Version 42.20 by Xiaoling on 2022/06/06 14:25

Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="385" width="385"]]
3
4
5
6
7 **RS485-BL – Waterproof RS485 to LoRaWAN Converter User Manual**
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19 = 1.Introduction =
20
21 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
22
23 (((
24
25 )))
26
27 (((
28 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
29 )))
30
31 (((
32 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
33 )))
34
35 (((
36 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
37 )))
38
39 (((
40 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
41 )))
42
43 (((
44 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
45 )))
46
47 (((
48 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
49 )))
50
51 (((
52 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
53 )))
54
55 [[image:1652953304999-717.png||height="424" width="733"]]
56
57
58
59 == 1.2 Specifications ==
60
61
62 **Hardware System:**
63
64 * STM32L072CZT6 MCU
65 * SX1276/78 Wireless Chip 
66 * Power Consumption (exclude RS485 device):
67 ** Idle: 6uA@3.3v
68 ** 20dB Transmit: 130mA@3.3v
69
70 **Interface for Model:**
71
72 * 1 x RS485 Interface
73 * 1 x TTL Serial , 3.3v or 5v.
74 * 1 x I2C Interface, 3.3v or 5v.
75 * 1 x one wire interface
76 * 1 x Interrupt Interface
77 * 1 x Controllable 5V output, max
78
79 **LoRa Spec:**
80
81 * Frequency Range:
82 ** Band 1 (HF): 862 ~~ 1020 Mhz
83 ** Band 2 (LF): 410 ~~ 528 Mhz
84 * 168 dB maximum link budget.
85 * +20 dBm - 100 mW constant RF output vs.
86 * Programmable bit rate up to 300 kbps.
87 * High sensitivity: down to -148 dBm.
88 * Bullet-proof front end: IIP3 = -12.5 dBm.
89 * Excellent blocking immunity.
90 * Fully integrated synthesizer with a resolution of 61 Hz.
91 * LoRa modulation.
92 * Built-in bit synchronizer for clock recovery.
93 * Preamble detection.
94 * 127 dB Dynamic Range RSSI.
95 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
96
97
98
99 == 1.3 Features ==
100
101 * LoRaWAN Class A & Class C protocol (default Class A)
102 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
103 * AT Commands to change parameters
104 * Remote configure parameters via LoRaWAN Downlink
105 * Firmware upgradable via program port
106 * Support multiply RS485 devices by flexible rules
107 * Support Modbus protocol
108 * Support Interrupt uplink
109
110
111
112 == 1.4 Applications ==
113
114 * Smart Buildings & Home Automation
115 * Logistics and Supply Chain Management
116 * Smart Metering
117 * Smart Agriculture
118 * Smart Cities
119 * Smart Factory
120
121
122
123 == 1.5 Firmware Change log ==
124
125 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
126
127
128 == 1.6 Hardware Change log ==
129
130 (((
131
132
133 (((
134 v1.4
135 )))
136 )))
137
138 (((
139 (((
140 ~1. Change Power IC to TPS22916
141 )))
142 )))
143
144 (((
145
146 )))
147
148 (((
149 (((
150 v1.3
151 )))
152 )))
153
154 (((
155 (((
156 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
157 )))
158 )))
159
160 (((
161
162 )))
163
164 (((
165 (((
166 v1.2
167 )))
168 )))
169
170 (((
171 (((
172 Release version ​​​​​
173 )))
174
175
176 )))
177
178 = 2. Pin mapping and Power ON Device =
179
180 (((
181 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
182 )))
183
184 [[image:1652953055962-143.png||height="387" width="728"]]
185
186
187 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
188
189
190 = 3. Operation Mode =
191
192 == 3.1 How it works? ==
193
194 (((
195 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
196
197
198 )))
199
200 == 3.2 Example to join LoRaWAN network ==
201
202 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
203
204 [[image:1652953414711-647.png||height="337" width="723"]]
205
206 (((
207 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
208 )))
209
210 (((
211 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
212 )))
213
214 (((
215 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
216 )))
217
218 (((
219 Each RS485-BL is shipped with a sticker with unique device EUI:
220 )))
221
222 [[image:1652953462722-299.png]]
223
224 (((
225 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
226 )))
227
228 (((
229 Add APP EUI in the application.
230 )))
231
232
233 [[image:image-20220519174512-1.png]]
234
235 [[image:image-20220519174512-2.png||height="328" width="731"]]
236
237 [[image:image-20220519174512-3.png||height="556" width="724"]]
238
239 [[image:image-20220519174512-4.png]]
240
241 You can also choose to create the device manually.
242
243 [[image:1652953542269-423.png||height="710" width="723"]]
244
245 Add APP KEY and DEV EUI
246
247 [[image:1652953553383-907.png||height="514" width="724"]]
248
249
250 (((
251 **Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
252 )))
253
254 [[image:1652953568895-172.png||height="232" width="724"]]
255
256
257 == 3.3 Configure Commands to read data ==
258
259 (((
260 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
261
262
263 )))
264
265 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
266
267 (((
268 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
269 )))
270
271 (((
272 **~1. RS485-MODBUS mode:**
273 )))
274
275 (((
276 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
277 )))
278
279 (((
280 **2. TTL mode:**
281 )))
282
283 (((
284 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
285 )))
286
287 (((
288 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
289 )))
290
291 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
292 |=(% style="width: 80px;" %)(((
293 (((
294 **AT Commands**
295 )))
296 )))|=(% style="width: 210px;" %)(((
297 (((
298 **Description**
299 )))
300 )))|=(% style="width: 210px;" %)(((
301 (((
302 **Example**
303 )))
304 )))
305 |(% style="width:80px" %)(((
306 (((
307 AT+BAUDR
308 )))
309 )))|(% style="width:210px" %)(((
310 (((
311 Set the baud rate (for RS485 connection). Default Value is: 9600.
312 )))
313 )))|(% style="width:210px" %)(((
314 (((
315 (((
316 AT+BAUDR=9600
317 )))
318 )))
319
320 (((
321 (((
322 Options: (1200,2400,4800,14400,19200,115200)
323 )))
324 )))
325 )))
326 |(% style="width:80px" %)(((
327 (((
328 AT+PARITY
329 )))
330 )))|(% style="width:210px" %)(((
331 (((
332 (((
333 Set UART parity (for RS485 connection)
334 )))
335 )))
336
337 (((
338 (((
339 Default Value is: no parity.
340 )))
341 )))
342 )))|(% style="width:210px" %)(((
343 (((
344 (((
345 AT+PARITY=0
346 )))
347 )))
348
349 (((
350 (((
351 Option: 0: no parity, 1: odd parity, 2: even parity
352 )))
353 )))
354 )))
355 |(% style="width:80px" %)(((
356 (((
357 AT+STOPBIT
358 )))
359 )))|(% style="width:210px" %)(((
360 (((
361 (((
362 Set serial stopbit (for RS485 connection)
363 )))
364 )))
365
366 (((
367 (((
368 Default Value is: 1bit.
369 )))
370 )))
371 )))|(% style="width:210px" %)(((
372 (((
373 (((
374 AT+STOPBIT=0 for 1bit
375 )))
376 )))
377
378 (((
379 (((
380 AT+STOPBIT=1 for 1.5 bit
381 )))
382 )))
383
384 (((
385 (((
386 AT+STOPBIT=2 for 2 bits
387 )))
388 )))
389 )))
390
391 === 3.3.2 Configure sensors ===
392
393 (((
394 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
395 )))
396
397 (((
398 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
399 )))
400
401 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
402 |=(% style="width: 80px;" %)**AT Commands**|=(% style="width: 210px;" %)**Description**|=(% style="width: 210px;" %)**Example**
403 |AT+CFGDEV|(% style="width:80px" %)(((
404 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
405
406 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
407
408 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
409 )))|(% style="width:210px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
410
411 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
412
413
414
415 === 3.3.3 Configure read commands for each sampling ===
416
417 (((
418 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
419 )))
420
421 (((
422 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
423 )))
424
425 (((
426 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
427 )))
428
429 (((
430 This section describes how to achieve above goals.
431 )))
432
433 (((
434 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
435 )))
436
437 (((
438 **Command from RS485-BL to Sensor:**
439 )))
440
441 (((
442 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
443 )))
444
445 (((
446 **Handle return from sensors to RS485-BL**:
447 )))
448
449 (((
450 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
451 )))
452
453 * (((
454 **AT+DATACUT**
455 )))
456
457 (((
458 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
459 )))
460
461 * (((
462 **AT+SEARCH**
463 )))
464
465 (((
466 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
467 )))
468
469 (((
470 **Define wait timeout:**
471 )))
472
473 (((
474 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
475 )))
476
477 (((
478 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
479 )))
480
481 (((
482 **Examples:**
483 )))
484
485 (((
486 Below are examples for the how above AT Commands works.
487 )))
488
489 (((
490 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
491 )))
492
493 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
494 |(% style="width:498px" %)(((
495 (((
496 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
497 )))
498
499 (((
500 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
501 )))
502
503 (((
504 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
505 )))
506 )))
507
508 (((
509 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
510 )))
511
512 (((
513 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
514 )))
515
516 (((
517
518 )))
519
520 (((
521 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
522 )))
523
524 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
525 |(% style="width:577px" %)(((
526 (((
527 **AT+SEARCHx=aa,xx xx xx xx xx**
528 )))
529
530 * (((
531 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
532 )))
533 * (((
534 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
535 )))
536 )))
537
538 (((
539 **Examples:**
540 )))
541
542 (((
543 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
544 )))
545
546 (((
547 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
548 )))
549
550 (((
551 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
552 )))
553
554 (((
555 [[image:1653271044481-711.png]]
556 )))
557
558 (((
559 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
560 )))
561
562 (((
563 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
564 )))
565
566 (((
567 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
568 )))
569
570 (((
571 [[image:1653271276735-972.png]]
572 )))
573
574 (((
575 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
576 )))
577
578 (% style="background-color:#4f81bd; color:white; width:510px" %)
579 |(% style="width:726px" %)(((
580 (((
581 **AT+DATACUTx=a,b,c**
582 )))
583
584 * (((
585 **a: length for the return of AT+COMMAND**
586 )))
587 * (((
588 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
589 )))
590 * (((
591 **c: define the position for valid value.  **
592 )))
593 )))
594
595 (((
596 **Examples:**
597 )))
598
599 * (((
600 Grab bytes:
601 )))
602
603 (((
604 [[image:1653271581490-837.png||height="313" width="722"]]
605 )))
606
607 (((
608
609 )))
610
611 * (((
612 Grab a section.
613 )))
614
615 (((
616 [[image:1653271648378-342.png||height="326" width="720"]]
617 )))
618
619 (((
620
621 )))
622
623 * (((
624 Grab different sections.
625 )))
626
627 (((
628 [[image:1653271657255-576.png||height="305" width="730"]]
629 )))
630
631 (((
632 (((
633 (% style="color:red" %)**Note:**
634 )))
635 )))
636
637 (((
638 (((
639 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
640 )))
641 )))
642
643 (((
644 (((
645 **Example:**
646 )))
647 )))
648
649 (((
650 (((
651 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
652 )))
653 )))
654
655 (((
656 (((
657 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
658 )))
659 )))
660
661 (((
662 (((
663 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
664 )))
665 )))
666
667 (((
668 (((
669 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
670 )))
671 )))
672
673 (((
674 (((
675 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
676 )))
677 )))
678
679 (((
680 (((
681 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
682 )))
683 )))
684
685 (((
686 [[image:1653271763403-806.png]]
687 )))
688
689
690 === 3.3.4 Compose the uplink payload ===
691
692 (((
693 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
694
695
696 )))
697
698 (((
699 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
700
701
702 )))
703
704 (((
705 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
706 )))
707
708 (((
709 Final Payload is
710 )))
711
712 (((
713 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
714 )))
715
716 (((
717 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
718 )))
719
720 [[image:1653272787040-634.png||height="515" width="719"]]
721
722
723
724 (((
725 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
726
727
728 )))
729
730 (((
731 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
732 )))
733
734 (((
735 Final Payload is
736 )))
737
738 (((
739 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
740 )))
741
742 1. (((
743 Battery Info (2 bytes): Battery voltage
744 )))
745 1. (((
746 PAYVER (1 byte): Defined by AT+PAYVER
747 )))
748 1. (((
749 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
750 )))
751 1. (((
752 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
753 )))
754 1. (((
755 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
756 )))
757
758 [[image:1653272817147-600.png||height="437" width="717"]]
759
760 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
761
762
763 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
764
765 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
766
767 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
768
769
770 Below are the uplink payloads:
771
772 [[image:1653272901032-107.png]]
773
774
775 (% style="color:red" %)Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
776
777 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
778
779 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
780
781 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
782
783 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
784
785
786
787 === 3.3.5 Uplink on demand ===
788
789 (((
790 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
791 )))
792
793 (((
794 Downlink control command:
795 )))
796
797 (((
798 **0x08 command**: Poll an uplink with current command set in RS485-BL.
799 )))
800
801 (((
802 **0xA8 command**: Send a command to RS485-BL and uplink the output from sensors.
803
804
805 )))
806
807 === 3.3.6 Uplink on Interrupt ===
808
809 Put the interrupt sensor between 3.3v_out and GPIO ext.
810
811 [[image:1653273818896-432.png]]
812
813
814 (((
815 AT+INTMOD=0  Disable Interrupt
816 )))
817
818 (((
819 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
820 )))
821
822 (((
823 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
824 )))
825
826 (((
827 AT+INTMOD=3  Interrupt trigger by rising edge.
828
829
830 )))
831
832 == 3.4 Uplink Payload ==
833
834 [[image:image-20220606105412-1.png]]
835
836 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
837
838 (((
839 {{{function Decoder(bytes, port) {}}}
840 )))
841
842 (((
843 {{{//Payload Formats of RS485-BL Deceive}}}
844 )))
845
846 (((
847 {{{return {}}}
848 )))
849
850 (((
851 {{{ //Battery,units:V}}}
852 )))
853
854 (((
855 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
856 )))
857
858 (((
859 {{{ //GPIO_EXTI }}}
860 )))
861
862 (((
863 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
864 )))
865
866 (((
867 {{{ //payload of version}}}
868 )))
869
870 (((
871 {{{ Pay_ver:bytes[2],}}}
872 )))
873
874 (((
875 {{{ }; }}}
876 )))
877
878 (((
879 }
880
881
882 )))
883
884 (((
885 TTN V3 uplink screen shot.
886 )))
887
888 [[image:1653274001211-372.png||height="192" width="732"]]
889
890
891 == 3.5 Configure RS485-BL via AT or Downlink ==
892
893 (((
894 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
895 )))
896
897 (((
898 There are two kinds of Commands:
899 )))
900
901 * (((
902 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
903 )))
904
905 * (((
906 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
907 )))
908
909
910 === 3.5.1 Common Commands: ===
911
912 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
913
914
915 === 3.5.2 Sensor related commands: ===
916
917
918
919 ==== **Choose Device Type (RS485 or TTL)** ====
920
921 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
922
923 * **AT Command**
924
925 (% class="box infomessage" %)
926 (((
927 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
928 )))
929
930 (% class="box infomessage" %)
931 (((
932 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
933 )))
934
935
936 * **Downlink Payload**
937
938 **0A aa**  ~-~->  same as AT+MOD=aa
939
940
941
942
943 ==== **RS485 Debug Command (AT+CFGDEV)** ====
944
945 (((
946 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
947 )))
948
949 * (((
950 **AT Command**
951 )))
952
953 (% class="box infomessage" %)
954 (((
955 (((
956 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
957 )))
958 )))
959
960 (((
961 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
962 )))
963
964 (((
965
966 )))
967
968 * (((
969 **Downlink Payload**
970 )))
971
972 (((
973 Format: A8 MM NN XX XX XX XX YY
974 )))
975
976 (((
977 Where:
978 )))
979
980 * (((
981 MM: 1: add CRC-16/MODBUS ; 0: no CRC
982 )))
983 * (((
984 NN: The length of RS485 command
985 )))
986 * (((
987 XX XX XX XX: RS485 command total NN bytes
988 )))
989 * (((
990 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
991 )))
992
993 (((
994 **Example 1:**
995 )))
996
997 (((
998 To connect a Modbus Alarm with below commands.
999 )))
1000
1001 * (((
1002 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
1003 )))
1004
1005 * (((
1006 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1007 )))
1008
1009 (((
1010 So if user want to use downlink command to control to RS485 Alarm, he can use:
1011 )))
1012
1013 (((
1014 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1015 )))
1016
1017 (((
1018 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1019 )))
1020
1021 (((
1022 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
1023 )))
1024
1025 (((
1026
1027 )))
1028
1029 (((
1030 **Example 2:**
1031 )))
1032
1033 (((
1034 Check TTL Sensor return:
1035 )))
1036
1037 (((
1038 [[image:1654132684752-193.png]]
1039 )))
1040
1041
1042
1043
1044
1045 ==== **Set Payload version** ====
1046
1047 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1048
1049 * **AT Command:**
1050
1051 (% class="box infomessage" %)
1052 (((
1053 **AT+PAYVER: Set PAYVER field = 1**
1054 )))
1055
1056
1057 * **Downlink Payload:**
1058
1059 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
1060
1061 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
1062
1063
1064
1065
1066 ==== **Set RS485 Sampling Commands** ====
1067
1068 (((
1069 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1070 )))
1071
1072 (((
1073 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1074 )))
1075
1076 (((
1077
1078 )))
1079
1080 * (((
1081 **AT Command:**
1082 )))
1083
1084 (% class="box infomessage" %)
1085 (((
1086 (((
1087 **AT+COMMANDx: Configure RS485 read command to sensor.**
1088 )))
1089 )))
1090
1091 (% class="box infomessage" %)
1092 (((
1093 (((
1094 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
1095 )))
1096 )))
1097
1098 (% class="box infomessage" %)
1099 (((
1100 (((
1101 **AT+SEARCHx: Configure search command**
1102 )))
1103 )))
1104
1105 (((
1106
1107 )))
1108
1109 * (((
1110 **Downlink Payload:**
1111 )))
1112
1113 (((
1114 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1115 )))
1116
1117 (((
1118 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
1119 )))
1120
1121 (((
1122 Format: AF MM NN LL XX XX XX XX YY
1123 )))
1124
1125 (((
1126 Where:
1127 )))
1128
1129 * (((
1130 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1131 )))
1132 * (((
1133 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1134 )))
1135 * (((
1136 LL:  The length of AT+COMMAND or AT+DATACUT command
1137 )))
1138 * (((
1139 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1140 )))
1141 * (((
1142 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1143 )))
1144
1145 (((
1146 **Example:**
1147 )))
1148
1149 (((
1150 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1151 )))
1152
1153 (((
1154 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1155 )))
1156
1157 (((
1158 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1159 )))
1160
1161 (((
1162
1163 )))
1164
1165 (((
1166 **0xAB** downlink command can be used for set AT+SEARCHx
1167 )))
1168
1169 (((
1170 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1171 )))
1172
1173 * (((
1174 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1175 )))
1176 * (((
1177 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1178 )))
1179
1180 (((
1181 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1182 )))
1183
1184
1185
1186
1187 ==== **Fast command to handle MODBUS device** ====
1188
1189 (((
1190 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1191 )))
1192
1193 (((
1194 This command is valid since v1.3 firmware version
1195 )))
1196
1197 (((
1198
1199 )))
1200
1201 (((
1202 **AT+MBFUN has only two value:**
1203 )))
1204
1205 * (((
1206 **AT+MBFUN=1**: Enable Modbus reading. And get response base on the MODBUS return
1207 )))
1208
1209 (((
1210 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1211 )))
1212
1213 * (((
1214 **AT+MBFUN=0**: Disable Modbus fast reading.
1215 )))
1216
1217 (((
1218 **Example:**
1219 )))
1220
1221 * (((
1222 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1223 )))
1224 * (((
1225 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1226 )))
1227 * (((
1228 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1229 )))
1230
1231 [[image:1654133913295-597.png]]
1232
1233
1234 [[image:1654133954153-643.png]]
1235
1236
1237 * (((
1238 **Downlink Commands:**
1239 )))
1240
1241 (((
1242 **A9 aa** ~-~-> Same as AT+MBFUN=aa
1243 )))
1244
1245
1246
1247
1248 ==== **RS485 command timeout** ====
1249
1250 (((
1251 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1252 )))
1253
1254 (((
1255 Default value: 0, range:  0 ~~ 5 seconds
1256 )))
1257
1258 (((
1259
1260 )))
1261
1262 * (((
1263 **AT Command:**
1264 )))
1265
1266 (% class="box infomessage" %)
1267 (((
1268 (((
1269 **AT+CMDDLaa=hex(bb cc)**
1270 )))
1271 )))
1272
1273 (((
1274 **Example:**
1275 )))
1276
1277 (((
1278 **AT+CMDDL1=1000** to send the open time to 1000ms
1279 )))
1280
1281 (((
1282
1283 )))
1284
1285 * (((
1286 **Downlink Payload:**
1287 )))
1288
1289 (((
1290 0x AA aa bb cc
1291 )))
1292
1293 (((
1294 Same as: AT+CMDDLaa=hex(bb cc)
1295 )))
1296
1297 (((
1298 **Example:**
1299 )))
1300
1301 (((
1302 **0xAA 01 03 E8**  ~-~-> Same as **AT+CMDDL1=1000 ms**
1303 )))
1304
1305
1306
1307
1308 ==== **Uplink payload mode** ====
1309
1310 (((
1311 Define to use one uplink or multiple uplinks for the sampling.
1312 )))
1313
1314 (((
1315 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1316 )))
1317
1318 * (((
1319 **AT Command:**
1320 )))
1321
1322 (% class="box infomessage" %)
1323 (((
1324 (((
1325 **AT+DATAUP=0**
1326 )))
1327 )))
1328
1329 (% class="box infomessage" %)
1330 (((
1331 (((
1332 **AT+DATAUP=1**
1333 )))
1334 )))
1335
1336 (((
1337
1338 )))
1339
1340 * (((
1341 **Downlink Payload:**
1342 )))
1343
1344 (((
1345 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
1346 )))
1347
1348 (((
1349 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
1350 )))
1351
1352
1353
1354
1355 ==== **Manually trigger an Uplink** ====
1356
1357 Ask device to send an uplink immediately.
1358
1359 * **Downlink Payload:**
1360
1361 **0x08 FF**, RS485-BL will immediately send an uplink.
1362
1363
1364
1365
1366 ==== **Clear RS485 Command** ====
1367
1368 (((
1369 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1370 )))
1371
1372 (((
1373
1374 )))
1375
1376 * (((
1377 **AT Command:**
1378 )))
1379
1380 (((
1381 (% style="color:#037691" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1382 )))
1383
1384 (((
1385 Example screen shot after clear all RS485 commands. 
1386 )))
1387
1388 (((
1389
1390 )))
1391
1392 (((
1393 The uplink screen shot is:
1394 )))
1395
1396 (((
1397 [[image:1654134704555-320.png]]
1398 )))
1399
1400 (((
1401
1402 )))
1403
1404 * (((
1405 **Downlink Payload:**
1406 )))
1407
1408 (((
1409 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1410 )))
1411
1412
1413
1414
1415 ==== **Set Serial Communication Parameters** ====
1416
1417 (((
1418 Set the Rs485 serial communication parameters:
1419 )))
1420
1421 * (((
1422 **AT Command:**
1423 )))
1424
1425 (((
1426 Set Baud Rate:
1427 )))
1428
1429 (% class="box infomessage" %)
1430 (((
1431 (((
1432 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1433 )))
1434 )))
1435
1436 (((
1437 Set UART Parity
1438 )))
1439
1440 (% class="box infomessage" %)
1441 (((
1442 (((
1443 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1444 )))
1445 )))
1446
1447 (((
1448 Set STOPBIT
1449 )))
1450
1451 (% class="box infomessage" %)
1452 (((
1453 (((
1454 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1455 )))
1456 )))
1457
1458 (((
1459
1460 )))
1461
1462 * (((
1463 **Downlink Payload:**
1464 )))
1465
1466 (((
1467 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1468 )))
1469
1470 (((
1471 **Example:**
1472 )))
1473
1474 * (((
1475 A7 01 00 60   same as AT+BAUDR=9600
1476 )))
1477 * (((
1478 A7 01 04 80  same as AT+BAUDR=115200
1479 )))
1480
1481 (((
1482 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1483 )))
1484
1485 (((
1486 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1487 )))
1488
1489
1490
1491
1492 ==== **Control output power duration** ====
1493
1494 (((
1495 User can set the output power duration before each sampling.
1496 )))
1497
1498 * (((
1499 **AT Command:**
1500 )))
1501
1502 (((
1503 **Example:**
1504 )))
1505
1506 (((
1507 **AT+3V3T=1000**  ~/~/ 3V3 output power will open 1s before each sampling.
1508 )))
1509
1510 (((
1511 **AT+5VT=1000**  ~/~/ +5V output power will open 1s before each sampling.
1512 )))
1513
1514 (((
1515
1516 )))
1517
1518 * (((
1519 **LoRaWAN Downlink Command:**
1520 )))
1521
1522 (((
1523 **07 01 aa bb**  Same as AT+5VT=(aa bb)
1524 )))
1525
1526 (((
1527 **07 02 aa bb**  Same as AT+3V3T=(aa bb)
1528 )))
1529
1530
1531
1532 == 3.6 Buttons ==
1533
1534 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:233px" %)
1535 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1536 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1537
1538
1539 == 3.7 +3V3 Output ==
1540
1541 (((
1542 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1543 )))
1544
1545 (((
1546 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1547 )))
1548
1549 (((
1550 The +3V3 output time can be controlled by AT Command.
1551 )))
1552
1553 (((
1554
1555 )))
1556
1557 (((
1558 (% style="color:#037691" %)**AT+3V3T=1000**
1559 )))
1560
1561 (((
1562
1563 )))
1564
1565 (((
1566 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1567 )))
1568
1569 (((
1570 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1571 )))
1572
1573
1574 == 3.8 +5V Output ==
1575
1576 (((
1577 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1578 )))
1579
1580 (((
1581 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1582 )))
1583
1584 (((
1585 The 5V output time can be controlled by AT Command.
1586 )))
1587
1588 (((
1589
1590 )))
1591
1592 (((
1593 (% style="color:#037691" %)**AT+5VT=1000**
1594 )))
1595
1596 (((
1597
1598 )))
1599
1600 (((
1601 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1602 )))
1603
1604 (((
1605 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1606 )))
1607
1608
1609
1610 == 3.9 LEDs ==
1611
1612 (% border="1" style="background-color:#ffffcc; color:green; width:332px" %)
1613 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1614 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1615
1616
1617 == 3.10 Switch Jumper ==
1618
1619 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:400px" %)
1620 |=(% style="width: 123px;" %)**Switch Jumper**|=(% style="width: 277px;" %)**Feature**
1621 |(% style="width:123px" %)**SW1**|(% style="width:277px" %)ISP position: Upgrade firmware via UART
1622 Flash position: Configure device, check running status.
1623 |(% style="width:123px" %)**SW2**|(% style="width:277px" %)5V position: set to compatible with 5v I/O.
1624 3.3v position: set to compatible with 3.3v I/O.,
1625
1626 (((
1627 **+3.3V**: is always ON
1628 )))
1629
1630 (((
1631 **+5V**: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1632 )))
1633
1634
1635 = 4. Case Study =
1636
1637 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1638
1639
1640 = 5. Use AT Command =
1641
1642 == 5.1 Access AT Command ==
1643
1644 (((
1645 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1646 )))
1647
1648 [[image:1654135840598-282.png]]
1649
1650
1651 (((
1652 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1653 )))
1654
1655 [[image:1654136105500-922.png]]
1656
1657
1658 (((
1659 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1660 )))
1661
1662
1663 == 5.2 Common AT Command Sequence ==
1664
1665 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1666
1667 If device has not joined network yet:
1668
1669 (% class="box infomessage" %)
1670 (((
1671 **AT+FDR**
1672 )))
1673
1674 (% class="box infomessage" %)
1675 (((
1676 **AT+NJM=0**
1677 )))
1678
1679 (% class="box infomessage" %)
1680 (((
1681 **ATZ**
1682 )))
1683
1684
1685 (((
1686 If device already joined network:
1687 )))
1688
1689 (% class="box infomessage" %)
1690 (((
1691 **AT+NJM=0**
1692 )))
1693
1694 (% class="box infomessage" %)
1695 (((
1696 **ATZ**
1697 )))
1698
1699
1700 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1701
1702
1703 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1704
1705 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1706
1707 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1708
1709 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%)Set Data Rate
1710
1711 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1712
1713 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1714
1715 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1716
1717 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1718
1719 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1720
1721 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1722
1723
1724 (% style="color:red" %)**Note:**
1725
1726 (((
1727 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1728 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1729 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1730 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1731 )))
1732
1733 [[image:1654136435598-589.png]]
1734
1735
1736 = 6. FAQ =
1737
1738 == 6.1 How to upgrade the image? ==
1739
1740 (((
1741 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1742 )))
1743
1744 * (((
1745 Support new features
1746 )))
1747 * (((
1748 For bug fix
1749 )))
1750 * (((
1751 Change LoRaWAN bands.
1752 )))
1753
1754 (((
1755 Below shows the hardware connection for how to upload an image to RS485-BL:
1756 )))
1757
1758 [[image:1654136646995-976.png]]
1759
1760 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1761
1762 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1763
1764 **Step3: **Open flashloader; choose the correct COM port to update.
1765
1766 [[image:image-20220602102605-1.png]]
1767
1768
1769 [[image:image-20220602102637-2.png]]
1770
1771
1772 [[image:image-20220602102715-3.png]]
1773
1774
1775
1776 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1777
1778 (((
1779 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1780 )))
1781
1782
1783
1784 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1785
1786 (((
1787 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1788 )))
1789
1790
1791
1792 = 7. Trouble Shooting =
1793
1794
1795 == 7.1 Downlink doesn’t work, how to solve it? ==
1796
1797 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1798
1799
1800 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1801
1802 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1803
1804
1805 = 8. Order Info =
1806
1807 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
1808
1809 (% style="color:blue" %)**XXX:**
1810
1811 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1812 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1813 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1814 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1815 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1816 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1817 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1818 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1819 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1820 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1821
1822
1823 = 9. Packing Info =
1824
1825 (((
1826 **Package Includes**:
1827 )))
1828
1829 * (((
1830 RS485-BL x 1
1831 )))
1832 * (((
1833 Stick Antenna for LoRa RF part x 1
1834 )))
1835 * (((
1836 Program cable x 1
1837 )))
1838
1839 (((
1840 **Dimension and weight**:
1841 )))
1842
1843 * (((
1844 Device Size: 13.5 x 7 x 3 cm
1845 )))
1846 * (((
1847 Device Weight: 105g
1848 )))
1849 * (((
1850 Package Size / pcs : 14.5 x 8 x 5 cm
1851 )))
1852 * (((
1853 Weight / pcs : 170g
1854
1855
1856 )))
1857
1858 = 10. Support =
1859
1860 * (((
1861 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1862 )))
1863 * (((
1864 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1865 )))