Version 43.1 by Edwin Chen on 2022/06/13 10:47

Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="385" width="385"]]
3
4
5
6
7 **RS485-BL – Waterproof RS485 to LoRaWAN Converter User Manual**
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19 = 1.Introduction =
20
21 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
22
23 (((
24
25 )))
26
27 (((
28 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
29 )))
30
31 (((
32 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
33 )))
34
35 (((
36 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
37 )))
38
39 (((
40 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
41 )))
42
43 (((
44 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
45 )))
46
47 (((
48 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
49 )))
50
51 (((
52 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
53 )))
54
55 [[image:1652953304999-717.png||height="424" width="733"]]
56
57
58
59 == 1.2 Specifications ==
60
61
62 **Hardware System:**
63
64 * STM32L072CZT6 MCU
65 * SX1276/78 Wireless Chip 
66 * Power Consumption (exclude RS485 device):
67 ** Idle: 6uA@3.3v
68 ** 20dB Transmit: 130mA@3.3v
69
70 **Interface for Model:**
71
72 * 1 x RS485 Interface
73 * 1 x TTL Serial , 3.3v or 5v.
74 * 1 x I2C Interface, 3.3v or 5v.
75 * 1 x one wire interface
76 * 1 x Interrupt Interface
77 * 1 x Controllable 5V output, max
78
79 **LoRa Spec:**
80
81 * Frequency Range:
82 ** Band 1 (HF): 862 ~~ 1020 Mhz
83 ** Band 2 (LF): 410 ~~ 528 Mhz
84 * 168 dB maximum link budget.
85 * +20 dBm - 100 mW constant RF output vs.
86 * Programmable bit rate up to 300 kbps.
87 * High sensitivity: down to -148 dBm.
88 * Bullet-proof front end: IIP3 = -12.5 dBm.
89 * Excellent blocking immunity.
90 * Fully integrated synthesizer with a resolution of 61 Hz.
91 * LoRa modulation.
92 * Built-in bit synchronizer for clock recovery.
93 * Preamble detection.
94 * 127 dB Dynamic Range RSSI.
95 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
96
97
98 == 1.3 Features ==
99
100 * LoRaWAN Class A & Class C protocol (default Class A)
101 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
102 * AT Commands to change parameters
103 * Remote configure parameters via LoRaWAN Downlink
104 * Firmware upgradable via program port
105 * Support multiply RS485 devices by flexible rules
106 * Support Modbus protocol
107 * Support Interrupt uplink
108
109
110 == 1.4 Applications ==
111
112 * Smart Buildings & Home Automation
113 * Logistics and Supply Chain Management
114 * Smart Metering
115 * Smart Agriculture
116 * Smart Cities
117 * Smart Factory
118
119
120 == 1.5 Firmware Change log ==
121
122 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
123
124
125 == 1.6 Hardware Change log ==
126
127 (((
128
129
130 (((
131 v1.4
132 )))
133 )))
134
135 (((
136 (((
137 ~1. Change Power IC to TPS22916
138 )))
139 )))
140
141 (((
142
143 )))
144
145 (((
146 (((
147 v1.3
148 )))
149 )))
150
151 (((
152 (((
153 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
154 )))
155 )))
156
157 (((
158
159 )))
160
161 (((
162 (((
163 v1.2
164 )))
165 )))
166
167 (((
168 (((
169 Release version ​​​​​
170 )))
171
172
173 )))
174
175 = 2. Pin mapping and Power ON Device =
176
177 (((
178 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
179 )))
180
181 [[image:1652953055962-143.png||height="387" width="728"]]
182
183
184 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
185
186
187 = 3. Operation Mode =
188
189 == 3.1 How it works? ==
190
191 (((
192 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
193
194
195 )))
196
197 == 3.2 Example to join LoRaWAN network ==
198
199 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
200
201 [[image:1652953414711-647.png||height="337" width="723"]]
202
203 (((
204 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
205 )))
206
207 (((
208 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
209 )))
210
211 (((
212 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
213 )))
214
215 (((
216 Each RS485-BL is shipped with a sticker with unique device EUI:
217 )))
218
219 [[image:1652953462722-299.png]]
220
221 (((
222 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
223 )))
224
225 (((
226 Add APP EUI in the application.
227 )))
228
229
230 [[image:image-20220519174512-1.png]]
231
232 [[image:image-20220519174512-2.png||height="328" width="731"]]
233
234 [[image:image-20220519174512-3.png||height="556" width="724"]]
235
236 [[image:image-20220519174512-4.png]]
237
238 You can also choose to create the device manually.
239
240 [[image:1652953542269-423.png||height="710" width="723"]]
241
242 Add APP KEY and DEV EUI
243
244 [[image:1652953553383-907.png||height="514" width="724"]]
245
246
247 (((
248 **Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
249 )))
250
251 [[image:1652953568895-172.png||height="232" width="724"]]
252
253
254 == 3.3 Configure Commands to read data ==
255
256 (((
257 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
258
259
260 )))
261
262 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
263
264 (((
265 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
266 )))
267
268 (((
269 **~1. RS485-MODBUS mode:**
270 )))
271
272 (((
273 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
274 )))
275
276 (((
277 **2. TTL mode:**
278 )))
279
280 (((
281 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
282 )))
283
284 (((
285 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
286 )))
287
288 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
289 |=(% style="width: 80px;" %)(((
290 (((
291 **AT Commands**
292 )))
293 )))|=(% style="width: 210px;" %)(((
294 (((
295 **Description**
296 )))
297 )))|=(% style="width: 210px;" %)(((
298 (((
299 **Example**
300 )))
301 )))
302 |(% style="width:80px" %)(((
303 (((
304 AT+BAUDR
305 )))
306 )))|(% style="width:210px" %)(((
307 (((
308 Set the baud rate (for RS485 connection). Default Value is: 9600.
309 )))
310 )))|(% style="width:210px" %)(((
311 (((
312 (((
313 AT+BAUDR=9600
314 )))
315 )))
316
317 (((
318 (((
319 Options: (1200,2400,4800,14400,19200,115200)
320 )))
321 )))
322 )))
323 |(% style="width:80px" %)(((
324 (((
325 AT+PARITY
326 )))
327 )))|(% style="width:210px" %)(((
328 (((
329 (((
330 Set UART parity (for RS485 connection)
331 )))
332 )))
333
334 (((
335 (((
336 Default Value is: no parity.
337 )))
338 )))
339 )))|(% style="width:210px" %)(((
340 (((
341 (((
342 AT+PARITY=0
343 )))
344 )))
345
346 (((
347 (((
348 Option: 0: no parity, 1: odd parity, 2: even parity
349 )))
350 )))
351 )))
352 |(% style="width:80px" %)(((
353 (((
354 AT+STOPBIT
355 )))
356 )))|(% style="width:210px" %)(((
357 (((
358 (((
359 Set serial stopbit (for RS485 connection)
360 )))
361 )))
362
363 (((
364 (((
365 Default Value is: 1bit.
366 )))
367 )))
368 )))|(% style="width:210px" %)(((
369 (((
370 (((
371 AT+STOPBIT=0 for 1bit
372 )))
373 )))
374
375 (((
376 (((
377 AT+STOPBIT=1 for 1.5 bit
378 )))
379 )))
380
381 (((
382 (((
383 AT+STOPBIT=2 for 2 bits
384 )))
385 )))
386 )))
387
388
389 === 3.3.2 Configure sensors ===
390
391 (((
392 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
393 )))
394
395 (((
396 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
397 )))
398
399 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
400 |=(% style="width: 80px;" %)**AT Commands**|=(% style="width: 210px;" %)**Description**|=(% style="width: 210px;" %)**Example**
401 |AT+CFGDEV|(% style="width:80px" %)(((
402 (((
403 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
404 )))
405
406 (((
407 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
408 )))
409
410 (((
411 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
412 )))
413 )))|(% style="width:210px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
414
415 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
416
417
418
419 === 3.3.3 Configure read commands for each sampling ===
420
421 (((
422 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
423 )))
424
425 (((
426 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
427 )))
428
429 (((
430 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
431 )))
432
433 (((
434 This section describes how to achieve above goals.
435 )))
436
437 (((
438 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
439 )))
440
441 (((
442 **Command from RS485-BL to Sensor:**
443 )))
444
445 (((
446 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
447 )))
448
449 (((
450 **Handle return from sensors to RS485-BL**:
451 )))
452
453 (((
454 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
455 )))
456
457 * (((
458 **AT+DATACUT**
459 )))
460
461 (((
462 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
463 )))
464
465 * (((
466 **AT+SEARCH**
467 )))
468
469 (((
470 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
471 )))
472
473 (((
474 **Define wait timeout:**
475 )))
476
477 (((
478 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
479 )))
480
481 (((
482 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
483 )))
484
485 (((
486 **Examples:**
487 )))
488
489 (((
490 Below are examples for the how above AT Commands works.
491 )))
492
493 (((
494 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
495 )))
496
497 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
498 |(% style="width:498px" %)(((
499 (((
500 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
501 )))
502
503 (((
504 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
505 )))
506
507 (((
508 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
509 )))
510 )))
511
512 (((
513 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
514 )))
515
516 (((
517 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
518 )))
519
520 (((
521
522 )))
523
524 (((
525 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
526 )))
527
528 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
529 |(% style="width:577px" %)(((
530 (((
531 **AT+SEARCHx=aa,xx xx xx xx xx**
532 )))
533
534 * (((
535 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
536 )))
537 * (((
538 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
539 )))
540 )))
541
542 (((
543 **Examples:**
544 )))
545
546 (((
547 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
548 )))
549
550 (((
551 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
552 )))
553
554 (((
555 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
556 )))
557
558 (((
559 [[image:1653271044481-711.png]]
560 )))
561
562 (((
563 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
564 )))
565
566 (((
567 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
568 )))
569
570 (((
571 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
572 )))
573
574 (((
575 [[image:1653271276735-972.png]]
576 )))
577
578 (((
579 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
580 )))
581
582 (% style="background-color:#4f81bd; color:white; width:510px" %)
583 |(% style="width:726px" %)(((
584 (((
585 **AT+DATACUTx=a,b,c**
586 )))
587
588 * (((
589 **a: length for the return of AT+COMMAND**
590 )))
591 * (((
592 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
593 )))
594 * (((
595 **c: define the position for valid value.  **
596 )))
597 )))
598
599 (((
600 **Examples:**
601 )))
602
603 * (((
604 Grab bytes:
605 )))
606
607 (((
608 [[image:1653271581490-837.png||height="313" width="722"]]
609 )))
610
611 (((
612
613 )))
614
615 * (((
616 Grab a section.
617 )))
618
619 (((
620 [[image:1653271648378-342.png||height="326" width="720"]]
621 )))
622
623 (((
624
625 )))
626
627 * (((
628 Grab different sections.
629 )))
630
631 (((
632 [[image:1653271657255-576.png||height="305" width="730"]]
633 )))
634
635 (((
636 (((
637 (% style="color:red" %)**Note:**
638 )))
639 )))
640
641 (((
642 (((
643 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
644 )))
645 )))
646
647 (((
648 (((
649 **Example:**
650 )))
651 )))
652
653 (((
654 (((
655 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
656 )))
657 )))
658
659 (((
660 (((
661 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
662 )))
663 )))
664
665 (((
666 (((
667 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
668 )))
669 )))
670
671 (((
672 (((
673 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
674 )))
675 )))
676
677 (((
678 (((
679 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
680 )))
681 )))
682
683 (((
684 (((
685 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
686 )))
687 )))
688
689 (((
690 [[image:1653271763403-806.png]]
691 )))
692
693
694 === 3.3.4 Compose the uplink payload ===
695
696 (((
697 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
698
699
700 )))
701
702 (((
703 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
704
705
706 )))
707
708 (((
709 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
710 )))
711
712 (((
713 Final Payload is
714 )))
715
716 (((
717 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
718 )))
719
720 (((
721 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
722 )))
723
724 [[image:1653272787040-634.png||height="515" width="719"]]
725
726
727
728 (((
729 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
730
731
732 )))
733
734 (((
735 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
736 )))
737
738 (((
739 Final Payload is
740 )))
741
742 (((
743 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
744 )))
745
746 1. (((
747 Battery Info (2 bytes): Battery voltage
748 )))
749 1. (((
750 PAYVER (1 byte): Defined by AT+PAYVER
751 )))
752 1. (((
753 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
754 )))
755 1. (((
756 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
757 )))
758 1. (((
759 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
760 )))
761
762 [[image:1653272817147-600.png||height="437" width="717"]]
763
764 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
765
766
767 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
768
769 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
770
771 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
772
773
774 Below are the uplink payloads:
775
776 [[image:1653272901032-107.png]]
777
778
779 (% style="color:red" %)Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
780
781 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
782
783 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
784
785 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
786
787 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
788
789
790
791 === 3.3.5 Uplink on demand ===
792
793 (((
794 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
795 )))
796
797 (((
798 Downlink control command:
799 )))
800
801 (((
802 **0x08 command**: Poll an uplink with current command set in RS485-BL.
803 )))
804
805 (((
806 **0xA8 command**: Send a command to RS485-BL and uplink the output from sensors.
807
808
809 )))
810
811 === 3.3.6 Uplink on Interrupt ===
812
813 Put the interrupt sensor between 3.3v_out and GPIO ext.
814
815 [[image:1653273818896-432.png]]
816
817
818 (((
819 AT+INTMOD=0  Disable Interrupt
820 )))
821
822 (((
823 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
824 )))
825
826 (((
827 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
828 )))
829
830 (((
831 AT+INTMOD=3  Interrupt trigger by rising edge.
832
833
834 )))
835
836 == 3.4 Uplink Payload ==
837
838 [[image:image-20220606105412-1.png]]
839
840 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
841
842 (((
843 {{{function Decoder(bytes, port) {}}}
844 )))
845
846 (((
847 {{{//Payload Formats of RS485-BL Deceive}}}
848 )))
849
850 (((
851 {{{return {}}}
852 )))
853
854 (((
855 {{{ //Battery,units:V}}}
856 )))
857
858 (((
859 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
860 )))
861
862 (((
863 {{{ //GPIO_EXTI }}}
864 )))
865
866 (((
867 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
868 )))
869
870 (((
871 {{{ //payload of version}}}
872 )))
873
874 (((
875 {{{ Pay_ver:bytes[2],}}}
876 )))
877
878 (((
879 {{{ }; }}}
880 )))
881
882 (((
883 **}**
884
885
886 )))
887
888 (((
889 TTN V3 uplink screen shot.
890 )))
891
892 [[image:1653274001211-372.png||height="192" width="732"]]
893
894
895 == 3.5 Configure RS485-BL via AT or Downlink ==
896
897 (((
898 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
899 )))
900
901 (((
902 There are two kinds of Commands:
903 )))
904
905 * (((
906 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
907 )))
908
909 * (((
910 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
911 )))
912
913 === 3.5.1 Common Commands: ===
914
915 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
916
917
918 === 3.5.2 Sensor related commands: ===
919
920
921
922 ==== **Choose Device Type (RS485 or TTL)** ====
923
924 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
925
926 * **AT Command**
927
928 (% class="box infomessage" %)
929 (((
930 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
931 )))
932
933 (% class="box infomessage" %)
934 (((
935 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
936 )))
937
938
939 * **Downlink Payload**
940
941 **0A aa**  ~-~->  same as AT+MOD=aa
942
943
944
945
946 ==== **RS485 Debug Command (AT+CFGDEV)** ====
947
948 (((
949 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
950 )))
951
952 * (((
953 **AT Command**
954 )))
955
956 (% class="box infomessage" %)
957 (((
958 (((
959 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
960 )))
961 )))
962
963 (((
964 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
965 )))
966
967 (((
968
969 )))
970
971 * (((
972 **Downlink Payload**
973 )))
974
975 (((
976 Format: A8 MM NN XX XX XX XX YY
977 )))
978
979 (((
980 Where:
981 )))
982
983 * (((
984 MM: 1: add CRC-16/MODBUS ; 0: no CRC
985 )))
986 * (((
987 NN: The length of RS485 command
988 )))
989 * (((
990 XX XX XX XX: RS485 command total NN bytes
991 )))
992 * (((
993 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
994 )))
995
996 (((
997 **Example 1:**
998 )))
999
1000 (((
1001 To connect a Modbus Alarm with below commands.
1002 )))
1003
1004 * (((
1005 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
1006 )))
1007
1008 * (((
1009 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1010 )))
1011
1012 (((
1013 So if user want to use downlink command to control to RS485 Alarm, he can use:
1014 )))
1015
1016 (((
1017 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1018 )))
1019
1020 (((
1021 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1022 )))
1023
1024 (((
1025 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
1026 )))
1027
1028 (((
1029
1030 )))
1031
1032 (((
1033 **Example 2:**
1034 )))
1035
1036 (((
1037 Check TTL Sensor return:
1038 )))
1039
1040 (((
1041 [[image:1654132684752-193.png]]
1042 )))
1043
1044
1045
1046
1047
1048 ==== **Set Payload version** ====
1049
1050 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1051
1052 * **AT Command:**
1053
1054 (% class="box infomessage" %)
1055 (((
1056 **AT+PAYVER: Set PAYVER field = 1**
1057 )))
1058
1059
1060 * **Downlink Payload:**
1061
1062 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
1063
1064 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
1065
1066
1067
1068
1069 ==== **Set RS485 Sampling Commands** ====
1070
1071 (((
1072 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1073 )))
1074
1075 (((
1076 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1077 )))
1078
1079 (((
1080
1081 )))
1082
1083 * (((
1084 **AT Command:**
1085 )))
1086
1087 (% class="box infomessage" %)
1088 (((
1089 (((
1090 **AT+COMMANDx: Configure RS485 read command to sensor.**
1091 )))
1092 )))
1093
1094 (% class="box infomessage" %)
1095 (((
1096 (((
1097 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
1098 )))
1099 )))
1100
1101 (% class="box infomessage" %)
1102 (((
1103 (((
1104 **AT+SEARCHx: Configure search command**
1105 )))
1106 )))
1107
1108 (((
1109
1110 )))
1111
1112 * (((
1113 **Downlink Payload:**
1114 )))
1115
1116 (((
1117 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1118 )))
1119
1120 (((
1121 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
1122 )))
1123
1124 (((
1125 Format: AF MM NN LL XX XX XX XX YY
1126 )))
1127
1128 (((
1129 Where:
1130 )))
1131
1132 * (((
1133 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1134 )))
1135 * (((
1136 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1137 )))
1138 * (((
1139 LL:  The length of AT+COMMAND or AT+DATACUT command
1140 )))
1141 * (((
1142 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1143 )))
1144 * (((
1145 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1146 )))
1147
1148 (((
1149 **Example:**
1150 )))
1151
1152 (((
1153 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1154 )))
1155
1156 (((
1157 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1158 )))
1159
1160 (((
1161 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1162 )))
1163
1164 (((
1165
1166 )))
1167
1168 (((
1169 **0xAB** downlink command can be used for set AT+SEARCHx
1170 )))
1171
1172 (((
1173 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1174 )))
1175
1176 * (((
1177 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1178 )))
1179 * (((
1180 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1181 )))
1182
1183 (((
1184 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1185 )))
1186
1187
1188
1189
1190 ==== **Fast command to handle MODBUS device** ====
1191
1192 (((
1193 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1194 )))
1195
1196 (((
1197 This command is valid since v1.3 firmware version
1198 )))
1199
1200 (((
1201
1202 )))
1203
1204 (((
1205 **AT+MBFUN has only two value:**
1206 )))
1207
1208 * (((
1209 **AT+MBFUN=1**: Enable Modbus reading. And get response base on the MODBUS return
1210 )))
1211
1212 (((
1213 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1214 )))
1215
1216 * (((
1217 **AT+MBFUN=0**: Disable Modbus fast reading.
1218 )))
1219
1220 (((
1221 **Example:**
1222 )))
1223
1224 * (((
1225 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1226 )))
1227 * (((
1228 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1229 )))
1230 * (((
1231 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1232 )))
1233
1234 [[image:1654133913295-597.png]]
1235
1236
1237 [[image:1654133954153-643.png]]
1238
1239
1240 * (((
1241 **Downlink Commands:**
1242 )))
1243
1244 (((
1245 **A9 aa** ~-~-> Same as AT+MBFUN=aa
1246 )))
1247
1248
1249
1250
1251 ==== **RS485 command timeout** ====
1252
1253 (((
1254 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1255 )))
1256
1257 (((
1258 Default value: 0, range:  0 ~~ 5 seconds
1259 )))
1260
1261 (((
1262
1263 )))
1264
1265 * (((
1266 **AT Command:**
1267 )))
1268
1269 (% class="box infomessage" %)
1270 (((
1271 (((
1272 **AT+CMDDLaa=hex(bb cc)**
1273 )))
1274 )))
1275
1276 (((
1277 **Example:**
1278 )))
1279
1280 (((
1281 **AT+CMDDL1=1000** to send the open time to 1000ms
1282 )))
1283
1284 (((
1285
1286 )))
1287
1288 * (((
1289 **Downlink Payload:**
1290 )))
1291
1292 (((
1293 0x AA aa bb cc
1294 )))
1295
1296 (((
1297 Same as: AT+CMDDLaa=hex(bb cc)
1298 )))
1299
1300 (((
1301 **Example:**
1302 )))
1303
1304 (((
1305 **0xAA 01 03 E8**  ~-~-> Same as **AT+CMDDL1=1000 ms**
1306 )))
1307
1308
1309
1310
1311 ==== **Uplink payload mode** ====
1312
1313 (((
1314 Define to use one uplink or multiple uplinks for the sampling.
1315 )))
1316
1317 (((
1318 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1319 )))
1320
1321 * (((
1322 **AT Command:**
1323 )))
1324
1325 (% class="box infomessage" %)
1326 (((
1327 (((
1328 **AT+DATAUP=0**
1329 )))
1330 )))
1331
1332 (% class="box infomessage" %)
1333 (((
1334 (((
1335 **AT+DATAUP=1**
1336 )))
1337 )))
1338
1339 (((
1340
1341 )))
1342
1343 * (((
1344 **Downlink Payload:**
1345 )))
1346
1347 (((
1348 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
1349 )))
1350
1351 (((
1352 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
1353 )))
1354
1355
1356
1357
1358 ==== **Manually trigger an Uplink** ====
1359
1360 Ask device to send an uplink immediately.
1361
1362 * **Downlink Payload:**
1363
1364 **0x08 FF**, RS485-BL will immediately send an uplink.
1365
1366
1367
1368
1369 ==== **Clear RS485 Command** ====
1370
1371 (((
1372 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1373 )))
1374
1375 (((
1376
1377 )))
1378
1379 * (((
1380 **AT Command:**
1381 )))
1382
1383 (((
1384 (% style="color:#037691" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1385 )))
1386
1387 (((
1388 Example screen shot after clear all RS485 commands. 
1389 )))
1390
1391 (((
1392
1393 )))
1394
1395 (((
1396 The uplink screen shot is:
1397 )))
1398
1399 (((
1400 [[image:1654134704555-320.png]]
1401 )))
1402
1403 (((
1404
1405 )))
1406
1407 * (((
1408 **Downlink Payload:**
1409 )))
1410
1411 (((
1412 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1413 )))
1414
1415
1416
1417
1418 ==== **Set Serial Communication Parameters** ====
1419
1420 (((
1421 Set the Rs485 serial communication parameters:
1422 )))
1423
1424 * (((
1425 **AT Command:**
1426 )))
1427
1428 (((
1429 Set Baud Rate:
1430 )))
1431
1432 (% class="box infomessage" %)
1433 (((
1434 (((
1435 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1436
1437 Set UART Parity
1438 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1439
1440 Set STOPBIT
1441
1442 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1443 )))
1444 )))
1445
1446
1447 * (((
1448 **Downlink Payload:**
1449 )))
1450
1451 (((
1452 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1453 )))
1454
1455 (((
1456 **Example:**
1457 )))
1458
1459 * (((
1460 A7 01 00 60   same as AT+BAUDR=9600
1461 )))
1462 * (((
1463 A7 01 04 80  same as AT+BAUDR=115200
1464 )))
1465
1466 (((
1467 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1468 )))
1469
1470 (((
1471 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1472 )))
1473
1474
1475
1476
1477 ==== **Control output power duration** ====
1478
1479 (((
1480 User can set the output power duration before each sampling.
1481 )))
1482
1483 * (((
1484 **AT Command:**
1485 )))
1486
1487 (((
1488 **Example:**
1489 )))
1490
1491 (((
1492 **AT+3V3T=1000**  ~/~/ 3V3 output power will open 1s before each sampling.
1493 )))
1494
1495 (((
1496 **AT+5VT=1000**  ~/~/ +5V output power will open 1s before each sampling.
1497 )))
1498
1499 (((
1500
1501 )))
1502
1503 * (((
1504 **LoRaWAN Downlink Command:**
1505 )))
1506
1507 (((
1508 **07 01 aa bb**  Same as AT+5VT=(aa bb)
1509 )))
1510
1511 (((
1512 **07 02 aa bb**  Same as AT+3V3T=(aa bb)
1513 )))
1514
1515
1516
1517 == 3.6 Buttons ==
1518
1519 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:233px" %)
1520 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1521 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1522
1523 == 3.7 +3V3 Output ==
1524
1525 (((
1526 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1527 )))
1528
1529 (((
1530 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1531 )))
1532
1533 (((
1534 The +3V3 output time can be controlled by AT Command.
1535 )))
1536
1537 (((
1538
1539 )))
1540
1541 (((
1542 (% style="color:#037691" %)**AT+3V3T=1000**
1543 )))
1544
1545 (((
1546
1547 )))
1548
1549 (((
1550 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1551 )))
1552
1553 (((
1554 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1555 )))
1556
1557
1558 == 3.8 +5V Output ==
1559
1560 (((
1561 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1562 )))
1563
1564 (((
1565 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1566 )))
1567
1568 (((
1569 The 5V output time can be controlled by AT Command.
1570 )))
1571
1572 (((
1573
1574 )))
1575
1576 (((
1577 (% style="color:#037691" %)**AT+5VT=1000**
1578 )))
1579
1580 (((
1581
1582 )))
1583
1584 (((
1585 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1586 )))
1587
1588 (((
1589 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1590 )))
1591
1592
1593
1594 == 3.9 LEDs ==
1595
1596 (% border="1" style="background-color:#ffffcc; color:green; width:332px" %)
1597 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1598 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1599
1600 == 3.10 Switch Jumper ==
1601
1602 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:463px" %)
1603 |=(% style="width: 123px;" %)**Switch Jumper**|=(% style="width: 336px;" %)**Feature**
1604 |(% style="width:123px" %)**SW1**|(% style="width:336px" %)ISP position: Upgrade firmware via UART
1605 Flash position: Configure device, check running status.
1606 |(% style="width:123px" %)**SW2**|(% style="width:336px" %)5V position: set to compatible with 5v I/O.
1607 3.3v position: set to compatible with 3.3v I/O.,
1608
1609 (((
1610 **+3.3V**: is always ON
1611 )))
1612
1613 (((
1614 **+5V**: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1615 )))
1616
1617
1618 = 4. Case Study =
1619
1620 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1621
1622
1623 = 5. Use AT Command =
1624
1625 == 5.1 Access AT Command ==
1626
1627 (((
1628 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1629 )))
1630
1631 [[image:1654135840598-282.png]]
1632
1633
1634 (((
1635 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1636 )))
1637
1638 [[image:1654136105500-922.png]]
1639
1640
1641 (((
1642 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1643 )))
1644
1645
1646 == 5.2 Common AT Command Sequence ==
1647
1648 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1649
1650 If device has not joined network yet:
1651
1652 (% class="box infomessage" %)
1653 (((
1654 **AT+FDR**
1655 )))
1656
1657 (% class="box infomessage" %)
1658 (((
1659 **AT+NJM=0**
1660 )))
1661
1662 (% class="box infomessage" %)
1663 (((
1664 **ATZ**
1665 )))
1666
1667
1668 (((
1669 If device already joined network:
1670 )))
1671
1672 (% class="box infomessage" %)
1673 (((
1674 **AT+NJM=0**
1675 )))
1676
1677 (% class="box infomessage" %)
1678 (((
1679 **ATZ**
1680 )))
1681
1682
1683 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1684
1685
1686 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1687
1688 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1689
1690 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1691
1692 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%)Set Data Rate
1693
1694 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1695
1696 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1697
1698 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1699
1700 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1701
1702 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1703
1704 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1705
1706
1707 (% style="color:red" %)**Note:**
1708
1709 (((
1710 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1711 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1712 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1713 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1714 )))
1715
1716 [[image:1654136435598-589.png]]
1717
1718
1719 = 6. FAQ =
1720
1721 == 6.1 How to upgrade the image? ==
1722
1723 (((
1724 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1725 )))
1726
1727 * (((
1728 Support new features
1729 )))
1730 * (((
1731 For bug fix
1732 )))
1733 * (((
1734 Change LoRaWAN bands.
1735 )))
1736
1737 (((
1738 Below shows the hardware connection for how to upload an image to RS485-BL:
1739 )))
1740
1741 [[image:1654136646995-976.png]]
1742
1743 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1744
1745 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1746
1747 **Step3: **Open flashloader; choose the correct COM port to update.
1748
1749 [[image:image-20220602102605-1.png]]
1750
1751
1752 [[image:image-20220602102637-2.png]]
1753
1754
1755 [[image:image-20220602102715-3.png]]
1756
1757
1758
1759 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1760
1761 (((
1762 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1763 )))
1764
1765
1766
1767 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1768
1769 (((
1770 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1771 )))
1772
1773
1774
1775 = 7. Trouble Shooting =
1776
1777
1778 == 7.1 Downlink doesn’t work, how to solve it? ==
1779
1780 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1781
1782
1783 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1784
1785 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1786
1787
1788 = 8. Order Info =
1789
1790 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
1791
1792 (% style="color:blue" %)**XXX:**
1793
1794 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1795 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1796 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1797 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1798 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1799 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1800 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1801 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1802 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1803 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1804
1805 = 9. Packing Info =
1806
1807 (((
1808 **Package Includes**:
1809 )))
1810
1811 * (((
1812 RS485-BL x 1
1813 )))
1814 * (((
1815 Stick Antenna for LoRa RF part x 1
1816 )))
1817 * (((
1818 Program cable x 1
1819 )))
1820
1821 (((
1822 **Dimension and weight**:
1823 )))
1824
1825 * (((
1826 Device Size: 13.5 x 7 x 3 cm
1827 )))
1828 * (((
1829 Device Weight: 105g
1830 )))
1831 * (((
1832 Package Size / pcs : 14.5 x 8 x 5 cm
1833 )))
1834 * (((
1835 Weight / pcs : 170g
1836
1837
1838 )))
1839
1840 = 10. Support =
1841
1842 * (((
1843 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1844 )))
1845 * (((
1846 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1847 )))