Version 44.1 by Edwin Chen on 2022/06/13 10:49

Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="385" width="385"]]
3
4
5
6
7 **RS485-BL – Waterproof RS485 to LoRaWAN Converter User Manual**
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19 = 1.Introduction =
20
21 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
22
23 (((
24
25 )))
26
27 (((
28 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
29 )))
30
31 (((
32 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
33 )))
34
35 (((
36 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
37 )))
38
39 (((
40 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
41 )))
42
43 (((
44 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
45 )))
46
47 (((
48 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
49 )))
50
51 (((
52 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
53 )))
54
55 [[image:1652953304999-717.png||height="424" width="733"]]
56
57
58
59 == 1.2 Specifications ==
60
61
62 **Hardware System:**
63
64 * STM32L072CZT6 MCU
65 * SX1276/78 Wireless Chip 
66 * Power Consumption (exclude RS485 device):
67 ** Idle: 6uA@3.3v
68 ** 20dB Transmit: 130mA@3.3v
69
70 **Interface for Model:**
71
72 * 1 x RS485 Interface
73 * 1 x TTL Serial , 3.3v or 5v.
74 * 1 x I2C Interface, 3.3v or 5v.
75 * 1 x one wire interface
76 * 1 x Interrupt Interface
77 * 1 x Controllable 5V output, max
78
79 **LoRa Spec:**
80
81 * Frequency Range:
82 ** Band 1 (HF): 862 ~~ 1020 Mhz
83 ** Band 2 (LF): 410 ~~ 528 Mhz
84 * 168 dB maximum link budget.
85 * +20 dBm - 100 mW constant RF output vs.
86 * Programmable bit rate up to 300 kbps.
87 * High sensitivity: down to -148 dBm.
88 * Bullet-proof front end: IIP3 = -12.5 dBm.
89 * Excellent blocking immunity.
90 * Fully integrated synthesizer with a resolution of 61 Hz.
91 * LoRa modulation.
92 * Built-in bit synchronizer for clock recovery.
93 * Preamble detection.
94 * 127 dB Dynamic Range RSSI.
95 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
96
97 == 1.3 Features ==
98
99 * LoRaWAN Class A & Class C protocol (default Class A)
100 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
101 * AT Commands to change parameters
102 * Remote configure parameters via LoRaWAN Downlink
103 * Firmware upgradable via program port
104 * Support multiply RS485 devices by flexible rules
105 * Support Modbus protocol
106 * Support Interrupt uplink
107
108 == 1.4 Applications ==
109
110 * Smart Buildings & Home Automation
111 * Logistics and Supply Chain Management
112 * Smart Metering
113 * Smart Agriculture
114 * Smart Cities
115 * Smart Factory
116
117 == 1.5 Firmware Change log ==
118
119 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
120
121
122 == 1.6 Hardware Change log ==
123
124 (((
125
126
127 (((
128 v1.4
129 )))
130 )))
131
132 (((
133 (((
134 ~1. Change Power IC to TPS22916
135 )))
136 )))
137
138 (((
139
140 )))
141
142 (((
143 (((
144 v1.3
145 )))
146 )))
147
148 (((
149 (((
150 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
151 )))
152 )))
153
154 (((
155
156 )))
157
158 (((
159 (((
160 v1.2
161 )))
162 )))
163
164 (((
165 (((
166 Release version ​​​​​
167 )))
168
169
170 )))
171
172 = 2. Pin mapping and Power ON Device =
173
174 (((
175 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
176 )))
177
178 [[image:1652953055962-143.png||height="387" width="728"]]
179
180
181 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
182
183
184 = 3. Operation Mode =
185
186 == 3.1 How it works? ==
187
188 (((
189 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
190
191
192 )))
193
194 == 3.2 Example to join LoRaWAN network ==
195
196 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
197
198 [[image:1652953414711-647.png||height="337" width="723"]]
199
200 (((
201 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
202 )))
203
204 (((
205 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
206 )))
207
208 (((
209 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
210 )))
211
212 (((
213 Each RS485-BL is shipped with a sticker with unique device EUI:
214 )))
215
216 [[image:1652953462722-299.png]]
217
218 (((
219 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
220 )))
221
222 (((
223 Add APP EUI in the application.
224 )))
225
226
227 [[image:image-20220519174512-1.png]]
228
229 [[image:image-20220519174512-2.png||height="328" width="731"]]
230
231 [[image:image-20220519174512-3.png||height="556" width="724"]]
232
233 [[image:image-20220519174512-4.png]]
234
235 You can also choose to create the device manually.
236
237 [[image:1652953542269-423.png||height="710" width="723"]]
238
239 Add APP KEY and DEV EUI
240
241 [[image:1652953553383-907.png||height="514" width="724"]]
242
243
244 (((
245 **Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
246 )))
247
248 [[image:1652953568895-172.png||height="232" width="724"]]
249
250
251 == 3.3 Configure Commands to read data ==
252
253 (((
254 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
255
256
257 )))
258
259 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
260
261 (((
262 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
263 )))
264
265 (((
266 **~1. RS485-MODBUS mode:**
267 )))
268
269 (((
270 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
271 )))
272
273 (((
274 **2. TTL mode:**
275 )))
276
277 (((
278 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
279 )))
280
281 (((
282 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
283 )))
284
285 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
286 |=(% style="width: 80px;" %)(((
287 (((
288 **AT Commands**
289 )))
290 )))|=(% style="width: 210px;" %)(((
291 (((
292 **Description**
293 )))
294 )))|=(% style="width: 210px;" %)(((
295 (((
296 **Example**
297 )))
298 )))
299 |(% style="width:80px" %)(((
300 (((
301 AT+BAUDR
302 )))
303 )))|(% style="width:210px" %)(((
304 (((
305 Set the baud rate (for RS485 connection). Default Value is: 9600.
306 )))
307 )))|(% style="width:210px" %)(((
308 (((
309 (((
310 AT+BAUDR=9600
311 )))
312 )))
313
314 (((
315 (((
316 Options: (1200,2400,4800,14400,19200,115200)
317 )))
318 )))
319 )))
320 |(% style="width:80px" %)(((
321 (((
322 AT+PARITY
323 )))
324 )))|(% style="width:210px" %)(((
325 (((
326 (((
327 Set UART parity (for RS485 connection)
328 )))
329 )))
330
331 (((
332 (((
333 Default Value is: no parity.
334 )))
335 )))
336 )))|(% style="width:210px" %)(((
337 (((
338 (((
339 AT+PARITY=0
340 )))
341 )))
342
343 (((
344 (((
345 Option: 0: no parity, 1: odd parity, 2: even parity
346 )))
347 )))
348 )))
349 |(% style="width:80px" %)(((
350 (((
351 AT+STOPBIT
352 )))
353 )))|(% style="width:210px" %)(((
354 (((
355 (((
356 Set serial stopbit (for RS485 connection)
357 )))
358 )))
359
360 (((
361 (((
362 Default Value is: 1bit.
363 )))
364 )))
365 )))|(% style="width:210px" %)(((
366 (((
367 (((
368 AT+STOPBIT=0 for 1bit
369 )))
370 )))
371
372 (((
373 (((
374 AT+STOPBIT=1 for 1.5 bit
375 )))
376 )))
377
378 (((
379 (((
380 AT+STOPBIT=2 for 2 bits
381 )))
382 )))
383 )))
384
385 === 3.3.2 Configure sensors ===
386
387 (((
388 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
389 )))
390
391 (((
392 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
393 )))
394
395 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
396 |=(% style="width: 80px;" %)**AT Commands**|=(% style="width: 210px;" %)**Description**|=(% style="width: 210px;" %)**Example**
397 |AT+CFGDEV|(% style="width:80px" %)(((
398 (((
399 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
400 )))
401
402 (((
403 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
404 )))
405
406 (((
407 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
408 )))
409 )))|(% style="width:210px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
410
411 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
412
413
414
415 === 3.3.3 Configure read commands for each sampling ===
416
417 (((
418 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
419 )))
420
421 (((
422 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
423 )))
424
425 (((
426 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
427 )))
428
429 (((
430 This section describes how to achieve above goals.
431 )))
432
433 (((
434 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
435 )))
436
437 (((
438 **Command from RS485-BL to Sensor:**
439 )))
440
441 (((
442 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
443 )))
444
445 (((
446 **Handle return from sensors to RS485-BL**:
447 )))
448
449 (((
450 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
451 )))
452
453 * (((
454 **AT+DATACUT**
455 )))
456
457 (((
458 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
459 )))
460
461 * (((
462 **AT+SEARCH**
463 )))
464
465 (((
466 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
467 )))
468
469 (((
470 **Define wait timeout:**
471 )))
472
473 (((
474 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
475 )))
476
477 (((
478 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
479 )))
480
481 (((
482 **Examples:**
483 )))
484
485 (((
486 Below are examples for the how above AT Commands works.
487 )))
488
489 (((
490 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
491 )))
492
493 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
494 |(% style="width:498px" %)(((
495 (((
496 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
497 )))
498
499 (((
500 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
501 )))
502
503 (((
504 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
505 )))
506 )))
507
508 (((
509 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
510 )))
511
512 (((
513 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
514 )))
515
516 (((
517
518 )))
519
520 (((
521 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
522 )))
523
524 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
525 |(% style="width:577px" %)(((
526 (((
527 **AT+SEARCHx=aa,xx xx xx xx xx**
528 )))
529
530 * (((
531 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
532 )))
533 * (((
534 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
535 )))
536 )))
537
538 (((
539 **Examples:**
540 )))
541
542 (((
543 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
544 )))
545
546 (((
547 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
548 )))
549
550 (((
551 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
552 )))
553
554 (((
555 [[image:1653271044481-711.png]]
556 )))
557
558 (((
559 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
560 )))
561
562 (((
563 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
564 )))
565
566 (((
567 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
568 )))
569
570 (((
571 [[image:1653271276735-972.png]]
572 )))
573
574 (((
575 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
576 )))
577
578 (% style="background-color:#4f81bd; color:white; width:510px" %)
579 |(% style="width:726px" %)(((
580 (((
581 **AT+DATACUTx=a,b,c**
582 )))
583
584 * (((
585 **a: length for the return of AT+COMMAND**
586 )))
587 * (((
588 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
589 )))
590 * (((
591 **c: define the position for valid value.  **
592 )))
593 )))
594
595 (((
596 **Examples:**
597 )))
598
599 * (((
600 Grab bytes:
601 )))
602
603 (((
604 [[image:1653271581490-837.png||height="313" width="722"]]
605 )))
606
607 (((
608
609 )))
610
611 * (((
612 Grab a section.
613 )))
614
615 (((
616 [[image:1653271648378-342.png||height="326" width="720"]]
617 )))
618
619 (((
620
621 )))
622
623 * (((
624 Grab different sections.
625 )))
626
627 (((
628 [[image:1653271657255-576.png||height="305" width="730"]]
629 )))
630
631 (((
632 (((
633 (% style="color:red" %)**Note:**
634 )))
635 )))
636
637 (((
638 (((
639 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
640 )))
641 )))
642
643 (((
644 (((
645 **Example:**
646 )))
647 )))
648
649 (((
650 (((
651 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
652 )))
653 )))
654
655 (((
656 (((
657 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
658 )))
659 )))
660
661 (((
662 (((
663 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
664 )))
665 )))
666
667 (((
668 (((
669 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
670 )))
671 )))
672
673 (((
674 (((
675 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
676 )))
677 )))
678
679 (((
680 (((
681 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
682 )))
683 )))
684
685 (((
686 [[image:1653271763403-806.png]]
687 )))
688
689
690 === 3.3.4 Compose the uplink payload ===
691
692 (((
693 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
694
695
696 )))
697
698 (((
699 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
700
701
702 )))
703
704 (((
705 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
706 )))
707
708 (((
709 Final Payload is
710 )))
711
712 (((
713 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
714 )))
715
716 (((
717 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
718 )))
719
720 [[image:1653272787040-634.png||height="515" width="719"]]
721
722
723
724 (((
725 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
726
727
728 )))
729
730 (((
731 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
732 )))
733
734 (((
735 Final Payload is
736 )))
737
738 (((
739 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
740 )))
741
742 1. (((
743 Battery Info (2 bytes): Battery voltage
744 )))
745 1. (((
746 PAYVER (1 byte): Defined by AT+PAYVER
747 )))
748 1. (((
749 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
750 )))
751 1. (((
752 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
753 )))
754 1. (((
755 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
756 )))
757
758 [[image:1653272817147-600.png||height="437" width="717"]]
759
760 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
761
762
763 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
764
765 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
766
767 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
768
769
770 Below are the uplink payloads:
771
772 [[image:1653272901032-107.png]]
773
774
775 (% style="color:red" %)Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
776
777 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
778
779 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
780
781 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
782
783 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
784
785
786
787 === 3.3.5 Uplink on demand ===
788
789 (((
790 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
791 )))
792
793 (((
794 Downlink control command:
795 )))
796
797 (((
798 **0x08 command**: Poll an uplink with current command set in RS485-BL.
799 )))
800
801 (((
802 **0xA8 command**: Send a command to RS485-BL and uplink the output from sensors.
803
804
805 )))
806
807 === 3.3.6 Uplink on Interrupt ===
808
809 Put the interrupt sensor between 3.3v_out and GPIO ext.
810
811 [[image:1653273818896-432.png]]
812
813
814 (((
815 AT+INTMOD=0  Disable Interrupt
816 )))
817
818 (((
819 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
820 )))
821
822 (((
823 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
824 )))
825
826 (((
827 AT+INTMOD=3  Interrupt trigger by rising edge.
828
829
830 )))
831
832 == 3.4 Uplink Payload ==
833
834 [[image:image-20220606105412-1.png]]
835
836 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
837
838 (((
839 {{{function Decoder(bytes, port) {}}}
840 )))
841
842 (((
843 {{{//Payload Formats of RS485-BL Deceive}}}
844 )))
845
846 (((
847 {{{return {}}}
848 )))
849
850 (((
851 {{{ //Battery,units:V}}}
852 )))
853
854 (((
855 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
856 )))
857
858 (((
859 {{{ //GPIO_EXTI }}}
860 )))
861
862 (((
863 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
864 )))
865
866 (((
867 {{{ //payload of version}}}
868 )))
869
870 (((
871 {{{ Pay_ver:bytes[2],}}}
872 )))
873
874 (((
875 {{{ }; }}}
876 )))
877
878 (((
879 **}**
880
881
882 )))
883
884 (((
885 TTN V3 uplink screen shot.
886 )))
887
888 [[image:1653274001211-372.png||height="192" width="732"]]
889
890
891 == 3.5 Configure RS485-BL via AT or Downlink ==
892
893 (((
894 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
895 )))
896
897 (((
898 There are two kinds of Commands:
899 )))
900
901 * (((
902 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
903 )))
904
905 * (((
906 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
907 )))
908
909 === 3.5.1 Common Commands: ===
910
911 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
912
913
914 === 3.5.2 Sensor related commands: ===
915
916
917
918 ==== **Choose Device Type (RS485 or TTL)** ====
919
920 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
921
922 * **AT Command**
923
924 (% class="box infomessage" %)
925 (((
926 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
927 )))
928
929 (% class="box infomessage" %)
930 (((
931 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
932 )))
933
934
935 * **Downlink Payload**
936
937 **0A aa**  ~-~->  same as AT+MOD=aa
938
939
940
941
942 ==== **RS485 Debug Command (AT+CFGDEV)** ====
943
944 (((
945 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
946 )))
947
948 * (((
949 **AT Command**
950 )))
951
952 (% class="box infomessage" %)
953 (((
954 (((
955 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
956 )))
957 )))
958
959 (((
960 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
961 )))
962
963 (((
964
965 )))
966
967 * (((
968 **Downlink Payload**
969 )))
970
971 (((
972 Format: A8 MM NN XX XX XX XX YY
973 )))
974
975 (((
976 Where:
977 )))
978
979 * (((
980 MM: 1: add CRC-16/MODBUS ; 0: no CRC
981 )))
982 * (((
983 NN: The length of RS485 command
984 )))
985 * (((
986 XX XX XX XX: RS485 command total NN bytes
987 )))
988 * (((
989 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
990 )))
991
992 (((
993 **Example 1:**
994 )))
995
996 (((
997 To connect a Modbus Alarm with below commands.
998 )))
999
1000 * (((
1001 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
1002 )))
1003
1004 * (((
1005 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1006 )))
1007
1008 (((
1009 So if user want to use downlink command to control to RS485 Alarm, he can use:
1010 )))
1011
1012 (((
1013 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1014 )))
1015
1016 (((
1017 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1018 )))
1019
1020 (((
1021 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
1022 )))
1023
1024 (((
1025
1026 )))
1027
1028 (((
1029 **Example 2:**
1030 )))
1031
1032 (((
1033 Check TTL Sensor return:
1034 )))
1035
1036 (((
1037 [[image:1654132684752-193.png]]
1038 )))
1039
1040
1041
1042
1043
1044 ==== **Set Payload version** ====
1045
1046 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1047
1048 * **AT Command:**
1049
1050 (% class="box infomessage" %)
1051 (((
1052 **AT+PAYVER: Set PAYVER field = 1**
1053 )))
1054
1055
1056 * **Downlink Payload:**
1057
1058 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
1059
1060 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
1061
1062
1063
1064
1065 ==== **Set RS485 Sampling Commands** ====
1066
1067 (((
1068 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1069 )))
1070
1071 (((
1072 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1073 )))
1074
1075 (((
1076
1077 )))
1078
1079 * (((
1080 **AT Command:**
1081 )))
1082
1083 (% class="box infomessage" %)
1084 (((
1085 (((
1086 **AT+COMMANDx: Configure RS485 read command to sensor.**
1087 )))
1088 )))
1089
1090 (% class="box infomessage" %)
1091 (((
1092 (((
1093 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
1094 )))
1095 )))
1096
1097 (% class="box infomessage" %)
1098 (((
1099 (((
1100 **AT+SEARCHx: Configure search command**
1101 )))
1102 )))
1103
1104 (((
1105
1106 )))
1107
1108 * (((
1109 **Downlink Payload:**
1110 )))
1111
1112 (((
1113 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1114 )))
1115
1116 (((
1117 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
1118 )))
1119
1120 (((
1121 Format: AF MM NN LL XX XX XX XX YY
1122 )))
1123
1124 (((
1125 Where:
1126 )))
1127
1128 * (((
1129 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1130 )))
1131 * (((
1132 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1133 )))
1134 * (((
1135 LL:  The length of AT+COMMAND or AT+DATACUT command
1136 )))
1137 * (((
1138 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1139 )))
1140 * (((
1141 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1142 )))
1143
1144 (((
1145 **Example:**
1146 )))
1147
1148 (((
1149 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1150 )))
1151
1152 (((
1153 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1154 )))
1155
1156 (((
1157 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1158 )))
1159
1160 (((
1161
1162 )))
1163
1164 (((
1165 **0xAB** downlink command can be used for set AT+SEARCHx
1166 )))
1167
1168 (((
1169 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1170 )))
1171
1172 * (((
1173 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1174 )))
1175 * (((
1176 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1177 )))
1178
1179 (((
1180 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1181 )))
1182
1183
1184
1185
1186 ==== **Fast command to handle MODBUS device** ====
1187
1188 (((
1189 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1190 )))
1191
1192 (((
1193 This command is valid since v1.3 firmware version
1194 )))
1195
1196 (((
1197
1198 )))
1199
1200 (((
1201 **AT+MBFUN has only two value:**
1202 )))
1203
1204 * (((
1205 **AT+MBFUN=1**: Enable Modbus reading. And get response base on the MODBUS return
1206 )))
1207
1208 (((
1209 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1210 )))
1211
1212 * (((
1213 **AT+MBFUN=0**: Disable Modbus fast reading.
1214 )))
1215
1216 (((
1217 **Example:**
1218 )))
1219
1220 * (((
1221 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1222 )))
1223 * (((
1224 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1225 )))
1226 * (((
1227 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1228 )))
1229
1230 [[image:1654133913295-597.png]]
1231
1232
1233 [[image:1654133954153-643.png]]
1234
1235
1236 * (((
1237 **Downlink Commands:**
1238 )))
1239
1240 (((
1241 **A9 aa** ~-~-> Same as AT+MBFUN=aa
1242 )))
1243
1244
1245
1246
1247 ==== **RS485 command timeout** ====
1248
1249 (((
1250 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1251 )))
1252
1253 (((
1254 Default value: 0, range:  0 ~~ 5 seconds
1255 )))
1256
1257 (((
1258
1259 )))
1260
1261 * (((
1262 **AT Command:**
1263 )))
1264
1265 (% class="box infomessage" %)
1266 (((
1267 (((
1268 **AT+CMDDLaa=hex(bb cc)**
1269 )))
1270 )))
1271
1272 (((
1273 **Example:**
1274 )))
1275
1276 (((
1277 **AT+CMDDL1=1000** to send the open time to 1000ms
1278 )))
1279
1280 (((
1281
1282 )))
1283
1284 * (((
1285 **Downlink Payload:**
1286 )))
1287
1288 (((
1289 0x AA aa bb cc
1290 )))
1291
1292 (((
1293 Same as: AT+CMDDLaa=hex(bb cc)
1294 )))
1295
1296 (((
1297 **Example:**
1298 )))
1299
1300 (((
1301 **0xAA 01 03 E8**  ~-~-> Same as **AT+CMDDL1=1000 ms**
1302 )))
1303
1304
1305
1306
1307 ==== **Uplink payload mode** ====
1308
1309 (((
1310 Define to use one uplink or multiple uplinks for the sampling.
1311 )))
1312
1313 (((
1314 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1315 )))
1316
1317 * (((
1318 **AT Command:**
1319 )))
1320
1321 (% class="box infomessage" %)
1322 (((
1323 (((
1324 **AT+DATAUP=0**
1325 )))
1326 )))
1327
1328 (% class="box infomessage" %)
1329 (((
1330 (((
1331 **AT+DATAUP=1**
1332 )))
1333 )))
1334
1335 (((
1336
1337 )))
1338
1339 * (((
1340 **Downlink Payload:**
1341 )))
1342
1343 (((
1344 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
1345 )))
1346
1347 (((
1348 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
1349 )))
1350
1351
1352
1353
1354 ==== **Manually trigger an Uplink** ====
1355
1356 Ask device to send an uplink immediately.
1357
1358 * **Downlink Payload:**
1359
1360 **0x08 FF**, RS485-BL will immediately send an uplink.
1361
1362
1363
1364
1365 ==== **Clear RS485 Command** ====
1366
1367 (((
1368 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1369 )))
1370
1371 (((
1372
1373 )))
1374
1375 * (((
1376 **AT Command:**
1377 )))
1378
1379 (((
1380 (% style="color:#037691" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1381 )))
1382
1383 (((
1384 Example screen shot after clear all RS485 commands. 
1385 )))
1386
1387 (((
1388
1389 )))
1390
1391 (((
1392 The uplink screen shot is:
1393 )))
1394
1395 (((
1396 [[image:1654134704555-320.png]]
1397 )))
1398
1399 (((
1400
1401 )))
1402
1403 * (((
1404 **Downlink Payload:**
1405 )))
1406
1407 (((
1408 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1409 )))
1410
1411
1412
1413
1414 ==== **Set Serial Communication Parameters** ====
1415
1416 (((
1417 Set the Rs485 serial communication parameters:
1418 )))
1419
1420 * (((
1421 **AT Command:**
1422 )))
1423
1424 (((
1425 Set Baud Rate:
1426 )))
1427
1428 (% class="box infomessage" %)
1429 (((
1430 (((
1431 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1432
1433 Set UART Parity
1434 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1435
1436 Set STOPBIT
1437
1438 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1439 )))
1440 )))
1441
1442
1443 * (((
1444 **Downlink Payload:**
1445 )))
1446
1447 (((
1448 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1449 )))
1450
1451 (((
1452 **Example:**
1453 )))
1454
1455 * (((
1456 A7 01 00 60   same as AT+BAUDR=9600
1457 )))
1458 * (((
1459 A7 01 04 80  same as AT+BAUDR=115200
1460 )))
1461
1462 (((
1463 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1464 )))
1465
1466 (((
1467 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1468 )))
1469
1470
1471
1472
1473 ==== **Control output power duration** ====
1474
1475 (((
1476 User can set the output power duration before each sampling.
1477 )))
1478
1479 * (((
1480 **AT Command:**
1481 )))
1482
1483 (((
1484 **Example:**
1485 )))
1486
1487 (((
1488 **AT+3V3T=1000**  ~/~/ 3V3 output power will open 1s before each sampling.
1489 )))
1490
1491 (((
1492 **AT+5VT=1000**  ~/~/ +5V output power will open 1s before each sampling.
1493 )))
1494
1495 (((
1496
1497 )))
1498
1499 * (((
1500 **LoRaWAN Downlink Command:**
1501 )))
1502
1503 (((
1504 **07 01 aa bb**  Same as AT+5VT=(aa bb)
1505 )))
1506
1507 (((
1508 **07 02 aa bb**  Same as AT+3V3T=(aa bb)
1509 )))
1510
1511
1512
1513 == 3.6 Buttons ==
1514
1515 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:233px" %)
1516 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1517 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1518
1519 == 3.7 +3V3 Output ==
1520
1521 (((
1522 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1523 )))
1524
1525 (((
1526 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1527 )))
1528
1529 (((
1530 The +3V3 output time can be controlled by AT Command.
1531 )))
1532
1533 (((
1534
1535 )))
1536
1537 (((
1538 (% style="color:#037691" %)**AT+3V3T=1000**
1539 )))
1540
1541 (((
1542
1543 )))
1544
1545 (((
1546 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1547 )))
1548
1549 (((
1550 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1551 )))
1552
1553
1554 == 3.8 +5V Output ==
1555
1556 (((
1557 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1558 )))
1559
1560 (((
1561 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1562 )))
1563
1564 (((
1565 The 5V output time can be controlled by AT Command.
1566 )))
1567
1568 (((
1569
1570 )))
1571
1572 (((
1573 (% style="color:#037691" %)**AT+5VT=1000**
1574 )))
1575
1576 (((
1577
1578 )))
1579
1580 (((
1581 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1582 )))
1583
1584 (((
1585 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1586 )))
1587
1588
1589
1590 == 3.9 LEDs ==
1591
1592 (% border="1" style="background-color:#ffffcc; color:green; width:332px" %)
1593 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1594 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1595
1596 == 3.10 Switch Jumper ==
1597
1598 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:463px" %)
1599 |=(% style="width: 123px;" %)**Switch Jumper**|=(% style="width: 336px;" %)**Feature**
1600 |(% style="width:123px" %)**SW1**|(% style="width:336px" %)ISP position: Upgrade firmware via UART
1601 Flash position: Configure device, check running status.
1602 |(% style="width:123px" %)**SW2**|(% style="width:336px" %)5V position: set to compatible with 5v I/O.
1603 3.3v position: set to compatible with 3.3v I/O.,
1604
1605 (((
1606 **+3.3V**: is always ON
1607 )))
1608
1609 (((
1610 **+5V**: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1611 )))
1612
1613
1614 = 4. Case Study =
1615
1616 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1617
1618
1619 = 5. Use AT Command =
1620
1621 == 5.1 Access AT Command ==
1622
1623 (((
1624 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1625 )))
1626
1627 [[image:1654135840598-282.png]]
1628
1629
1630 (((
1631 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1632 )))
1633
1634 [[image:1654136105500-922.png]]
1635
1636
1637 (((
1638 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1639 )))
1640
1641
1642 == 5.2 Common AT Command Sequence ==
1643
1644 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1645
1646 If device has not joined network yet:
1647
1648 (% class="box infomessage" %)
1649 (((
1650 **AT+FDR**
1651 **AT+NJM=0**
1652 **ATZ**
1653 )))
1654
1655
1656 (((
1657 If device already joined network:
1658 )))
1659
1660 (% class="box infomessage" %)
1661 (((
1662 **AT+NJM=0**
1663 )))
1664
1665 (% class="box infomessage" %)
1666 (((
1667 **ATZ**
1668 )))
1669
1670
1671 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1672
1673
1674 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1675
1676 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1677
1678 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1679
1680 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%)Set Data Rate
1681
1682 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1683
1684 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1685
1686 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1687
1688 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1689
1690 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1691
1692 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1693
1694
1695 (% style="color:red" %)**Note:**
1696
1697 (((
1698 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1699 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1700 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1701 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1702 )))
1703
1704 [[image:1654136435598-589.png]]
1705
1706
1707 = 6. FAQ =
1708
1709 == 6.1 How to upgrade the image? ==
1710
1711 (((
1712 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1713 )))
1714
1715 * (((
1716 Support new features
1717 )))
1718 * (((
1719 For bug fix
1720 )))
1721 * (((
1722 Change LoRaWAN bands.
1723 )))
1724
1725 (((
1726 Below shows the hardware connection for how to upload an image to RS485-BL:
1727 )))
1728
1729 [[image:1654136646995-976.png]]
1730
1731 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1732
1733 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1734
1735 **Step3: **Open flashloader; choose the correct COM port to update.
1736
1737 [[image:image-20220602102605-1.png]]
1738
1739
1740 [[image:image-20220602102637-2.png]]
1741
1742
1743 [[image:image-20220602102715-3.png]]
1744
1745
1746
1747 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1748
1749 (((
1750 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1751 )))
1752
1753
1754
1755 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1756
1757 (((
1758 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1759 )))
1760
1761
1762
1763 = 7. Trouble Shooting =
1764
1765
1766 == 7.1 Downlink doesn’t work, how to solve it? ==
1767
1768 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1769
1770
1771 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1772
1773 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1774
1775
1776 = 8. Order Info =
1777
1778 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
1779
1780 (% style="color:blue" %)**XXX:**
1781
1782 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1783 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1784 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1785 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1786 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1787 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1788 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1789 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1790 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1791 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1792
1793 = 9. Packing Info =
1794
1795 (((
1796 **Package Includes**:
1797 )))
1798
1799 * (((
1800 RS485-BL x 1
1801 )))
1802 * (((
1803 Stick Antenna for LoRa RF part x 1
1804 )))
1805 * (((
1806 Program cable x 1
1807 )))
1808
1809 (((
1810 **Dimension and weight**:
1811 )))
1812
1813 * (((
1814 Device Size: 13.5 x 7 x 3 cm
1815 )))
1816 * (((
1817 Device Weight: 105g
1818 )))
1819 * (((
1820 Package Size / pcs : 14.5 x 8 x 5 cm
1821 )))
1822 * (((
1823 Weight / pcs : 170g
1824
1825
1826 )))
1827
1828 = 10. Support =
1829
1830 * (((
1831 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1832 )))
1833 * (((
1834 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1835 )))