
308 )))|(% style="width:210px" %)(((
309 (((
310 (((
311 AT+BAUDR=9600
312 )))
313 )))
314
315 (((
316 (((
317 Options: (1200,2400,4800,14400,19200,115200)
318 )))
319 )))
320 )))
321 |(% style="width:80px" %)(((
322 (((
323 AT+PARITY
324 )))
325 )))|(% style="width:210px" %)(((
326 (((
327 (((
328 Set UART parity (for RS485 connection)
329 )))
330 )))
331
332 (((
333 (((
334 Default Value is: no parity.
335 )))
336 )))
337 )))|(% style="width:210px" %)(((
338 (((
339 (((
340 AT+PARITY=0
341 )))
342 )))
343
344 (((
345 (((
346 Option: 0: no parity, 1: odd parity, 2: even parity
347 )))
348 )))
349 )))
350 |(% style="width:80px" %)(((
351 (((
352 AT+STOPBIT
353 )))
354 )))|(% style="width:210px" %)(((
355 (((
356 (((
357 Set serial stopbit (for RS485 connection)
358 )))
359 )))
360
361 (((
362 (((
363 Default Value is: 1bit.
364 )))
365 )))
366 )))|(% style="width:210px" %)(((
367 (((
368 (((
369 AT+STOPBIT=0 for 1bit
370 )))
371 )))
372
373 (((
374 (((
375 AT+STOPBIT=1 for 1.5 bit
376 )))
377 )))
378
379 (((
380 (((
381 AT+STOPBIT=2 for 2 bits
382 )))
383 )))
384 )))
385
386 === 3.3.2 Configure sensors ===
387
388 (((
389 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
390 )))
391
392 (((
393 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
394 )))
395
396 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
397 |=(% style="width: 80px;" %)**AT Commands**|=(% style="width: 210px;" %)**Description**|=(% style="width: 210px;" %)**Example**
398 |AT+CFGDEV|(% style="width:80px" %)(((
399 (((
400 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
401 )))
402
403 (((
404 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
405 )))
406
407 (((
408 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
409 )))
410 )))|(% style="width:210px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
411
412 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
413
414
415
416 === 3.3.3 Configure read commands for each sampling ===
417
418 (((
419 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
420 )))
421
422 (((
423 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
424 )))
425
426 (((
427 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
428 )))
429
430 (((
431 This section describes how to achieve above goals.
432 )))
433
434 (((
435 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
436
437
438 )))
439
440 (((
441 (% style="color:blue" %)**Command from RS485-BL to Sensor:**
442 )))
443
444 (((
445 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
446
447
448 )))
449
450 (((
451 (% style="color:blue" %)**Handle return from sensors to RS485-BL**:
452 )))
453
454 (((
455 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
456 )))
457
458 * (((
459 (% style="color:blue" %)**AT+DATACUT**
460 )))
461
462 (((
463 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
464
465
466 )))
467
468 * (((
469 (% style="color:blue" %)**AT+SEARCH**
470 )))
471
472 (((
473 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
474 )))
475
476 (((
477
478
479 (% style="color:blue" %)**Define wait timeout:**
480 )))
481
482 (((
483 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
484 )))
485
486 (((
487 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
488 )))
489
490 (((
491
492
493 **Examples:**
494 )))
495
496 (((
497 Below are examples for the how above AT Commands works.
498 )))
499
500 (((
501 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
502 )))
503
504 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
505 |(% style="width:498px" %)(((
506 (((
507 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
508 )))
509
510 (((
511 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
512 )))
513
514 (((
515 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
516 )))
517 )))
518
519 (((
520 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
521 )))
522
523 (((
524 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
525 )))
526
527 (((
528
529 )))
530
531 (((
532 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
533 )))
534
535 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
536 |(% style="width:577px" %)(((
537 (((
538 **AT+SEARCHx=aa,xx xx xx xx xx**
539 )))
540
541 * (((
542 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
543 )))
544 * (((
545 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
546 )))
547 )))
548
549 (((
550
551
552 **Examples:**
553 )))
554
555 (((
556 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
557 )))
558
559 (((
560 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
561 )))
562
563 (((
564 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
565 )))
566
567 (((
568 [[image:1653271044481-711.png]]
569
570
571 )))
572
573 (((
574 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
575 )))
576
577 (((
578 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
579 )))
580
581 (((
582 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
583 )))
584
585 (((
586 [[image:1653271276735-972.png]]
587 )))
588
589 (((
590 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
591 )))
592
593 (% style="background-color:#4f81bd; color:white; width:510px" %)
594 |(% style="width:726px" %)(((
595 (((
596 **AT+DATACUTx=a,b,c**
597 )))
598
599 * (((
600 **a: length for the return of AT+COMMAND**
601 )))
602 * (((
603 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
604 )))
605 * (((
606 **c: define the position for valid value.  **
607 )))
608 )))
609
610 (((
611
612
613 **Examples:**
614 )))
615
616 * (((
617 (% style="color:blue" %)**Grab bytes:**
618 )))
619
620 (((
621 [[image:1653271581490-837.png||height="313" width="722"]]
622 )))
623
624 (((
625
626 )))
627
628 * (((
629 (% style="color:blue" %)**Grab a section.**
630 )))
631
632 (((
633 [[image:1653271648378-342.png||height="326" width="720"]]
634 )))
635
636 (((
637
638 )))
639
640 * (((
641 (% style="color:blue" %)**Grab different sections.**
642 )))
643
644 (((
645 [[image:1653271657255-576.png||height="305" width="730"]]
646
647
648 )))
649
650 (((
651 (((
652 (% style="color:red" %)**Note:**
653 )))
654 )))
655
656 (((
657 (((
658 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
659 )))
660 )))
661
662 (((
663 (((
664 **Example:**
665 )))
666 )))
667
668 (((
669 (((
670 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
671 )))
672 )))
673
674 (((
675 (((
676 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
677 )))
678 )))
679
680 (((
681 (((
682 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
683 )))
684 )))
685
686 (((
687 (((
688 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
689 )))
690 )))
691
692 (((
693 (((
694 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
695 )))
696 )))
697
698 (((
699 (((
700 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
701 )))
702 )))
703
704 (((
705 [[image:1653271763403-806.png]]
706 )))
707
708
709 === 3.3.4 Compose the uplink payload ===
710
711 (((
712 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
713
714
715 )))
716
717 (((
718 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
719
720
721 )))
722
723 (((
724 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
725 )))
726
727 (((
728 Final Payload is
729 )))
730
731 (((
732 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
733 )))
734
735 (((
736 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
737 )))
738
739 [[image:1653272787040-634.png||height="515" width="719"]]
740
741
742
743 (((
744 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
745
746
747 )))
748
749 (((
750 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
751 )))
752
753 (((
754 Final Payload is
755 )))
756
757 (((
758 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
759 )))
760
761 1. (((
762 Battery Info (2 bytes): Battery voltage
763 )))
764 1. (((
765 PAYVER (1 byte): Defined by AT+PAYVER
766 )))
767 1. (((
768 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
769 )))
770 1. (((
771 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
772 )))
773 1. (((
774 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
775
776
777 )))
778
779 [[image:1653272817147-600.png||height="437" width="717"]]
780
781 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
782
783
784 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
785
786 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
787
788 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
789
790
791 Below are the uplink payloads:
792
793 [[image:1653272901032-107.png]]
794
795
796 (% style="color:red" %)Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
797
798 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
799
800 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
801
802 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
803
804 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
805
806
807
808 === 3.3.5 Uplink on demand ===
809
810 (((
811 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
812 )))
813
814 (((
815 Downlink control command:
816 )))
817
818 (((
819 **0x08 command**: Poll an uplink with current command set in RS485-BL.
820 )))
821
822 (((
823 **0xA8 command**: Send a command to RS485-BL and uplink the output from sensors.
824
825
826 )))
827
828 === 3.3.6 Uplink on Interrupt ===
829
830 Put the interrupt sensor between 3.3v_out and GPIO ext.
831
832 [[image:1653273818896-432.png]]
833
834
835 (((
836 AT+INTMOD=0  Disable Interrupt
837 )))
838
839 (((
840 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
841 )))
842
843 (((
844 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
845 )))
846
847 (((
848 AT+INTMOD=3  Interrupt trigger by rising edge.
849
850
851 )))
852
853 == 3.4 Uplink Payload ==
854
855 [[image:image-20220606105412-1.png]]
856
857 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
858
859 (((
860 {{{function Decoder(bytes, port) {}}}
861 )))
862
863 (((
864 {{{//Payload Formats of RS485-BL Deceive}}}
865 )))
866
867 (((
868 {{{return {}}}
869 )))
870
871 (((
872 {{{ //Battery,units:V}}}
873 )))
874
875 (((
876 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
877 )))
878
879 (((
880 {{{ //GPIO_EXTI }}}
881 )))
882
883 (((
884 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
885 )))
886
887 (((
888 {{{ //payload of version}}}
889 )))
890
891 (((
892 {{{ Pay_ver:bytes[2],}}}
893 )))
894
895 (((
896 {{{ }; }}}
897 )))
898
899 (((
900 }
901
902
903 )))
904
905 (((
906 TTN V3 uplink screen shot.
907 )))
908
909 [[image:1653274001211-372.png||height="192" width="732"]]
910
911
912 == 3.5 Configure RS485-BL via AT or Downlink ==
913
914 (((
915 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
916 )))
917
918 (((
919 There are two kinds of Commands:
920 )))
921
922 * (((
923 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
924 )))
925
926 * (((
927 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
928
929
930
931
932 )))
933
934 === 3.5.1 Common Commands: ===
935
936 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
937
938
939 === 3.5.2 Sensor related commands: ===
940
941
942
943 ==== **Choose Device Type (RS485 or TTL)** ====
944
945 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
946
947 * (% style="color:#037691" %)**AT Command**
948
949
950 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
951
952 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
953
954
955
956 * (% style="color:#037691" %)**Downlink Payload**
957
958 **0A aa**  ~-~->  same as AT+MOD=aa
959
960
961
962
963 ==== **RS485 Debug Command (AT+CFGDEV)** ====
964
965 (((
966 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
967 )))
968
969 * (((
970 (% style="color:#037691" %)**AT Command**
971 )))
972
973 (% class="box infomessage" %)
974 (((
975 (((
976 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
977 )))
978 )))
979
980 (((
981 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
982 )))
983
984 (((
985
986 )))
987
988 * (((
989 (% style="color:#037691" %)**Downlink Payload**
990 )))
991
992 (((
993 Format: A8 MM NN XX XX XX XX YY
994 )))
995
996 (((
997 Where:
998 )))
999
1000 * (((
1001 MM: 1: add CRC-16/MODBUS ; 0: no CRC
1002 )))
1003 * (((
1004 NN: The length of RS485 command
1005 )))
1006 * (((
1007 XX XX XX XX: RS485 command total NN bytes
1008 )))
1009 * (((
1010 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
1011 )))
1012
1013 (((
1014 **Example 1:**
1015 )))
1016
1017 (((
1018 To connect a Modbus Alarm with below commands.
1019 )))
1020
1021 * (((
1022 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
1023 )))
1024
1025 * (((
1026 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1027 )))
1028
1029 (((
1030 So if user want to use downlink command to control to RS485 Alarm, he can use:
1031 )))
1032
1033 (((
1034 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1035 )))
1036
1037 (((
1038 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1039 )))
1040
1041 (((
1042 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
1043 )))
1044
1045 (((
1046
1047 )))
1048
1049 (((
1050 **Example 2:**
1051 )))
1052
1053 (((
1054 Check TTL Sensor return:
1055 )))
1056
1057 (((
1058 [[image:1654132684752-193.png]]
1059 )))
1060
1061
1062
1063
1064
1065 ==== **Set Payload version** ====
1066
1067 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1068
1069 * (% style="color:#037691" %)**AT Command:**
1070
1071 **AT+PAYVER:  **Set PAYVER field = 1
1072
1073
1074 * (% style="color:#037691" %)**Downlink Payload:**
1075
1076 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
1077
1078 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
1079
1080
1081
1082
1083 ==== **Set RS485 Sampling Commands** ====
1084
1085 (((
1086 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1087 )))
1088
1089 (((
1090 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1091 )))
1092
1093 (((
1094
1095 )))
1096
1097 * (((
1098 (% style="color:#037691" %)**AT Command:**
1099 )))
1100
1101 **AT+COMMANDx:  Configure RS485 read command to sensor.**
1102
1103 **AT+DATACUTx:  Configure how to handle return from RS485 devices.**
1104
1105 **AT+SEARCHx:  Configure search command**
1106
1107
1108 * (((
1109 (% style="color:#037691" %)**Downlink Payload:**
1110 )))
1111
1112 (((
1113 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1114 )))
1115
1116 (((
1117 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
1118 )))
1119
1120 (((
1121 Format: AF MM NN LL XX XX XX XX YY
1122 )))
1123
1124 (((
1125 Where:
1126 )))
1127
1128 * (((
1129 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1130 )))
1131 * (((
1132 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1133 )))
1134 * (((
1135 LL:  The length of AT+COMMAND or AT+DATACUT command
1136 )))
1137 * (((
1138 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1139 )))
1140 * (((
1141 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1142 )))
1143
1144 (((
1145 **Example:**
1146 )))
1147
1148 (((
1149 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1150 )))
1151
1152 (((
1153 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1154 )))
1155
1156 (((
1157 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1158 )))
1159
1160 (((
1161
1162 )))
1163
1164 (((
1165 **0xAB** downlink command can be used for set AT+SEARCHx
1166 )))
1167
1168 (((
1169 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1170 )))
1171
1172 * (((
1173 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1174 )))
1175 * (((
1176 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1177 )))
1178
1179 (((
1180 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1181 )))
1182
1183
1184
1185
1186 ==== **Fast command to handle MODBUS device** ====
1187
1188 (((
1189 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1190 )))
1191
1192 (((
1193 This command is valid since v1.3 firmware version
1194 )))
1195
1196 (((
1197
1198 )))
1199
1200 (((
1201 (% style="color:#037691" %)**AT+MBFUN has only two value:**
1202 )))
1203
1204 * (((
1205 **AT+MBFUN=1**: Enable Modbus reading. And get response base on the MODBUS return
1206 )))
1207
1208 (((
1209 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1210 )))
1211
1212 * (((
1213 **AT+MBFUN=0**: Disable Modbus fast reading.
1214 )))
1215
1216 (((
1217
1218
1219 **Example:**
1220 )))
1221
1222 * (((
1223 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1224 )))
1225 * (((
1226 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1227 )))
1228 * (((
1229 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1230 )))
1231
1232 [[image:1654133913295-597.png]]
1233
1234
1235 [[image:1654133954153-643.png]]
1236
1237
1238 * (((
1239 (% style="color:#037691" %)**Downlink Commands:**
1240 )))
1241
1242 (((
1243 **A9 aa** ~-~-> Same as AT+MBFUN=aa
1244 )))
1245
1246
1247
1248
1249 ==== **RS485 command timeout** ====
1250
1251 (((
1252 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1253 )))
1254
1255 (((
1256 Default value: 0, range:  0 ~~ 5 seconds
1257 )))
1258
1259 (((
1260
1261 )))
1262
1263 * (((
1264 (% style="color:#037691" %)**AT Command:**
1265
1266 **AT+CMDDLaa=hex(bb cc)**
1267
1268
1269 )))
1270
1271 (((
1272 **Example:**
1273 )))
1274
1275 (((
1276 **AT+CMDDL1=1000** to send the open time to 1000ms
1277 )))
1278
1279 (((
1280
1281 )))
1282
1283 * (((
1284 (% style="color:#037691" %)**Downlink Payload:**
1285 )))
1286
1287 (((
1288 0x AA aa bb cc
1289 )))
1290
1291 (((
1292 Same as: AT+CMDDLaa=hex(bb cc)
1293 )))
1294
1295 (((
1296 **Example:**
1297 )))
1298
1299 (((
1300 **0xAA 01 03 E8**  ~-~-> Same as **AT+CMDDL1=1000 ms**
1301 )))
1302
1303
1304
1305
1306 ==== **Uplink payload mode** ====
1307
1308 (((
1309 Define to use one uplink or multiple uplinks for the sampling.
1310 )))
1311
1312 (((
1313 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1314 )))
1315
1316 * (((
1317 (% style="color:#037691" %)**AT Command:**
1318
1319 **AT+DATAUP=0**
1320
1321 **AT+DATAUP=1**
1322 )))
1323
1324 (((
1325
1326 )))
1327
1328 * (((
1329 (% style="color:#037691" %)**Downlink Payload:**
1330 )))
1331
1332 (((
1333 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
1334 )))
1335
1336 (((
1337 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
1338 )))
1339
1340
1341
1342
1343 ==== **Manually trigger an Uplink** ====
1344
1345 Ask device to send an uplink immediately.
1346
1347 * (% style="color:#037691" %)**Downlink Payload:**
1348
1349 **0x08 FF**, RS485-BL will immediately send an uplink.
1350
1351
1352
1353
1354 ==== **Clear RS485 Command** ====
1355
1356 (((
1357 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1358 )))
1359
1360 (((
1361
1362 )))
1363
1364 * (((
1365 (% style="color:#037691" %)**AT Command:**
1366 )))
1367
1368 (((
1369 (% style="color:#037691" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1370 )))
1371
1372 (((
1373 Example screen shot after clear all RS485 commands. 
1374 )))
1375
1376 (((
1377
1378 )))
1379
1380 (((
1381 The uplink screen shot is:
1382 )))
1383
1384 (((
1385 [[image:1654134704555-320.png]]
1386 )))
1387
1388 (((
1389
1390 )))
1391
1392 * (((
1393 (% style="color:#037691" %)**Downlink Payload:**
1394 )))
1395
1396 (((
1397 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1398 )))
1399
1400
1401
1402
1403 ==== **Set Serial Communication Parameters** ====
1404
1405 (((
1406 Set the Rs485 serial communication parameters:
1407 )))
1408
1409 * (((
1410 (% style="color:#037691" %)**AT Command:**
1411 )))
1412
1413 (((
1414
1415
1416 * Set Baud Rate:
1417 )))
1418
1419 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1420
1421
1422 * Set UART Parity
1423
1424 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1425
1426
1427 * Set STOPBIT
1428
1429 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1430
1431
1432 * (((
1433 (% style="color:#037691" %)**Downlink Payload:**
1434 )))
1435
1436 (((
1437 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1438 )))
1439
1440 (((
1441
1442
1443 **Example:**
1444 )))
1445
1446 * (((
1447 A7 01 00 60   same as AT+BAUDR=9600
1448 )))
1449 * (((
1450 A7 01 04 80  same as AT+BAUDR=115200
1451 )))
1452
1453 (((
1454 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1455 )))
1456
1457 (((
1458 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1459 )))
1460
1461
1462
1463
1464 ==== **Control output power duration** ====
1465
1466 (((
1467 User can set the output power duration before each sampling.
1468 )))
1469
1470 * (((
1471 (% style="color:#037691" %)**AT Command:**
1472 )))
1473
1474 (((
1475 **Example:**
1476 )))
1477
1478 (((
1479 **AT+3V3T=1000**  ~/~/ 3V3 output power will open 1s before each sampling.
1480 )))
1481
1482 (((
1483 **AT+5VT=1000**  ~/~/ +5V output power will open 1s before each sampling.
1484 )))
1485
1486 (((
1487
1488 )))
1489
1490 * (((
1491 (% style="color:#037691" %)**LoRaWAN Downlink Command:**
1492 )))
1493
1494 (((
1495 **07 01 aa bb**  Same as AT+5VT=(aa bb)
1496 )))
1497
1498 (((
1499 **07 02 aa bb**  Same as AT+3V3T=(aa bb)
1500 )))
1501
1502
1503
1504 == 3.6 Buttons ==
1505
1506 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:233px" %)
1507 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1508 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1509
1510
1511
1512
1513 == 3.7 +3V3 Output ==
1514
1515 (((
1516 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1517 )))
1518
1519 (((
1520 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1521 )))
1522
1523 (((
1524 The +3V3 output time can be controlled by AT Command.
1525 )))
1526
1527 (((
1528
1529 )))
1530
1531 (((
1532 (% style="color:#037691" %)**AT+3V3T=1000**
1533 )))
1534
1535 (((
1536
1537 )))
1538
1539 (((
1540 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1541 )))
1542
1543 (((
1544 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1545 )))
1546
1547
1548 == 3.8 +5V Output ==
1549
1550 (((
1551 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1552 )))
1553
1554 (((
1555 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1556 )))
1557
1558 (((
1559 The 5V output time can be controlled by AT Command.
1560 )))
1561
1562 (((
1563
1564 )))
1565
1566 (((
1567 (% style="color:#037691" %)**AT+5VT=1000**
1568 )))
1569
1570 (((
1571
1572 )))
1573
1574 (((
1575 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1576 )))
1577
1578 (((
1579 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1580 )))
1581
1582
1583
1584 == 3.9 LEDs ==
1585
1586 (% border="1" style="background-color:#ffffcc; color:green; width:332px" %)
1587 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1588 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1589
1590 == 3.10 Switch Jumper ==
1591
1592 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:463px" %)
1593 |=(% style="width: 123px;" %)**Switch Jumper**|=(% style="width: 336px;" %)**Feature**
1594 |(% style="width:123px" %)**SW1**|(% style="width:336px" %)ISP position: Upgrade firmware via UART
1595 Flash position: Configure device, check running status.
1596 |(% style="width:123px" %)**SW2**|(% style="width:336px" %)5V position: set to compatible with 5v I/O.
1597 3.3v position: set to compatible with 3.3v I/O.,
1598
1599 (((
1600 **+3.3V**: is always ON
1601 )))
1602
1603 (((
1604 **+5V**: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1605 )))
1606
1607
1608 = 4. Case Study =
1609
1610 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1611
1612
1613 = 5. Use AT Command =
1614
1615 == 5.1 Access AT Command ==
1616
1617 (((
1618 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1619 )))
1620
1621 [[image:1654135840598-282.png]]
1622
1623
1624 (((
1625 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1626 )))
1627
1628 [[image:1654136105500-922.png]]
1629
1630
1631 (((
1632 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1633 )))
1634
1635
1636 == 5.2 Common AT Command Sequence ==
1637
1638 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1639
1640 If device has not joined network yet:
1641
1642 (% class="box infomessage" %)
1643 (((
1644 **AT+FDR**
1645 **AT+NJM=0**
1646 **ATZ**
1647 )))
1648
1649
1650 (((
1651 If device already joined network:
1652 )))
1653
1654 (% class="box infomessage" %)
1655 (((
1656 **AT+NJM=0**
1657 )))
1658
1659 (% class="box infomessage" %)
1660 (((
1661 **ATZ**
1662 )))
1663
1664
1665 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1666
1667
1668 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1669
1670 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1671
1672 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1673
1674 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%)Set Data Rate
1675
1676 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1677
1678 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1679
1680 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1681
1682 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1683
1684 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1685
1686 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1687
1688
1689 (% style="color:red" %)**Note:**
1690
1691 (((
1692 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1693 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1694 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1695 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1696 )))
1697
1698 [[image:1654136435598-589.png]]
1699
1700
1701 = 6. FAQ =
1702
1703 == 6.1 How to upgrade the image? ==
1704
1705 (((
1706 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1707 )))
1708
1709 * (((
1710 Support new features
1711 )))
1712 * (((
1713 For bug fix
1714 )))
1715 * (((
1716 Change LoRaWAN bands.
1717 )))
1718
1719 (((
1720 Below shows the hardware connection for how to upload an image to RS485-BL:
1721 )))
1722
1723 [[image:1654136646995-976.png]]
1724
1725 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1726
1727 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1728
1729 **Step3: **Open flashloader; choose the correct COM port to update.
1730
1731 [[image:image-20220602102605-1.png]]
1732
1733
1734 [[image:image-20220602102637-2.png]]
1735
1736
1737 [[image:image-20220602102715-3.png]]
1738
1739
1740
1741 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1742
1743 (((
1744 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1745 )))
1746
1747
1748
1749 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1750
1751 (((
1752 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1753 )))
1754
1755
1756
1757 = 7. Trouble Shooting =
1758
1759
1760 == 7.1 Downlink doesn’t work, how to solve it? ==
1761
1762 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1763
1764
1765 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1766
1767 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1768
1769
1770 = 8. Order Info =
1771
1772 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
1773
1774 (% style="color:blue" %)**XXX:**
1775
1776 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1777 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1778 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1779 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1780 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1781 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1782 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1783 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1784 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1785 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1786
1787 = 9. Packing Info =
1788
1789 (((
1790 **Package Includes**:
1791 )))
1792
1793 * (((
1794 RS485-BL x 1
1795 )))
1796 * (((
1797 Stick Antenna for LoRa RF part x 1
1798 )))
1799 * (((
1800 Program cable x 1
1801 )))
1802
1803 (((
1804 **Dimension and weight**:
1805 )))
1806
1807 * (((
1808 Device Size: 13.5 x 7 x 3 cm
1809 )))
1810 * (((
1811 Device Weight: 105g
1812 )))
1813 * (((
1814 Package Size / pcs : 14.5 x 8 x 5 cm
1815 )))
1816 * (((
1817 Weight / pcs : 170g
1818
1819
1820 )))
1821
1822 = 10. Support =
1823
1824 * (((
1825 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1826 )))
1827 * (((
1828 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1829 )))