Version 42.5 by Xiaoling on 2022/06/06 13:41

Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="385" width="385"]]
3
4
5
6
7 **RS485-BL – Waterproof RS485 to LoRaWAN Converter User Manual**
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19 = 1.Introduction =
20
21 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
22
23 (((
24
25 )))
26
27 (((
28 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
29 )))
30
31 (((
32 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
33 )))
34
35 (((
36 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
37 )))
38
39 (((
40 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
41 )))
42
43 (((
44 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
45 )))
46
47 (((
48 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
49 )))
50
51 (((
52 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
53 )))
54
55 [[image:1652953304999-717.png||height="424" width="733"]]
56
57
58
59 == 1.2 Specifications ==
60
61
62 **Hardware System:**
63
64 * STM32L072CZT6 MCU
65 * SX1276/78 Wireless Chip 
66 * Power Consumption (exclude RS485 device):
67 ** Idle: 6uA@3.3v
68 ** 20dB Transmit: 130mA@3.3v
69
70 **Interface for Model:**
71
72 * 1 x RS485 Interface
73 * 1 x TTL Serial , 3.3v or 5v.
74 * 1 x I2C Interface, 3.3v or 5v.
75 * 1 x one wire interface
76 * 1 x Interrupt Interface
77 * 1 x Controllable 5V output, max
78
79 **LoRa Spec:**
80
81 * Frequency Range:
82 ** Band 1 (HF): 862 ~~ 1020 Mhz
83 ** Band 2 (LF): 410 ~~ 528 Mhz
84 * 168 dB maximum link budget.
85 * +20 dBm - 100 mW constant RF output vs.
86 * Programmable bit rate up to 300 kbps.
87 * High sensitivity: down to -148 dBm.
88 * Bullet-proof front end: IIP3 = -12.5 dBm.
89 * Excellent blocking immunity.
90 * Fully integrated synthesizer with a resolution of 61 Hz.
91 * LoRa modulation.
92 * Built-in bit synchronizer for clock recovery.
93 * Preamble detection.
94 * 127 dB Dynamic Range RSSI.
95 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
96
97 == 1.3 Features ==
98
99 * LoRaWAN Class A & Class C protocol (default Class A)
100 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
101 * AT Commands to change parameters
102 * Remote configure parameters via LoRaWAN Downlink
103 * Firmware upgradable via program port
104 * Support multiply RS485 devices by flexible rules
105 * Support Modbus protocol
106 * Support Interrupt uplink
107
108 == 1.4 Applications ==
109
110 * Smart Buildings & Home Automation
111 * Logistics and Supply Chain Management
112 * Smart Metering
113 * Smart Agriculture
114 * Smart Cities
115 * Smart Factory
116
117 == 1.5 Firmware Change log ==
118
119 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
120
121
122 == 1.6 Hardware Change log ==
123
124 (((
125
126
127 (((
128 v1.4
129 )))
130 )))
131
132 (((
133 (((
134 ~1. Change Power IC to TPS22916
135 )))
136 )))
137
138 (((
139
140 )))
141
142 (((
143 (((
144 v1.3
145 )))
146 )))
147
148 (((
149 (((
150 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
151 )))
152 )))
153
154 (((
155
156 )))
157
158 (((
159 (((
160 v1.2
161 )))
162 )))
163
164 (((
165 (((
166 Release version ​​​​​
167 )))
168
169
170 )))
171
172 = 2. Pin mapping and Power ON Device =
173
174 (((
175 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
176 )))
177
178 [[image:1652953055962-143.png||height="387" width="728"]]
179
180
181 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
182
183
184 = 3. Operation Mode =
185
186 == 3.1 How it works? ==
187
188 (((
189 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
190
191
192 )))
193
194 == 3.2 Example to join LoRaWAN network ==
195
196 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
197
198 [[image:1652953414711-647.png||height="337" width="723"]]
199
200 (((
201 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
202 )))
203
204 (((
205 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
206 )))
207
208 (((
209 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
210 )))
211
212 (((
213 Each RS485-BL is shipped with a sticker with unique device EUI:
214 )))
215
216 [[image:1652953462722-299.png]]
217
218 (((
219 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
220 )))
221
222 (((
223 Add APP EUI in the application.
224 )))
225
226
227 [[image:image-20220519174512-1.png]]
228
229 [[image:image-20220519174512-2.png||height="328" width="731"]]
230
231 [[image:image-20220519174512-3.png||height="556" width="724"]]
232
233 [[image:image-20220519174512-4.png]]
234
235 You can also choose to create the device manually.
236
237 [[image:1652953542269-423.png||height="710" width="723"]]
238
239 Add APP KEY and DEV EUI
240
241 [[image:1652953553383-907.png||height="514" width="724"]]
242
243
244 (((
245 **Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
246 )))
247
248 [[image:1652953568895-172.png||height="232" width="724"]]
249
250
251 == 3.3 Configure Commands to read data ==
252
253 (((
254 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
255
256
257 )))
258
259 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
260
261 (((
262 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
263 )))
264
265 (((
266 **~1. RS485-MODBUS mode:**
267 )))
268
269 (((
270 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
271 )))
272
273 (((
274 **2. TTL mode:**
275 )))
276
277 (((
278 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
279 )))
280
281 (((
282 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
283 )))
284
285 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
286 |=(% style="width: 80px;" %)(((
287 (((
288 **AT Commands**
289 )))
290 )))|=(% style="width: 210px;" %)(((
291 (((
292 **Description**
293 )))
294 )))|=(% style="width: 210px;" %)(((
295 (((
296 **Example**
297 )))
298 )))
299 |(% style="width:80px" %)(((
300 (((
301 AT+BAUDR
302 )))
303 )))|(% style="width:210px" %)(((
304 (((
305 Set the baud rate (for RS485 connection). Default Value is: 9600.
306 )))
307 )))|(% style="width:210px" %)(((
308 (((
309 (((
310 AT+BAUDR=9600
311 )))
312 )))
313
314 (((
315 (((
316 Options: (1200,2400,4800,14400,19200,115200)
317 )))
318 )))
319 )))
320 |(% style="width:80px" %)(((
321 (((
322 AT+PARITY
323 )))
324 )))|(% style="width:210px" %)(((
325 (((
326 (((
327 Set UART parity (for RS485 connection)
328 )))
329 )))
330
331 (((
332 (((
333 Default Value is: no parity.
334 )))
335 )))
336 )))|(% style="width:210px" %)(((
337 (((
338 (((
339 AT+PARITY=0
340 )))
341 )))
342
343 (((
344 (((
345 Option: 0: no parity, 1: odd parity, 2: even parity
346 )))
347 )))
348 )))
349 |(% style="width:80px" %)(((
350 (((
351 AT+STOPBIT
352 )))
353 )))|(% style="width:210px" %)(((
354 (((
355 (((
356 Set serial stopbit (for RS485 connection)
357 )))
358 )))
359
360 (((
361 (((
362 Default Value is: 1bit.
363 )))
364 )))
365 )))|(% style="width:210px" %)(((
366 (((
367 (((
368 AT+STOPBIT=0 for 1bit
369 )))
370 )))
371
372 (((
373 (((
374 AT+STOPBIT=1 for 1.5 bit
375 )))
376 )))
377
378 (((
379 (((
380 AT+STOPBIT=2 for 2 bits
381 )))
382 )))
383 )))
384
385 === 3.3.2 Configure sensors ===
386
387 (((
388 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
389 )))
390
391 (((
392 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
393 )))
394
395 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
396 |=(% style="width: 80px;" %)**AT Commands**|=(% style="width: 210px;" %)**Description**|=(% style="width: 210px;" %)**Example**
397 |AT+CFGDEV|(% style="width:80px" %)(((
398 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
399
400 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
401
402 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
403 )))|(% style="width:210px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
404
405 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
406
407
408
409 === 3.3.3 Configure read commands for each sampling ===
410
411 (((
412 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
413 )))
414
415 (((
416 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
417 )))
418
419 (((
420 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
421 )))
422
423 (((
424 This section describes how to achieve above goals.
425 )))
426
427 (((
428 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
429 )))
430
431 (((
432 **Command from RS485-BL to Sensor:**
433 )))
434
435 (((
436 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
437 )))
438
439 (((
440 **Handle return from sensors to RS485-BL**:
441 )))
442
443 (((
444 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
445 )))
446
447 * (((
448 **AT+DATACUT**
449 )))
450
451 (((
452 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
453 )))
454
455 * (((
456 **AT+SEARCH**
457 )))
458
459 (((
460 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
461 )))
462
463 (((
464 **Define wait timeout:**
465 )))
466
467 (((
468 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
469 )))
470
471 (((
472 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
473 )))
474
475 (((
476 **Examples:**
477 )))
478
479 (((
480 Below are examples for the how above AT Commands works.
481 )))
482
483 (((
484 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
485 )))
486
487 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
488 |(% style="width:498px" %)(((
489 (((
490 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
491 )))
492
493 (((
494 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
495 )))
496
497 (((
498 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
499 )))
500 )))
501
502 (((
503 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
504 )))
505
506 (((
507 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
508 )))
509
510 (((
511
512 )))
513
514 (((
515 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
516 )))
517
518 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
519 |(% style="width:577px" %)(((
520 (((
521 **AT+SEARCHx=aa,xx xx xx xx xx**
522 )))
523
524 * (((
525 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
526 )))
527 * (((
528 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
529 )))
530 )))
531
532 (((
533 **Examples:**
534 )))
535
536 (((
537 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
538 )))
539
540 (((
541 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
542 )))
543
544 (((
545 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
546 )))
547
548 (((
549 [[image:1653271044481-711.png]]
550 )))
551
552 (((
553 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
554 )))
555
556 (((
557 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
558 )))
559
560 (((
561 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
562 )))
563
564 (((
565 [[image:1653271276735-972.png]]
566 )))
567
568 (((
569 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
570 )))
571
572 (% style="background-color:#4f81bd; color:white; width:510px" %)
573 |(% style="width:726px" %)(((
574 (((
575 **AT+DATACUTx=a,b,c**
576 )))
577
578 * (((
579 **a: length for the return of AT+COMMAND**
580 )))
581 * (((
582 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
583 )))
584 * (((
585 **c: define the position for valid value.  **
586 )))
587 )))
588
589 (((
590 **Examples:**
591 )))
592
593 * (((
594 Grab bytes:
595 )))
596
597 (((
598 [[image:1653271581490-837.png||height="313" width="722"]]
599 )))
600
601 (((
602
603 )))
604
605 * (((
606 Grab a section.
607 )))
608
609 (((
610 [[image:1653271648378-342.png||height="326" width="720"]]
611 )))
612
613 (((
614
615 )))
616
617 * (((
618 Grab different sections.
619 )))
620
621 (((
622 [[image:1653271657255-576.png||height="305" width="730"]]
623 )))
624
625 (((
626 (((
627 (% style="color:red" %)**Note:**
628 )))
629 )))
630
631 (((
632 (((
633 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
634 )))
635 )))
636
637 (((
638 (((
639 **Example:**
640 )))
641 )))
642
643 (((
644 (((
645 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
646 )))
647 )))
648
649 (((
650 (((
651 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
652 )))
653 )))
654
655 (((
656 (((
657 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
658 )))
659 )))
660
661 (((
662 (((
663 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
664 )))
665 )))
666
667 (((
668 (((
669 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
670 )))
671 )))
672
673 (((
674 (((
675 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
676 )))
677 )))
678
679 (((
680 [[image:1653271763403-806.png]]
681 )))
682
683
684 === 3.3.4 Compose the uplink payload ===
685
686 (((
687 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
688
689
690 )))
691
692 (((
693 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
694
695
696 )))
697
698 (((
699 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
700 )))
701
702 (((
703 Final Payload is
704 )))
705
706 (((
707 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
708 )))
709
710 (((
711 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
712 )))
713
714 [[image:1653272787040-634.png||height="515" width="719"]]
715
716
717
718 (((
719 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
720
721
722 )))
723
724 (((
725 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
726 )))
727
728 (((
729 Final Payload is
730 )))
731
732 (((
733 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
734 )))
735
736 1. (((
737 Battery Info (2 bytes): Battery voltage
738 )))
739 1. (((
740 PAYVER (1 byte): Defined by AT+PAYVER
741 )))
742 1. (((
743 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
744 )))
745 1. (((
746 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
747 )))
748 1. (((
749 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
750 )))
751
752 [[image:1653272817147-600.png||height="437" width="717"]]
753
754 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
755
756
757 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
758
759 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
760
761 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
762
763
764 Below are the uplink payloads:
765
766 [[image:1653272901032-107.png]]
767
768
769 (% style="color:red" %)Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
770
771 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
772
773 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
774
775 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
776
777 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
778
779
780
781 === 3.3.5 Uplink on demand ===
782
783 (((
784 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
785 )))
786
787 (((
788 Downlink control command:
789 )))
790
791 (((
792 **0x08 command**: Poll an uplink with current command set in RS485-BL.
793 )))
794
795 (((
796 **0xA8 command**: Send a command to RS485-BL and uplink the output from sensors.
797
798
799 )))
800
801 === 3.3.6 Uplink on Interrupt ===
802
803 Put the interrupt sensor between 3.3v_out and GPIO ext.
804
805 [[image:1653273818896-432.png]]
806
807
808 (((
809 AT+INTMOD=0  Disable Interrupt
810 )))
811
812 (((
813 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
814 )))
815
816 (((
817 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
818 )))
819
820 (((
821 AT+INTMOD=3  Interrupt trigger by rising edge.
822
823
824 )))
825
826 == 3.4 Uplink Payload ==
827
828 [[image:image-20220606105412-1.png]]
829
830 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
831
832 (((
833 {{{function Decoder(bytes, port) {}}}
834 )))
835
836 (((
837 {{{//Payload Formats of RS485-BL Deceive}}}
838 )))
839
840 (((
841 {{{return {}}}
842 )))
843
844 (((
845 {{{ //Battery,units:V}}}
846 )))
847
848 (((
849 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
850 )))
851
852 (((
853 {{{ //GPIO_EXTI }}}
854 )))
855
856 (((
857 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
858 )))
859
860 (((
861 {{{ //payload of version}}}
862 )))
863
864 (((
865 {{{ Pay_ver:bytes[2],}}}
866 )))
867
868 (((
869 {{{ }; }}}
870 )))
871
872 (((
873 }
874
875
876 )))
877
878 (((
879 TTN V3 uplink screen shot.
880 )))
881
882 [[image:1653274001211-372.png||height="192" width="732"]]
883
884
885 == 3.5 Configure RS485-BL via AT or Downlink ==
886
887 (((
888 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
889 )))
890
891 (((
892 There are two kinds of Commands:
893 )))
894
895 * (((
896 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
897 )))
898
899 * (((
900 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
901 )))
902
903 === 3.5.1 Common Commands: ===
904
905 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
906
907
908 === 3.5.2 Sensor related commands: ===
909
910
911
912 ==== **Choose Device Type (RS485 or TTL)** ====
913
914 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
915
916 * **AT Command**
917
918 (% class="box infomessage" %)
919 (((
920 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
921 )))
922
923 (% class="box infomessage" %)
924 (((
925 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
926 )))
927
928
929 * **Downlink Payload**
930
931 **0A aa**  ~-~->  same as AT+MOD=aa
932
933
934
935
936 ==== **RS485 Debug Command (AT+CFGDEV)** ====
937
938 (((
939 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
940 )))
941
942 * (((
943 **AT Command**
944 )))
945
946 (% class="box infomessage" %)
947 (((
948 (((
949 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
950 )))
951 )))
952
953 (((
954 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
955 )))
956
957 (((
958
959 )))
960
961 * (((
962 **Downlink Payload**
963 )))
964
965 (((
966 Format: A8 MM NN XX XX XX XX YY
967 )))
968
969 (((
970 Where:
971 )))
972
973 * (((
974 MM: 1: add CRC-16/MODBUS ; 0: no CRC
975 )))
976 * (((
977 NN: The length of RS485 command
978 )))
979 * (((
980 XX XX XX XX: RS485 command total NN bytes
981 )))
982 * (((
983 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
984 )))
985
986 (((
987 **Example 1:**
988 )))
989
990 (((
991 To connect a Modbus Alarm with below commands.
992 )))
993
994 * (((
995 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
996 )))
997
998 * (((
999 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1000 )))
1001
1002 (((
1003 So if user want to use downlink command to control to RS485 Alarm, he can use:
1004 )))
1005
1006 (((
1007 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1008 )))
1009
1010 (((
1011 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1012 )))
1013
1014 (((
1015 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
1016 )))
1017
1018 (((
1019
1020 )))
1021
1022 (((
1023 **Example 2:**
1024 )))
1025
1026 (((
1027 Check TTL Sensor return:
1028 )))
1029
1030 (((
1031 [[image:1654132684752-193.png]]
1032 )))
1033
1034
1035
1036
1037
1038 ==== **Set Payload version** ====
1039
1040 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1041
1042 * **AT Command:**
1043
1044 (% class="box infomessage" %)
1045 (((
1046 **AT+PAYVER: Set PAYVER field = 1**
1047 )))
1048
1049
1050 * **Downlink Payload:**
1051
1052 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
1053
1054 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
1055
1056
1057
1058
1059 ==== **Set RS485 Sampling Commands** ====
1060
1061 (((
1062 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1063 )))
1064
1065 (((
1066 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1067 )))
1068
1069 (((
1070
1071 )))
1072
1073 * (((
1074 **AT Command:**
1075 )))
1076
1077 (% class="box infomessage" %)
1078 (((
1079 (((
1080 **AT+COMMANDx: Configure RS485 read command to sensor.**
1081 )))
1082 )))
1083
1084 (% class="box infomessage" %)
1085 (((
1086 (((
1087 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
1088 )))
1089 )))
1090
1091 (% class="box infomessage" %)
1092 (((
1093 (((
1094 **AT+SEARCHx: Configure search command**
1095 )))
1096 )))
1097
1098 (((
1099
1100 )))
1101
1102 * (((
1103 **Downlink Payload:**
1104 )))
1105
1106 (((
1107 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1108 )))
1109
1110 (((
1111 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
1112 )))
1113
1114 (((
1115 Format: AF MM NN LL XX XX XX XX YY
1116 )))
1117
1118 (((
1119 Where:
1120 )))
1121
1122 * (((
1123 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1124 )))
1125 * (((
1126 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1127 )))
1128 * (((
1129 LL:  The length of AT+COMMAND or AT+DATACUT command
1130 )))
1131 * (((
1132 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1133 )))
1134 * (((
1135 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1136 )))
1137
1138 (((
1139 **Example:**
1140 )))
1141
1142 (((
1143 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1144 )))
1145
1146 (((
1147 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1148 )))
1149
1150 (((
1151 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1152 )))
1153
1154 (((
1155
1156 )))
1157
1158 (((
1159 **0xAB** downlink command can be used for set AT+SEARCHx
1160 )))
1161
1162 (((
1163 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1164 )))
1165
1166 * (((
1167 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1168 )))
1169 * (((
1170 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1171 )))
1172
1173 (((
1174 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1175 )))
1176
1177
1178
1179
1180 ==== **Fast command to handle MODBUS device** ====
1181
1182 (((
1183 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1184 )))
1185
1186 (((
1187 This command is valid since v1.3 firmware version
1188 )))
1189
1190 (((
1191
1192 )))
1193
1194 (((
1195 **AT+MBFUN has only two value:**
1196 )))
1197
1198 * (((
1199 **AT+MBFUN=1**: Enable Modbus reading. And get response base on the MODBUS return
1200 )))
1201
1202 (((
1203 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1204 )))
1205
1206 * (((
1207 **AT+MBFUN=0**: Disable Modbus fast reading.
1208 )))
1209
1210 (((
1211 **Example:**
1212 )))
1213
1214 * (((
1215 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1216 )))
1217 * (((
1218 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1219 )))
1220 * (((
1221 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1222 )))
1223
1224 [[image:1654133913295-597.png]]
1225
1226
1227 [[image:1654133954153-643.png]]
1228
1229
1230 * (((
1231 **Downlink Commands:**
1232 )))
1233
1234 (((
1235 **A9 aa** ~-~-> Same as AT+MBFUN=aa
1236 )))
1237
1238
1239
1240
1241 ==== **RS485 command timeout** ====
1242
1243 (((
1244 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1245 )))
1246
1247 (((
1248 Default value: 0, range:  0 ~~ 5 seconds
1249 )))
1250
1251 (((
1252
1253 )))
1254
1255 * (((
1256 **AT Command:**
1257 )))
1258
1259 (% class="box infomessage" %)
1260 (((
1261 (((
1262 **AT+CMDDLaa=hex(bb cc)**
1263 )))
1264 )))
1265
1266 (((
1267 **Example:**
1268 )))
1269
1270 (((
1271 **AT+CMDDL1=1000** to send the open time to 1000ms
1272 )))
1273
1274 (((
1275
1276 )))
1277
1278 * (((
1279 **Downlink Payload:**
1280 )))
1281
1282 (((
1283 0x AA aa bb cc
1284 )))
1285
1286 (((
1287 Same as: AT+CMDDLaa=hex(bb cc)
1288 )))
1289
1290 (((
1291 **Example:**
1292 )))
1293
1294 (((
1295 **0xAA 01 03 E8**  ~-~-> Same as **AT+CMDDL1=1000 ms**
1296 )))
1297
1298
1299
1300
1301 ==== **Uplink payload mode** ====
1302
1303 (((
1304 Define to use one uplink or multiple uplinks for the sampling.
1305 )))
1306
1307 (((
1308 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1309 )))
1310
1311 * (((
1312 **AT Command:**
1313 )))
1314
1315 (% class="box infomessage" %)
1316 (((
1317 (((
1318 **AT+DATAUP=0**
1319 )))
1320 )))
1321
1322 (% class="box infomessage" %)
1323 (((
1324 (((
1325 **AT+DATAUP=1**
1326 )))
1327 )))
1328
1329 (((
1330
1331 )))
1332
1333 * (((
1334 **Downlink Payload:**
1335 )))
1336
1337 (((
1338 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
1339 )))
1340
1341 (((
1342 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
1343 )))
1344
1345
1346
1347
1348 ==== **Manually trigger an Uplink** ====
1349
1350 Ask device to send an uplink immediately.
1351
1352 * **Downlink Payload:**
1353
1354 **0x08 FF**, RS485-BL will immediately send an uplink.
1355
1356
1357
1358
1359 ==== **Clear RS485 Command** ====
1360
1361 (((
1362 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1363 )))
1364
1365 (((
1366
1367 )))
1368
1369 * (((
1370 **AT Command:**
1371 )))
1372
1373 (((
1374 (% style="color:#037691" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1375 )))
1376
1377 (((
1378 Example screen shot after clear all RS485 commands. 
1379 )))
1380
1381 (((
1382
1383 )))
1384
1385 (((
1386 The uplink screen shot is:
1387 )))
1388
1389 (((
1390 [[image:1654134704555-320.png]]
1391 )))
1392
1393 (((
1394
1395 )))
1396
1397 * (((
1398 **Downlink Payload:**
1399 )))
1400
1401 (((
1402 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1403 )))
1404
1405
1406
1407
1408 ==== **Set Serial Communication Parameters** ====
1409
1410 (((
1411 Set the Rs485 serial communication parameters:
1412 )))
1413
1414 * (((
1415 **AT Command:**
1416 )))
1417
1418 (((
1419 Set Baud Rate:
1420 )))
1421
1422 (% class="box infomessage" %)
1423 (((
1424 (((
1425 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1426 )))
1427 )))
1428
1429 (((
1430 Set UART Parity
1431 )))
1432
1433 (% class="box infomessage" %)
1434 (((
1435 (((
1436 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1437 )))
1438 )))
1439
1440 (((
1441 Set STOPBIT
1442 )))
1443
1444 (% class="box infomessage" %)
1445 (((
1446 (((
1447 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1448 )))
1449 )))
1450
1451 (((
1452
1453 )))
1454
1455 * (((
1456 **Downlink Payload:**
1457 )))
1458
1459 (((
1460 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1461 )))
1462
1463 (((
1464 **Example:**
1465 )))
1466
1467 * (((
1468 A7 01 00 60   same as AT+BAUDR=9600
1469 )))
1470 * (((
1471 A7 01 04 80  same as AT+BAUDR=115200
1472 )))
1473
1474 (((
1475 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1476 )))
1477
1478 (((
1479 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1480 )))
1481
1482
1483
1484
1485 ==== **Control output power duration** ====
1486
1487 (((
1488 User can set the output power duration before each sampling.
1489 )))
1490
1491 * (((
1492 **AT Command:**
1493 )))
1494
1495 (((
1496 **Example:**
1497 )))
1498
1499 (((
1500 **AT+3V3T=1000**  ~/~/ 3V3 output power will open 1s before each sampling.
1501 )))
1502
1503 (((
1504 **AT+5VT=1000**  ~/~/ +5V output power will open 1s before each sampling.
1505 )))
1506
1507 (((
1508
1509 )))
1510
1511 * (((
1512 **LoRaWAN Downlink Command:**
1513 )))
1514
1515 (((
1516 **07 01 aa bb**  Same as AT+5VT=(aa bb)
1517 )))
1518
1519 (((
1520 **07 02 aa bb**  Same as AT+3V3T=(aa bb)
1521 )))
1522
1523
1524
1525 == 3.6 Buttons ==
1526
1527 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:233px" %)
1528 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1529 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1530
1531
1532
1533 == 3.7 +3V3 Output ==
1534
1535 (((
1536 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1537 )))
1538
1539 (((
1540 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1541 )))
1542
1543 (((
1544 The +3V3 output time can be controlled by AT Command.
1545 )))
1546
1547 (((
1548
1549 )))
1550
1551 (((
1552 (% style="color:#037691" %)**AT+3V3T=1000**
1553 )))
1554
1555 (((
1556
1557 )))
1558
1559 (((
1560 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1561 )))
1562
1563 (((
1564 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1565 )))
1566
1567
1568 == 3.8 +5V Output ==
1569
1570 (((
1571 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1572 )))
1573
1574 (((
1575 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1576 )))
1577
1578 (((
1579 The 5V output time can be controlled by AT Command.
1580 )))
1581
1582 (((
1583
1584 )))
1585
1586 (((
1587 (% style="color:#037691" %)**AT+5VT=1000**
1588 )))
1589
1590 (((
1591
1592 )))
1593
1594 (((
1595 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1596 )))
1597
1598 (((
1599 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1600 )))
1601
1602
1603
1604 == 3.9 LEDs ==
1605
1606 (% border="1" style="background-color:#ffffcc; color:green; width:332px" %)
1607 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1608 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1609
1610 == 3.10 Switch Jumper ==
1611
1612 (% border="1" style="background-color:#ffffcc; color:green; width:515px" %)
1613 |=(% style="width: 124px;" %)**Switch Jumper**|=(% style="width: 388px;" %)**Feature**
1614 |(% style="width:124px" %)**SW1**|(% style="width:388px" %)(((
1615 ISP position: Upgrade firmware via UART
1616
1617 Flash position: Configure device, check running status.
1618 )))
1619 |(% style="width:124px" %)**SW2**|(% style="width:388px" %)(((
1620 5V position: set to compatible with 5v I/O.
1621
1622 3.3v position: set to compatible with 3.3v I/O.,
1623 )))
1624
1625 (((
1626 **+3.3V**: is always ON
1627 )))
1628
1629 (((
1630 **+5V**: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1631 )))
1632
1633
1634 = 4. Case Study =
1635
1636 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1637
1638
1639 = 5. Use AT Command =
1640
1641 == 5.1 Access AT Command ==
1642
1643 (((
1644 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1645 )))
1646
1647 [[image:1654135840598-282.png]]
1648
1649
1650 (((
1651 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1652 )))
1653
1654 [[image:1654136105500-922.png]]
1655
1656
1657 (((
1658 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1659 )))
1660
1661
1662 == 5.2 Common AT Command Sequence ==
1663
1664 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1665
1666 If device has not joined network yet:
1667
1668 (% class="box infomessage" %)
1669 (((
1670 **AT+FDR**
1671 )))
1672
1673 (% class="box infomessage" %)
1674 (((
1675 **AT+NJM=0**
1676 )))
1677
1678 (% class="box infomessage" %)
1679 (((
1680 **ATZ**
1681 )))
1682
1683
1684 (((
1685 If device already joined network:
1686 )))
1687
1688 (% class="box infomessage" %)
1689 (((
1690 **AT+NJM=0**
1691 )))
1692
1693 (% class="box infomessage" %)
1694 (((
1695 **ATZ**
1696 )))
1697
1698
1699 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1700
1701
1702 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1703
1704 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1705
1706 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1707
1708 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%)Set Data Rate
1709
1710 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1711
1712 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1713
1714 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1715
1716 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1717
1718 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1719
1720 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1721
1722
1723 (% style="color:red" %)**Note:**
1724
1725 (((
1726 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1727 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1728 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1729 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1730 )))
1731
1732 [[image:1654136435598-589.png]]
1733
1734
1735 = 6. FAQ =
1736
1737 == 6.1 How to upgrade the image? ==
1738
1739 (((
1740 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1741 )))
1742
1743 * (((
1744 Support new features
1745 )))
1746 * (((
1747 For bug fix
1748 )))
1749 * (((
1750 Change LoRaWAN bands.
1751 )))
1752
1753 (((
1754 Below shows the hardware connection for how to upload an image to RS485-BL:
1755 )))
1756
1757 [[image:1654136646995-976.png]]
1758
1759 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1760
1761 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1762
1763 **Step3: **Open flashloader; choose the correct COM port to update.
1764
1765 [[image:image-20220602102605-1.png]]
1766
1767
1768 [[image:image-20220602102637-2.png]]
1769
1770
1771 [[image:image-20220602102715-3.png]]
1772
1773
1774
1775 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1776
1777 (((
1778 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1779 )))
1780
1781
1782
1783 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1784
1785 (((
1786 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1787 )))
1788
1789
1790
1791 = 7. Trouble Shooting =
1792
1793
1794 == 7.1 Downlink doesn’t work, how to solve it? ==
1795
1796 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1797
1798
1799 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1800
1801 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1802
1803
1804 = 8. Order Info =
1805
1806 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
1807
1808 (% style="color:blue" %)**XXX:**
1809
1810 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1811 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1812 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1813 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1814 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1815 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1816 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1817 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1818 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1819 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1820
1821 = 9. Packing Info =
1822
1823 (((
1824 **Package Includes**:
1825 )))
1826
1827 * (((
1828 RS485-BL x 1
1829 )))
1830 * (((
1831 Stick Antenna for LoRa RF part x 1
1832 )))
1833 * (((
1834 Program cable x 1
1835 )))
1836
1837 (((
1838 **Dimension and weight**:
1839 )))
1840
1841 * (((
1842 Device Size: 13.5 x 7 x 3 cm
1843 )))
1844 * (((
1845 Device Weight: 105g
1846 )))
1847 * (((
1848 Package Size / pcs : 14.5 x 8 x 5 cm
1849 )))
1850 * (((
1851 Weight / pcs : 170g
1852
1853
1854 )))
1855
1856 = 10. Support =
1857
1858 * (((
1859 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1860 )))
1861 * (((
1862 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1863 )))