Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="385" width="385"]]
3
4
5
6
7 **RS485-BL – Waterproof RS485 to LoRaWAN Converter User Manual**
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19 = 1.Introduction =
20
21 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
22
23 (((
24
25 )))
26
27 (((
28 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
29 )))
30
31 (((
32 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
33 )))
34
35 (((
36 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
37 )))
38
39 (((
40 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
41 )))
42
43 (((
44 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
45 )))
46
47 (((
48 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
49 )))
50
51 (((
52 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
53 )))
54
55 [[image:1652953304999-717.png||height="424" width="733"]]
56
57
58
59 == 1.2 Specifications ==
60
61
62 **Hardware System:**
63
64 * STM32L072CZT6 MCU
65 * SX1276/78 Wireless Chip 
66 * Power Consumption (exclude RS485 device):
67 ** Idle: 6uA@3.3v
68 ** 20dB Transmit: 130mA@3.3v
69
70 **Interface for Model:**
71
72 * 1 x RS485 Interface
73 * 1 x TTL Serial , 3.3v or 5v.
74 * 1 x I2C Interface, 3.3v or 5v.
75 * 1 x one wire interface
76 * 1 x Interrupt Interface
77 * 1 x Controllable 5V output, max
78
79 **LoRa Spec:**
80
81 * Frequency Range:
82 ** Band 1 (HF): 862 ~~ 1020 Mhz
83 ** Band 2 (LF): 410 ~~ 528 Mhz
84 * 168 dB maximum link budget.
85 * +20 dBm - 100 mW constant RF output vs.
86 * Programmable bit rate up to 300 kbps.
87 * High sensitivity: down to -148 dBm.
88 * Bullet-proof front end: IIP3 = -12.5 dBm.
89 * Excellent blocking immunity.
90 * Fully integrated synthesizer with a resolution of 61 Hz.
91 * LoRa modulation.
92 * Built-in bit synchronizer for clock recovery.
93 * Preamble detection.
94 * 127 dB Dynamic Range RSSI.
95 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
96
97
98
99 == 1.3 Features ==
100
101 * LoRaWAN Class A & Class C protocol (default Class A)
102 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
103 * AT Commands to change parameters
104 * Remote configure parameters via LoRaWAN Downlink
105 * Firmware upgradable via program port
106 * Support multiply RS485 devices by flexible rules
107 * Support Modbus protocol
108 * Support Interrupt uplink
109
110
111
112 == 1.4 Applications ==
113
114 * Smart Buildings & Home Automation
115 * Logistics and Supply Chain Management
116 * Smart Metering
117 * Smart Agriculture
118 * Smart Cities
119 * Smart Factory
120
121
122
123 == 1.5 Firmware Change log ==
124
125 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
126
127
128 == 1.6 Hardware Change log ==
129
130 (((
131
132
133 (((
134 v1.4
135 )))
136 )))
137
138 (((
139 (((
140 ~1. Change Power IC to TPS22916
141 )))
142 )))
143
144 (((
145
146 )))
147
148 (((
149 (((
150 v1.3
151 )))
152 )))
153
154 (((
155 (((
156 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
157 )))
158 )))
159
160 (((
161
162 )))
163
164 (((
165 (((
166 v1.2
167 )))
168 )))
169
170 (((
171 (((
172 Release version ​​​​​
173 )))
174
175
176 )))
177
178 = 2. Pin mapping and Power ON Device =
179
180 (((
181 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
182 )))
183
184 [[image:1652953055962-143.png||height="387" width="728"]]
185
186
187 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
188
189
190 = 3. Operation Mode =
191
192 == 3.1 How it works? ==
193
194 (((
195 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
196
197
198 )))
199
200 == 3.2 Example to join LoRaWAN network ==
201
202 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
203
204 [[image:1652953414711-647.png||height="337" width="723"]]
205
206 (((
207 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
208 )))
209
210 (((
211 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
212 )))
213
214 (((
215 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
216 )))
217
218 (((
219 Each RS485-BL is shipped with a sticker with unique device EUI:
220 )))
221
222 [[image:1652953462722-299.png]]
223
224 (((
225 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
226 )))
227
228 (((
229 Add APP EUI in the application.
230 )))
231
232
233 [[image:image-20220519174512-1.png]]
234
235 [[image:image-20220519174512-2.png||height="328" width="731"]]
236
237 [[image:image-20220519174512-3.png||height="556" width="724"]]
238
239 [[image:image-20220519174512-4.png]]
240
241 You can also choose to create the device manually.
242
243 [[image:1652953542269-423.png||height="710" width="723"]]
244
245 Add APP KEY and DEV EUI
246
247 [[image:1652953553383-907.png||height="514" width="724"]]
248
249
250 (((
251 **Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
252 )))
253
254 [[image:1652953568895-172.png||height="232" width="724"]]
255
256
257 == 3.3 Configure Commands to read data ==
258
259 (((
260 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
261
262
263 )))
264
265 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
266
267 (((
268 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
269 )))
270
271 (((
272 **~1. RS485-MODBUS mode:**
273 )))
274
275 (((
276 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
277 )))
278
279 (((
280 **2. TTL mode:**
281 )))
282
283 (((
284 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
285 )))
286
287 (((
288 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
289 )))
290
291 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
292 |=(% style="width: 80px;" %)(((
293 (((
294 **AT Commands**
295 )))
296 )))|=(% style="width: 210px;" %)(((
297 (((
298 **Description**
299 )))
300 )))|=(% style="width: 210px;" %)(((
301 (((
302 **Example**
303 )))
304 )))
305 |(% style="width:80px" %)(((
306 (((
307 AT+BAUDR
308 )))
309 )))|(% style="width:210px" %)(((
310 (((
311 Set the baud rate (for RS485 connection). Default Value is: 9600.
312 )))
313 )))|(% style="width:210px" %)(((
314 (((
315 (((
316 AT+BAUDR=9600
317 )))
318 )))
319
320 (((
321 (((
322 Options: (1200,2400,4800,14400,19200,115200)
323 )))
324 )))
325 )))
326 |(% style="width:80px" %)(((
327 (((
328 AT+PARITY
329 )))
330 )))|(% style="width:210px" %)(((
331 (((
332 (((
333 Set UART parity (for RS485 connection)
334 )))
335 )))
336
337 (((
338 (((
339 Default Value is: no parity.
340 )))
341 )))
342 )))|(% style="width:210px" %)(((
343 (((
344 (((
345 AT+PARITY=0
346 )))
347 )))
348
349 (((
350 (((
351 Option: 0: no parity, 1: odd parity, 2: even parity
352 )))
353 )))
354 )))
355 |(% style="width:80px" %)(((
356 (((
357 AT+STOPBIT
358 )))
359 )))|(% style="width:210px" %)(((
360 (((
361 (((
362 Set serial stopbit (for RS485 connection)
363 )))
364 )))
365
366 (((
367 (((
368 Default Value is: 1bit.
369 )))
370 )))
371 )))|(% style="width:210px" %)(((
372 (((
373 (((
374 AT+STOPBIT=0 for 1bit
375 )))
376 )))
377
378 (((
379 (((
380 AT+STOPBIT=1 for 1.5 bit
381 )))
382 )))
383
384 (((
385 (((
386 AT+STOPBIT=2 for 2 bits
387 )))
388 )))
389 )))
390
391
392
393 === 3.3.2 Configure sensors ===
394
395 (((
396 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
397 )))
398
399 (((
400 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
401 )))
402
403 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
404 |=(% style="width: 80px;" %)**AT Commands**|=(% style="width: 210px;" %)**Description**|=(% style="width: 210px;" %)**Example**
405 |AT+CFGDEV|(% style="width:80px" %)(((
406 (((
407 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
408 )))
409
410 (((
411 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
412 )))
413
414 (((
415 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
416 )))
417 )))|(% style="width:210px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
418
419 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
420
421
422
423 === 3.3.3 Configure read commands for each sampling ===
424
425 (((
426 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
427 )))
428
429 (((
430 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
431 )))
432
433 (((
434 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
435 )))
436
437 (((
438 This section describes how to achieve above goals.
439 )))
440
441 (((
442 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
443 )))
444
445 (((
446 **Command from RS485-BL to Sensor:**
447 )))
448
449 (((
450 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
451 )))
452
453 (((
454 **Handle return from sensors to RS485-BL**:
455 )))
456
457 (((
458 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
459 )))
460
461 * (((
462 **AT+DATACUT**
463 )))
464
465 (((
466 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
467 )))
468
469 * (((
470 **AT+SEARCH**
471 )))
472
473 (((
474 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
475 )))
476
477 (((
478 **Define wait timeout:**
479 )))
480
481 (((
482 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
483 )))
484
485 (((
486 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
487 )))
488
489 (((
490 **Examples:**
491 )))
492
493 (((
494 Below are examples for the how above AT Commands works.
495 )))
496
497 (((
498 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
499 )))
500
501 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
502 |(% style="width:498px" %)(((
503 (((
504 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
505 )))
506
507 (((
508 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
509 )))
510
511 (((
512 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
513 )))
514 )))
515
516 (((
517 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
518 )))
519
520 (((
521 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
522 )))
523
524 (((
525
526 )))
527
528 (((
529 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
530 )))
531
532 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
533 |(% style="width:577px" %)(((
534 (((
535 **AT+SEARCHx=aa,xx xx xx xx xx**
536 )))
537
538 * (((
539 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
540 )))
541 * (((
542 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
543 )))
544 )))
545
546 (((
547 **Examples:**
548 )))
549
550 (((
551 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
552 )))
553
554 (((
555 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
556 )))
557
558 (((
559 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
560 )))
561
562 (((
563 [[image:1653271044481-711.png]]
564 )))
565
566 (((
567 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
568 )))
569
570 (((
571 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
572 )))
573
574 (((
575 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
576 )))
577
578 (((
579 [[image:1653271276735-972.png]]
580 )))
581
582 (((
583 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
584 )))
585
586 (% style="background-color:#4f81bd; color:white; width:510px" %)
587 |(% style="width:726px" %)(((
588 (((
589 **AT+DATACUTx=a,b,c**
590 )))
591
592 * (((
593 **a: length for the return of AT+COMMAND**
594 )))
595 * (((
596 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
597 )))
598 * (((
599 **c: define the position for valid value.  **
600 )))
601 )))
602
603 (((
604 **Examples:**
605 )))
606
607 * (((
608 Grab bytes:
609 )))
610
611 (((
612 [[image:1653271581490-837.png||height="313" width="722"]]
613 )))
614
615 (((
616
617 )))
618
619 * (((
620 Grab a section.
621 )))
622
623 (((
624 [[image:1653271648378-342.png||height="326" width="720"]]
625 )))
626
627 (((
628
629 )))
630
631 * (((
632 Grab different sections.
633 )))
634
635 (((
636 [[image:1653271657255-576.png||height="305" width="730"]]
637 )))
638
639 (((
640 (((
641 (% style="color:red" %)**Note:**
642 )))
643 )))
644
645 (((
646 (((
647 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
648 )))
649 )))
650
651 (((
652 (((
653 **Example:**
654 )))
655 )))
656
657 (((
658 (((
659 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
660 )))
661 )))
662
663 (((
664 (((
665 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
666 )))
667 )))
668
669 (((
670 (((
671 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
672 )))
673 )))
674
675 (((
676 (((
677 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
678 )))
679 )))
680
681 (((
682 (((
683 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
684 )))
685 )))
686
687 (((
688 (((
689 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
690 )))
691 )))
692
693 (((
694 [[image:1653271763403-806.png]]
695 )))
696
697
698 === 3.3.4 Compose the uplink payload ===
699
700 (((
701 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
702
703
704 )))
705
706 (((
707 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
708
709
710 )))
711
712 (((
713 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
714 )))
715
716 (((
717 Final Payload is
718 )))
719
720 (((
721 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
722 )))
723
724 (((
725 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
726 )))
727
728 [[image:1653272787040-634.png||height="515" width="719"]]
729
730
731
732 (((
733 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
734
735
736 )))
737
738 (((
739 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
740 )))
741
742 (((
743 Final Payload is
744 )))
745
746 (((
747 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
748 )))
749
750 1. (((
751 Battery Info (2 bytes): Battery voltage
752 )))
753 1. (((
754 PAYVER (1 byte): Defined by AT+PAYVER
755 )))
756 1. (((
757 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
758 )))
759 1. (((
760 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
761 )))
762 1. (((
763 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
764 )))
765
766 [[image:1653272817147-600.png||height="437" width="717"]]
767
768 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
769
770
771 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
772
773 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
774
775 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
776
777
778 Below are the uplink payloads:
779
780 [[image:1653272901032-107.png]]
781
782
783 (% style="color:red" %)Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
784
785 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
786
787 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
788
789 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
790
791 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
792
793
794
795 === 3.3.5 Uplink on demand ===
796
797 (((
798 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
799 )))
800
801 (((
802 Downlink control command:
803 )))
804
805 (((
806 **0x08 command**: Poll an uplink with current command set in RS485-BL.
807 )))
808
809 (((
810 **0xA8 command**: Send a command to RS485-BL and uplink the output from sensors.
811
812
813 )))
814
815 === 3.3.6 Uplink on Interrupt ===
816
817 Put the interrupt sensor between 3.3v_out and GPIO ext.
818
819 [[image:1653273818896-432.png]]
820
821
822 (((
823 AT+INTMOD=0  Disable Interrupt
824 )))
825
826 (((
827 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
828 )))
829
830 (((
831 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
832 )))
833
834 (((
835 AT+INTMOD=3  Interrupt trigger by rising edge.
836
837
838 )))
839
840 == 3.4 Uplink Payload ==
841
842 [[image:image-20220606105412-1.png]]
843
844 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
845
846 (((
847 {{{function Decoder(bytes, port) {}}}
848 )))
849
850 (((
851 {{{//Payload Formats of RS485-BL Deceive}}}
852 )))
853
854 (((
855 {{{return {}}}
856 )))
857
858 (((
859 {{{ //Battery,units:V}}}
860 )))
861
862 (((
863 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
864 )))
865
866 (((
867 {{{ //GPIO_EXTI }}}
868 )))
869
870 (((
871 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
872 )))
873
874 (((
875 {{{ //payload of version}}}
876 )))
877
878 (((
879 {{{ Pay_ver:bytes[2],}}}
880 )))
881
882 (((
883 {{{ }; }}}
884 )))
885
886 (((
887 **}**
888
889
890 )))
891
892 (((
893 TTN V3 uplink screen shot.
894 )))
895
896 [[image:1653274001211-372.png||height="192" width="732"]]
897
898
899 == 3.5 Configure RS485-BL via AT or Downlink ==
900
901 (((
902 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
903 )))
904
905 (((
906 There are two kinds of Commands:
907 )))
908
909 * (((
910 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
911 )))
912
913 * (((
914 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
915 )))
916
917
918 === 3.5.1 Common Commands: ===
919
920 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
921
922
923 === 3.5.2 Sensor related commands: ===
924
925
926
927 ==== **Choose Device Type (RS485 or TTL)** ====
928
929 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
930
931 * **AT Command**
932
933 (% class="box infomessage" %)
934 (((
935 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
936 )))
937
938 (% class="box infomessage" %)
939 (((
940 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
941 )))
942
943
944 * **Downlink Payload**
945
946 **0A aa**  ~-~->  same as AT+MOD=aa
947
948
949
950
951 ==== **RS485 Debug Command (AT+CFGDEV)** ====
952
953 (((
954 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
955 )))
956
957 * (((
958 **AT Command**
959 )))
960
961 (% class="box infomessage" %)
962 (((
963 (((
964 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
965 )))
966 )))
967
968 (((
969 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
970 )))
971
972 (((
973
974 )))
975
976 * (((
977 **Downlink Payload**
978 )))
979
980 (((
981 Format: A8 MM NN XX XX XX XX YY
982 )))
983
984 (((
985 Where:
986 )))
987
988 * (((
989 MM: 1: add CRC-16/MODBUS ; 0: no CRC
990 )))
991 * (((
992 NN: The length of RS485 command
993 )))
994 * (((
995 XX XX XX XX: RS485 command total NN bytes
996 )))
997 * (((
998 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
999 )))
1000
1001 (((
1002 **Example 1:**
1003 )))
1004
1005 (((
1006 To connect a Modbus Alarm with below commands.
1007 )))
1008
1009 * (((
1010 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
1011 )))
1012
1013 * (((
1014 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1015 )))
1016
1017 (((
1018 So if user want to use downlink command to control to RS485 Alarm, he can use:
1019 )))
1020
1021 (((
1022 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1023 )))
1024
1025 (((
1026 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1027 )))
1028
1029 (((
1030 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
1031 )))
1032
1033 (((
1034
1035 )))
1036
1037 (((
1038 **Example 2:**
1039 )))
1040
1041 (((
1042 Check TTL Sensor return:
1043 )))
1044
1045 (((
1046 [[image:1654132684752-193.png]]
1047 )))
1048
1049
1050
1051
1052
1053 ==== **Set Payload version** ====
1054
1055 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1056
1057 * **AT Command:**
1058
1059 (% class="box infomessage" %)
1060 (((
1061 **AT+PAYVER: Set PAYVER field = 1**
1062 )))
1063
1064
1065 * **Downlink Payload:**
1066
1067 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
1068
1069 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
1070
1071
1072
1073
1074 ==== **Set RS485 Sampling Commands** ====
1075
1076 (((
1077 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1078 )))
1079
1080 (((
1081 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1082 )))
1083
1084 (((
1085
1086 )))
1087
1088 * (((
1089 **AT Command:**
1090 )))
1091
1092 (% class="box infomessage" %)
1093 (((
1094 (((
1095 **AT+COMMANDx: Configure RS485 read command to sensor.**
1096 )))
1097 )))
1098
1099 (% class="box infomessage" %)
1100 (((
1101 (((
1102 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
1103 )))
1104 )))
1105
1106 (% class="box infomessage" %)
1107 (((
1108 (((
1109 **AT+SEARCHx: Configure search command**
1110 )))
1111 )))
1112
1113 (((
1114
1115 )))
1116
1117 * (((
1118 **Downlink Payload:**
1119 )))
1120
1121 (((
1122 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1123 )))
1124
1125 (((
1126 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
1127 )))
1128
1129 (((
1130 Format: AF MM NN LL XX XX XX XX YY
1131 )))
1132
1133 (((
1134 Where:
1135 )))
1136
1137 * (((
1138 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1139 )))
1140 * (((
1141 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1142 )))
1143 * (((
1144 LL:  The length of AT+COMMAND or AT+DATACUT command
1145 )))
1146 * (((
1147 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1148 )))
1149 * (((
1150 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1151 )))
1152
1153 (((
1154 **Example:**
1155 )))
1156
1157 (((
1158 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1159 )))
1160
1161 (((
1162 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1163 )))
1164
1165 (((
1166 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1167 )))
1168
1169 (((
1170
1171 )))
1172
1173 (((
1174 **0xAB** downlink command can be used for set AT+SEARCHx
1175 )))
1176
1177 (((
1178 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1179 )))
1180
1181 * (((
1182 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1183 )))
1184 * (((
1185 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1186 )))
1187
1188 (((
1189 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1190 )))
1191
1192
1193
1194
1195 ==== **Fast command to handle MODBUS device** ====
1196
1197 (((
1198 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1199 )))
1200
1201 (((
1202 This command is valid since v1.3 firmware version
1203 )))
1204
1205 (((
1206
1207 )))
1208
1209 (((
1210 **AT+MBFUN has only two value:**
1211 )))
1212
1213 * (((
1214 **AT+MBFUN=1**: Enable Modbus reading. And get response base on the MODBUS return
1215 )))
1216
1217 (((
1218 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1219 )))
1220
1221 * (((
1222 **AT+MBFUN=0**: Disable Modbus fast reading.
1223 )))
1224
1225 (((
1226 **Example:**
1227 )))
1228
1229 * (((
1230 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1231 )))
1232 * (((
1233 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1234 )))
1235 * (((
1236 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1237 )))
1238
1239 [[image:1654133913295-597.png]]
1240
1241
1242 [[image:1654133954153-643.png]]
1243
1244
1245 * (((
1246 **Downlink Commands:**
1247 )))
1248
1249 (((
1250 **A9 aa** ~-~-> Same as AT+MBFUN=aa
1251 )))
1252
1253
1254
1255
1256 ==== **RS485 command timeout** ====
1257
1258 (((
1259 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1260 )))
1261
1262 (((
1263 Default value: 0, range:  0 ~~ 5 seconds
1264 )))
1265
1266 (((
1267
1268 )))
1269
1270 * (((
1271 **AT Command:**
1272 )))
1273
1274 (% class="box infomessage" %)
1275 (((
1276 (((
1277 **AT+CMDDLaa=hex(bb cc)**
1278 )))
1279 )))
1280
1281 (((
1282 **Example:**
1283 )))
1284
1285 (((
1286 **AT+CMDDL1=1000** to send the open time to 1000ms
1287 )))
1288
1289 (((
1290
1291 )))
1292
1293 * (((
1294 **Downlink Payload:**
1295 )))
1296
1297 (((
1298 0x AA aa bb cc
1299 )))
1300
1301 (((
1302 Same as: AT+CMDDLaa=hex(bb cc)
1303 )))
1304
1305 (((
1306 **Example:**
1307 )))
1308
1309 (((
1310 **0xAA 01 03 E8**  ~-~-> Same as **AT+CMDDL1=1000 ms**
1311 )))
1312
1313
1314
1315
1316 ==== **Uplink payload mode** ====
1317
1318 (((
1319 Define to use one uplink or multiple uplinks for the sampling.
1320 )))
1321
1322 (((
1323 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1324 )))
1325
1326 * (((
1327 **AT Command:**
1328 )))
1329
1330 (% class="box infomessage" %)
1331 (((
1332 (((
1333 **AT+DATAUP=0**
1334 )))
1335 )))
1336
1337 (% class="box infomessage" %)
1338 (((
1339 (((
1340 **AT+DATAUP=1**
1341 )))
1342 )))
1343
1344 (((
1345
1346 )))
1347
1348 * (((
1349 **Downlink Payload:**
1350 )))
1351
1352 (((
1353 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
1354 )))
1355
1356 (((
1357 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
1358 )))
1359
1360
1361
1362
1363 ==== **Manually trigger an Uplink** ====
1364
1365 Ask device to send an uplink immediately.
1366
1367 * **Downlink Payload:**
1368
1369 **0x08 FF**, RS485-BL will immediately send an uplink.
1370
1371
1372
1373
1374 ==== **Clear RS485 Command** ====
1375
1376 (((
1377 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1378 )))
1379
1380 (((
1381
1382 )))
1383
1384 * (((
1385 **AT Command:**
1386 )))
1387
1388 (((
1389 (% style="color:#037691" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1390 )))
1391
1392 (((
1393 Example screen shot after clear all RS485 commands. 
1394 )))
1395
1396 (((
1397
1398 )))
1399
1400 (((
1401 The uplink screen shot is:
1402 )))
1403
1404 (((
1405 [[image:1654134704555-320.png]]
1406 )))
1407
1408 (((
1409
1410 )))
1411
1412 * (((
1413 **Downlink Payload:**
1414 )))
1415
1416 (((
1417 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1418 )))
1419
1420
1421
1422
1423 ==== **Set Serial Communication Parameters** ====
1424
1425 (((
1426 Set the Rs485 serial communication parameters:
1427 )))
1428
1429 * (((
1430 **AT Command:**
1431 )))
1432
1433 (((
1434 Set Baud Rate:
1435 )))
1436
1437 (% class="box infomessage" %)
1438 (((
1439 (((
1440 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1441 )))
1442 )))
1443
1444 (((
1445 Set UART Parity
1446 )))
1447
1448 (% class="box infomessage" %)
1449 (((
1450 (((
1451 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1452 )))
1453 )))
1454
1455 (((
1456 Set STOPBIT
1457 )))
1458
1459 (% class="box infomessage" %)
1460 (((
1461 (((
1462 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1463 )))
1464 )))
1465
1466 (((
1467
1468 )))
1469
1470 * (((
1471 **Downlink Payload:**
1472 )))
1473
1474 (((
1475 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1476 )))
1477
1478 (((
1479 **Example:**
1480 )))
1481
1482 * (((
1483 A7 01 00 60   same as AT+BAUDR=9600
1484 )))
1485 * (((
1486 A7 01 04 80  same as AT+BAUDR=115200
1487 )))
1488
1489 (((
1490 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1491 )))
1492
1493 (((
1494 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1495 )))
1496
1497
1498
1499
1500 ==== **Control output power duration** ====
1501
1502 (((
1503 User can set the output power duration before each sampling.
1504 )))
1505
1506 * (((
1507 **AT Command:**
1508 )))
1509
1510 (((
1511 **Example:**
1512 )))
1513
1514 (((
1515 **AT+3V3T=1000**  ~/~/ 3V3 output power will open 1s before each sampling.
1516 )))
1517
1518 (((
1519 **AT+5VT=1000**  ~/~/ +5V output power will open 1s before each sampling.
1520 )))
1521
1522 (((
1523
1524 )))
1525
1526 * (((
1527 **LoRaWAN Downlink Command:**
1528 )))
1529
1530 (((
1531 **07 01 aa bb**  Same as AT+5VT=(aa bb)
1532 )))
1533
1534 (((
1535 **07 02 aa bb**  Same as AT+3V3T=(aa bb)
1536 )))
1537
1538
1539
1540 == 3.6 Buttons ==
1541
1542 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:233px" %)
1543 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1544 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1545
1546
1547 == 3.7 +3V3 Output ==
1548
1549 (((
1550 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1551 )))
1552
1553 (((
1554 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1555 )))
1556
1557 (((
1558 The +3V3 output time can be controlled by AT Command.
1559 )))
1560
1561 (((
1562
1563 )))
1564
1565 (((
1566 (% style="color:#037691" %)**AT+3V3T=1000**
1567 )))
1568
1569 (((
1570
1571 )))
1572
1573 (((
1574 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1575 )))
1576
1577 (((
1578 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1579 )))
1580
1581
1582 == 3.8 +5V Output ==
1583
1584 (((
1585 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1586 )))
1587
1588 (((
1589 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1590 )))
1591
1592 (((
1593 The 5V output time can be controlled by AT Command.
1594 )))
1595
1596 (((
1597
1598 )))
1599
1600 (((
1601 (% style="color:#037691" %)**AT+5VT=1000**
1602 )))
1603
1604 (((
1605
1606 )))
1607
1608 (((
1609 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1610 )))
1611
1612 (((
1613 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1614 )))
1615
1616
1617
1618 == 3.9 LEDs ==
1619
1620 (% border="1" style="background-color:#ffffcc; color:green; width:332px" %)
1621 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1622 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1623
1624
1625 == 3.10 Switch Jumper ==
1626
1627 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:463px" %)
1628 |=(% style="width: 123px;" %)**Switch Jumper**|=(% style="width: 336px;" %)**Feature**
1629 |(% style="width:123px" %)**SW1**|(% style="width:336px" %)ISP position: Upgrade firmware via UART
1630 Flash position: Configure device, check running status.
1631 |(% style="width:123px" %)**SW2**|(% style="width:336px" %)5V position: set to compatible with 5v I/O.
1632 3.3v position: set to compatible with 3.3v I/O.,
1633
1634 (((
1635 **+3.3V**: is always ON
1636 )))
1637
1638 (((
1639 **+5V**: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1640 )))
1641
1642
1643 = 4. Case Study =
1644
1645 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1646
1647
1648 = 5. Use AT Command =
1649
1650 == 5.1 Access AT Command ==
1651
1652 (((
1653 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1654 )))
1655
1656 [[image:1654135840598-282.png]]
1657
1658
1659 (((
1660 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1661 )))
1662
1663 [[image:1654136105500-922.png]]
1664
1665
1666 (((
1667 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1668 )))
1669
1670
1671 == 5.2 Common AT Command Sequence ==
1672
1673 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1674
1675 If device has not joined network yet:
1676
1677 (% class="box infomessage" %)
1678 (((
1679 **AT+FDR**
1680 )))
1681
1682 (% class="box infomessage" %)
1683 (((
1684 **AT+NJM=0**
1685 )))
1686
1687 (% class="box infomessage" %)
1688 (((
1689 **ATZ**
1690 )))
1691
1692
1693 (((
1694 If device already joined network:
1695 )))
1696
1697 (% class="box infomessage" %)
1698 (((
1699 **AT+NJM=0**
1700 )))
1701
1702 (% class="box infomessage" %)
1703 (((
1704 **ATZ**
1705 )))
1706
1707
1708 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1709
1710
1711 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1712
1713 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1714
1715 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1716
1717 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%)Set Data Rate
1718
1719 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1720
1721 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1722
1723 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1724
1725 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1726
1727 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1728
1729 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1730
1731
1732 (% style="color:red" %)**Note:**
1733
1734 (((
1735 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1736 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1737 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1738 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1739 )))
1740
1741 [[image:1654136435598-589.png]]
1742
1743
1744 = 6. FAQ =
1745
1746 == 6.1 How to upgrade the image? ==
1747
1748 (((
1749 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1750 )))
1751
1752 * (((
1753 Support new features
1754 )))
1755 * (((
1756 For bug fix
1757 )))
1758 * (((
1759 Change LoRaWAN bands.
1760 )))
1761
1762 (((
1763 Below shows the hardware connection for how to upload an image to RS485-BL:
1764 )))
1765
1766 [[image:1654136646995-976.png]]
1767
1768 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1769
1770 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1771
1772 **Step3: **Open flashloader; choose the correct COM port to update.
1773
1774 [[image:image-20220602102605-1.png]]
1775
1776
1777 [[image:image-20220602102637-2.png]]
1778
1779
1780 [[image:image-20220602102715-3.png]]
1781
1782
1783
1784 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1785
1786 (((
1787 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1788 )))
1789
1790
1791
1792 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1793
1794 (((
1795 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1796 )))
1797
1798
1799
1800 = 7. Trouble Shooting =
1801
1802
1803 == 7.1 Downlink doesn’t work, how to solve it? ==
1804
1805 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1806
1807
1808 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1809
1810 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1811
1812
1813 = 8. Order Info =
1814
1815 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
1816
1817 (% style="color:blue" %)**XXX:**
1818
1819 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1820 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1821 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1822 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1823 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1824 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1825 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1826 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1827 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1828 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1829
1830
1831 = 9. Packing Info =
1832
1833 (((
1834 **Package Includes**:
1835 )))
1836
1837 * (((
1838 RS485-BL x 1
1839 )))
1840 * (((
1841 Stick Antenna for LoRa RF part x 1
1842 )))
1843 * (((
1844 Program cable x 1
1845 )))
1846
1847 (((
1848 **Dimension and weight**:
1849 )))
1850
1851 * (((
1852 Device Size: 13.5 x 7 x 3 cm
1853 )))
1854 * (((
1855 Device Weight: 105g
1856 )))
1857 * (((
1858 Package Size / pcs : 14.5 x 8 x 5 cm
1859 )))
1860 * (((
1861 Weight / pcs : 170g
1862
1863
1864 )))
1865
1866 = 10. Support =
1867
1868 * (((
1869 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1870 )))
1871 * (((
1872 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1873 )))
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0