Version 42.19 by Xiaoling on 2022/06/06 14:25

Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="385" width="385"]]
3
4
5
6
7 **RS485-BL – Waterproof RS485 to LoRaWAN Converter User Manual**
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19 = 1.Introduction =
20
21 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
22
23 (((
24
25 )))
26
27 (((
28 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
29 )))
30
31 (((
32 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
33 )))
34
35 (((
36 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
37 )))
38
39 (((
40 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
41 )))
42
43 (((
44 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
45 )))
46
47 (((
48 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
49 )))
50
51 (((
52 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
53 )))
54
55 [[image:1652953304999-717.png||height="424" width="733"]]
56
57
58
59 == 1.2 Specifications ==
60
61
62 **Hardware System:**
63
64 * STM32L072CZT6 MCU
65 * SX1276/78 Wireless Chip 
66 * Power Consumption (exclude RS485 device):
67 ** Idle: 6uA@3.3v
68 ** 20dB Transmit: 130mA@3.3v
69
70 **Interface for Model:**
71
72 * 1 x RS485 Interface
73 * 1 x TTL Serial , 3.3v or 5v.
74 * 1 x I2C Interface, 3.3v or 5v.
75 * 1 x one wire interface
76 * 1 x Interrupt Interface
77 * 1 x Controllable 5V output, max
78
79 **LoRa Spec:**
80
81 * Frequency Range:
82 ** Band 1 (HF): 862 ~~ 1020 Mhz
83 ** Band 2 (LF): 410 ~~ 528 Mhz
84 * 168 dB maximum link budget.
85 * +20 dBm - 100 mW constant RF output vs.
86 * Programmable bit rate up to 300 kbps.
87 * High sensitivity: down to -148 dBm.
88 * Bullet-proof front end: IIP3 = -12.5 dBm.
89 * Excellent blocking immunity.
90 * Fully integrated synthesizer with a resolution of 61 Hz.
91 * LoRa modulation.
92 * Built-in bit synchronizer for clock recovery.
93 * Preamble detection.
94 * 127 dB Dynamic Range RSSI.
95 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
96
97
98
99 == 1.3 Features ==
100
101 * LoRaWAN Class A & Class C protocol (default Class A)
102 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
103 * AT Commands to change parameters
104 * Remote configure parameters via LoRaWAN Downlink
105 * Firmware upgradable via program port
106 * Support multiply RS485 devices by flexible rules
107 * Support Modbus protocol
108 * Support Interrupt uplink
109
110
111
112 == 1.4 Applications ==
113
114 * Smart Buildings & Home Automation
115 * Logistics and Supply Chain Management
116 * Smart Metering
117 * Smart Agriculture
118 * Smart Cities
119 * Smart Factory
120
121 == 1.5 Firmware Change log ==
122
123 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
124
125
126 == 1.6 Hardware Change log ==
127
128 (((
129
130
131 (((
132 v1.4
133 )))
134 )))
135
136 (((
137 (((
138 ~1. Change Power IC to TPS22916
139 )))
140 )))
141
142 (((
143
144 )))
145
146 (((
147 (((
148 v1.3
149 )))
150 )))
151
152 (((
153 (((
154 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
155 )))
156 )))
157
158 (((
159
160 )))
161
162 (((
163 (((
164 v1.2
165 )))
166 )))
167
168 (((
169 (((
170 Release version ​​​​​
171 )))
172
173
174 )))
175
176 = 2. Pin mapping and Power ON Device =
177
178 (((
179 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
180 )))
181
182 [[image:1652953055962-143.png||height="387" width="728"]]
183
184
185 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
186
187
188 = 3. Operation Mode =
189
190 == 3.1 How it works? ==
191
192 (((
193 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
194
195
196 )))
197
198 == 3.2 Example to join LoRaWAN network ==
199
200 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
201
202 [[image:1652953414711-647.png||height="337" width="723"]]
203
204 (((
205 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
206 )))
207
208 (((
209 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
210 )))
211
212 (((
213 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
214 )))
215
216 (((
217 Each RS485-BL is shipped with a sticker with unique device EUI:
218 )))
219
220 [[image:1652953462722-299.png]]
221
222 (((
223 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
224 )))
225
226 (((
227 Add APP EUI in the application.
228 )))
229
230
231 [[image:image-20220519174512-1.png]]
232
233 [[image:image-20220519174512-2.png||height="328" width="731"]]
234
235 [[image:image-20220519174512-3.png||height="556" width="724"]]
236
237 [[image:image-20220519174512-4.png]]
238
239 You can also choose to create the device manually.
240
241 [[image:1652953542269-423.png||height="710" width="723"]]
242
243 Add APP KEY and DEV EUI
244
245 [[image:1652953553383-907.png||height="514" width="724"]]
246
247
248 (((
249 **Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
250 )))
251
252 [[image:1652953568895-172.png||height="232" width="724"]]
253
254
255 == 3.3 Configure Commands to read data ==
256
257 (((
258 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
259
260
261 )))
262
263 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
264
265 (((
266 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
267 )))
268
269 (((
270 **~1. RS485-MODBUS mode:**
271 )))
272
273 (((
274 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
275 )))
276
277 (((
278 **2. TTL mode:**
279 )))
280
281 (((
282 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
283 )))
284
285 (((
286 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
287 )))
288
289 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 |=(% style="width: 80px;" %)(((
291 (((
292 **AT Commands**
293 )))
294 )))|=(% style="width: 210px;" %)(((
295 (((
296 **Description**
297 )))
298 )))|=(% style="width: 210px;" %)(((
299 (((
300 **Example**
301 )))
302 )))
303 |(% style="width:80px" %)(((
304 (((
305 AT+BAUDR
306 )))
307 )))|(% style="width:210px" %)(((
308 (((
309 Set the baud rate (for RS485 connection). Default Value is: 9600.
310 )))
311 )))|(% style="width:210px" %)(((
312 (((
313 (((
314 AT+BAUDR=9600
315 )))
316 )))
317
318 (((
319 (((
320 Options: (1200,2400,4800,14400,19200,115200)
321 )))
322 )))
323 )))
324 |(% style="width:80px" %)(((
325 (((
326 AT+PARITY
327 )))
328 )))|(% style="width:210px" %)(((
329 (((
330 (((
331 Set UART parity (for RS485 connection)
332 )))
333 )))
334
335 (((
336 (((
337 Default Value is: no parity.
338 )))
339 )))
340 )))|(% style="width:210px" %)(((
341 (((
342 (((
343 AT+PARITY=0
344 )))
345 )))
346
347 (((
348 (((
349 Option: 0: no parity, 1: odd parity, 2: even parity
350 )))
351 )))
352 )))
353 |(% style="width:80px" %)(((
354 (((
355 AT+STOPBIT
356 )))
357 )))|(% style="width:210px" %)(((
358 (((
359 (((
360 Set serial stopbit (for RS485 connection)
361 )))
362 )))
363
364 (((
365 (((
366 Default Value is: 1bit.
367 )))
368 )))
369 )))|(% style="width:210px" %)(((
370 (((
371 (((
372 AT+STOPBIT=0 for 1bit
373 )))
374 )))
375
376 (((
377 (((
378 AT+STOPBIT=1 for 1.5 bit
379 )))
380 )))
381
382 (((
383 (((
384 AT+STOPBIT=2 for 2 bits
385 )))
386 )))
387 )))
388
389 === 3.3.2 Configure sensors ===
390
391 (((
392 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
393 )))
394
395 (((
396 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
397 )))
398
399 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
400 |=(% style="width: 80px;" %)**AT Commands**|=(% style="width: 210px;" %)**Description**|=(% style="width: 210px;" %)**Example**
401 |AT+CFGDEV|(% style="width:80px" %)(((
402 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
403
404 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
405
406 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
407 )))|(% style="width:210px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
408
409 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
410
411
412
413 === 3.3.3 Configure read commands for each sampling ===
414
415 (((
416 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
417 )))
418
419 (((
420 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
421 )))
422
423 (((
424 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
425 )))
426
427 (((
428 This section describes how to achieve above goals.
429 )))
430
431 (((
432 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
433 )))
434
435 (((
436 **Command from RS485-BL to Sensor:**
437 )))
438
439 (((
440 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
441 )))
442
443 (((
444 **Handle return from sensors to RS485-BL**:
445 )))
446
447 (((
448 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
449 )))
450
451 * (((
452 **AT+DATACUT**
453 )))
454
455 (((
456 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
457 )))
458
459 * (((
460 **AT+SEARCH**
461 )))
462
463 (((
464 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
465 )))
466
467 (((
468 **Define wait timeout:**
469 )))
470
471 (((
472 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
473 )))
474
475 (((
476 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
477 )))
478
479 (((
480 **Examples:**
481 )))
482
483 (((
484 Below are examples for the how above AT Commands works.
485 )))
486
487 (((
488 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
489 )))
490
491 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
492 |(% style="width:498px" %)(((
493 (((
494 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
495 )))
496
497 (((
498 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
499 )))
500
501 (((
502 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
503 )))
504 )))
505
506 (((
507 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
508 )))
509
510 (((
511 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
512 )))
513
514 (((
515
516 )))
517
518 (((
519 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
520 )))
521
522 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
523 |(% style="width:577px" %)(((
524 (((
525 **AT+SEARCHx=aa,xx xx xx xx xx**
526 )))
527
528 * (((
529 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
530 )))
531 * (((
532 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
533 )))
534 )))
535
536 (((
537 **Examples:**
538 )))
539
540 (((
541 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
542 )))
543
544 (((
545 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
546 )))
547
548 (((
549 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
550 )))
551
552 (((
553 [[image:1653271044481-711.png]]
554 )))
555
556 (((
557 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
558 )))
559
560 (((
561 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
562 )))
563
564 (((
565 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
566 )))
567
568 (((
569 [[image:1653271276735-972.png]]
570 )))
571
572 (((
573 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
574 )))
575
576 (% style="background-color:#4f81bd; color:white; width:510px" %)
577 |(% style="width:726px" %)(((
578 (((
579 **AT+DATACUTx=a,b,c**
580 )))
581
582 * (((
583 **a: length for the return of AT+COMMAND**
584 )))
585 * (((
586 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
587 )))
588 * (((
589 **c: define the position for valid value.  **
590 )))
591 )))
592
593 (((
594 **Examples:**
595 )))
596
597 * (((
598 Grab bytes:
599 )))
600
601 (((
602 [[image:1653271581490-837.png||height="313" width="722"]]
603 )))
604
605 (((
606
607 )))
608
609 * (((
610 Grab a section.
611 )))
612
613 (((
614 [[image:1653271648378-342.png||height="326" width="720"]]
615 )))
616
617 (((
618
619 )))
620
621 * (((
622 Grab different sections.
623 )))
624
625 (((
626 [[image:1653271657255-576.png||height="305" width="730"]]
627 )))
628
629 (((
630 (((
631 (% style="color:red" %)**Note:**
632 )))
633 )))
634
635 (((
636 (((
637 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
638 )))
639 )))
640
641 (((
642 (((
643 **Example:**
644 )))
645 )))
646
647 (((
648 (((
649 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
650 )))
651 )))
652
653 (((
654 (((
655 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
656 )))
657 )))
658
659 (((
660 (((
661 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
662 )))
663 )))
664
665 (((
666 (((
667 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
668 )))
669 )))
670
671 (((
672 (((
673 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
674 )))
675 )))
676
677 (((
678 (((
679 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
680 )))
681 )))
682
683 (((
684 [[image:1653271763403-806.png]]
685 )))
686
687
688 === 3.3.4 Compose the uplink payload ===
689
690 (((
691 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
692
693
694 )))
695
696 (((
697 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
698
699
700 )))
701
702 (((
703 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
704 )))
705
706 (((
707 Final Payload is
708 )))
709
710 (((
711 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
712 )))
713
714 (((
715 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
716 )))
717
718 [[image:1653272787040-634.png||height="515" width="719"]]
719
720
721
722 (((
723 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
724
725
726 )))
727
728 (((
729 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
730 )))
731
732 (((
733 Final Payload is
734 )))
735
736 (((
737 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
738 )))
739
740 1. (((
741 Battery Info (2 bytes): Battery voltage
742 )))
743 1. (((
744 PAYVER (1 byte): Defined by AT+PAYVER
745 )))
746 1. (((
747 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
748 )))
749 1. (((
750 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
751 )))
752 1. (((
753 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
754 )))
755
756 [[image:1653272817147-600.png||height="437" width="717"]]
757
758 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
759
760
761 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
762
763 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
764
765 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
766
767
768 Below are the uplink payloads:
769
770 [[image:1653272901032-107.png]]
771
772
773 (% style="color:red" %)Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
774
775 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
776
777 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
778
779 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
780
781 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
782
783
784
785 === 3.3.5 Uplink on demand ===
786
787 (((
788 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
789 )))
790
791 (((
792 Downlink control command:
793 )))
794
795 (((
796 **0x08 command**: Poll an uplink with current command set in RS485-BL.
797 )))
798
799 (((
800 **0xA8 command**: Send a command to RS485-BL and uplink the output from sensors.
801
802
803 )))
804
805 === 3.3.6 Uplink on Interrupt ===
806
807 Put the interrupt sensor between 3.3v_out and GPIO ext.
808
809 [[image:1653273818896-432.png]]
810
811
812 (((
813 AT+INTMOD=0  Disable Interrupt
814 )))
815
816 (((
817 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
818 )))
819
820 (((
821 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
822 )))
823
824 (((
825 AT+INTMOD=3  Interrupt trigger by rising edge.
826
827
828 )))
829
830 == 3.4 Uplink Payload ==
831
832 [[image:image-20220606105412-1.png]]
833
834 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
835
836 (((
837 {{{function Decoder(bytes, port) {}}}
838 )))
839
840 (((
841 {{{//Payload Formats of RS485-BL Deceive}}}
842 )))
843
844 (((
845 {{{return {}}}
846 )))
847
848 (((
849 {{{ //Battery,units:V}}}
850 )))
851
852 (((
853 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
854 )))
855
856 (((
857 {{{ //GPIO_EXTI }}}
858 )))
859
860 (((
861 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
862 )))
863
864 (((
865 {{{ //payload of version}}}
866 )))
867
868 (((
869 {{{ Pay_ver:bytes[2],}}}
870 )))
871
872 (((
873 {{{ }; }}}
874 )))
875
876 (((
877 }
878
879
880 )))
881
882 (((
883 TTN V3 uplink screen shot.
884 )))
885
886 [[image:1653274001211-372.png||height="192" width="732"]]
887
888
889 == 3.5 Configure RS485-BL via AT or Downlink ==
890
891 (((
892 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
893 )))
894
895 (((
896 There are two kinds of Commands:
897 )))
898
899 * (((
900 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
901 )))
902
903 * (((
904 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
905 )))
906
907
908 === 3.5.1 Common Commands: ===
909
910 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
911
912
913 === 3.5.2 Sensor related commands: ===
914
915
916
917 ==== **Choose Device Type (RS485 or TTL)** ====
918
919 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
920
921 * **AT Command**
922
923 (% class="box infomessage" %)
924 (((
925 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
926 )))
927
928 (% class="box infomessage" %)
929 (((
930 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
931 )))
932
933
934 * **Downlink Payload**
935
936 **0A aa**  ~-~->  same as AT+MOD=aa
937
938
939
940
941 ==== **RS485 Debug Command (AT+CFGDEV)** ====
942
943 (((
944 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
945 )))
946
947 * (((
948 **AT Command**
949 )))
950
951 (% class="box infomessage" %)
952 (((
953 (((
954 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
955 )))
956 )))
957
958 (((
959 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
960 )))
961
962 (((
963
964 )))
965
966 * (((
967 **Downlink Payload**
968 )))
969
970 (((
971 Format: A8 MM NN XX XX XX XX YY
972 )))
973
974 (((
975 Where:
976 )))
977
978 * (((
979 MM: 1: add CRC-16/MODBUS ; 0: no CRC
980 )))
981 * (((
982 NN: The length of RS485 command
983 )))
984 * (((
985 XX XX XX XX: RS485 command total NN bytes
986 )))
987 * (((
988 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
989 )))
990
991 (((
992 **Example 1:**
993 )))
994
995 (((
996 To connect a Modbus Alarm with below commands.
997 )))
998
999 * (((
1000 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
1001 )))
1002
1003 * (((
1004 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1005 )))
1006
1007 (((
1008 So if user want to use downlink command to control to RS485 Alarm, he can use:
1009 )))
1010
1011 (((
1012 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1013 )))
1014
1015 (((
1016 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1017 )))
1018
1019 (((
1020 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
1021 )))
1022
1023 (((
1024
1025 )))
1026
1027 (((
1028 **Example 2:**
1029 )))
1030
1031 (((
1032 Check TTL Sensor return:
1033 )))
1034
1035 (((
1036 [[image:1654132684752-193.png]]
1037 )))
1038
1039
1040
1041
1042
1043 ==== **Set Payload version** ====
1044
1045 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1046
1047 * **AT Command:**
1048
1049 (% class="box infomessage" %)
1050 (((
1051 **AT+PAYVER: Set PAYVER field = 1**
1052 )))
1053
1054
1055 * **Downlink Payload:**
1056
1057 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
1058
1059 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
1060
1061
1062
1063
1064 ==== **Set RS485 Sampling Commands** ====
1065
1066 (((
1067 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1068 )))
1069
1070 (((
1071 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1072 )))
1073
1074 (((
1075
1076 )))
1077
1078 * (((
1079 **AT Command:**
1080 )))
1081
1082 (% class="box infomessage" %)
1083 (((
1084 (((
1085 **AT+COMMANDx: Configure RS485 read command to sensor.**
1086 )))
1087 )))
1088
1089 (% class="box infomessage" %)
1090 (((
1091 (((
1092 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
1093 )))
1094 )))
1095
1096 (% class="box infomessage" %)
1097 (((
1098 (((
1099 **AT+SEARCHx: Configure search command**
1100 )))
1101 )))
1102
1103 (((
1104
1105 )))
1106
1107 * (((
1108 **Downlink Payload:**
1109 )))
1110
1111 (((
1112 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1113 )))
1114
1115 (((
1116 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
1117 )))
1118
1119 (((
1120 Format: AF MM NN LL XX XX XX XX YY
1121 )))
1122
1123 (((
1124 Where:
1125 )))
1126
1127 * (((
1128 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1129 )))
1130 * (((
1131 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1132 )))
1133 * (((
1134 LL:  The length of AT+COMMAND or AT+DATACUT command
1135 )))
1136 * (((
1137 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1138 )))
1139 * (((
1140 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1141 )))
1142
1143 (((
1144 **Example:**
1145 )))
1146
1147 (((
1148 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1149 )))
1150
1151 (((
1152 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1153 )))
1154
1155 (((
1156 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1157 )))
1158
1159 (((
1160
1161 )))
1162
1163 (((
1164 **0xAB** downlink command can be used for set AT+SEARCHx
1165 )))
1166
1167 (((
1168 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1169 )))
1170
1171 * (((
1172 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1173 )))
1174 * (((
1175 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1176 )))
1177
1178 (((
1179 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1180 )))
1181
1182
1183
1184
1185 ==== **Fast command to handle MODBUS device** ====
1186
1187 (((
1188 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1189 )))
1190
1191 (((
1192 This command is valid since v1.3 firmware version
1193 )))
1194
1195 (((
1196
1197 )))
1198
1199 (((
1200 **AT+MBFUN has only two value:**
1201 )))
1202
1203 * (((
1204 **AT+MBFUN=1**: Enable Modbus reading. And get response base on the MODBUS return
1205 )))
1206
1207 (((
1208 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1209 )))
1210
1211 * (((
1212 **AT+MBFUN=0**: Disable Modbus fast reading.
1213 )))
1214
1215 (((
1216 **Example:**
1217 )))
1218
1219 * (((
1220 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1221 )))
1222 * (((
1223 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1224 )))
1225 * (((
1226 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1227 )))
1228
1229 [[image:1654133913295-597.png]]
1230
1231
1232 [[image:1654133954153-643.png]]
1233
1234
1235 * (((
1236 **Downlink Commands:**
1237 )))
1238
1239 (((
1240 **A9 aa** ~-~-> Same as AT+MBFUN=aa
1241 )))
1242
1243
1244
1245
1246 ==== **RS485 command timeout** ====
1247
1248 (((
1249 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1250 )))
1251
1252 (((
1253 Default value: 0, range:  0 ~~ 5 seconds
1254 )))
1255
1256 (((
1257
1258 )))
1259
1260 * (((
1261 **AT Command:**
1262 )))
1263
1264 (% class="box infomessage" %)
1265 (((
1266 (((
1267 **AT+CMDDLaa=hex(bb cc)**
1268 )))
1269 )))
1270
1271 (((
1272 **Example:**
1273 )))
1274
1275 (((
1276 **AT+CMDDL1=1000** to send the open time to 1000ms
1277 )))
1278
1279 (((
1280
1281 )))
1282
1283 * (((
1284 **Downlink Payload:**
1285 )))
1286
1287 (((
1288 0x AA aa bb cc
1289 )))
1290
1291 (((
1292 Same as: AT+CMDDLaa=hex(bb cc)
1293 )))
1294
1295 (((
1296 **Example:**
1297 )))
1298
1299 (((
1300 **0xAA 01 03 E8**  ~-~-> Same as **AT+CMDDL1=1000 ms**
1301 )))
1302
1303
1304
1305
1306 ==== **Uplink payload mode** ====
1307
1308 (((
1309 Define to use one uplink or multiple uplinks for the sampling.
1310 )))
1311
1312 (((
1313 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1314 )))
1315
1316 * (((
1317 **AT Command:**
1318 )))
1319
1320 (% class="box infomessage" %)
1321 (((
1322 (((
1323 **AT+DATAUP=0**
1324 )))
1325 )))
1326
1327 (% class="box infomessage" %)
1328 (((
1329 (((
1330 **AT+DATAUP=1**
1331 )))
1332 )))
1333
1334 (((
1335
1336 )))
1337
1338 * (((
1339 **Downlink Payload:**
1340 )))
1341
1342 (((
1343 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
1344 )))
1345
1346 (((
1347 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
1348 )))
1349
1350
1351
1352
1353 ==== **Manually trigger an Uplink** ====
1354
1355 Ask device to send an uplink immediately.
1356
1357 * **Downlink Payload:**
1358
1359 **0x08 FF**, RS485-BL will immediately send an uplink.
1360
1361
1362
1363
1364 ==== **Clear RS485 Command** ====
1365
1366 (((
1367 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1368 )))
1369
1370 (((
1371
1372 )))
1373
1374 * (((
1375 **AT Command:**
1376 )))
1377
1378 (((
1379 (% style="color:#037691" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1380 )))
1381
1382 (((
1383 Example screen shot after clear all RS485 commands. 
1384 )))
1385
1386 (((
1387
1388 )))
1389
1390 (((
1391 The uplink screen shot is:
1392 )))
1393
1394 (((
1395 [[image:1654134704555-320.png]]
1396 )))
1397
1398 (((
1399
1400 )))
1401
1402 * (((
1403 **Downlink Payload:**
1404 )))
1405
1406 (((
1407 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1408 )))
1409
1410
1411
1412
1413 ==== **Set Serial Communication Parameters** ====
1414
1415 (((
1416 Set the Rs485 serial communication parameters:
1417 )))
1418
1419 * (((
1420 **AT Command:**
1421 )))
1422
1423 (((
1424 Set Baud Rate:
1425 )))
1426
1427 (% class="box infomessage" %)
1428 (((
1429 (((
1430 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1431 )))
1432 )))
1433
1434 (((
1435 Set UART Parity
1436 )))
1437
1438 (% class="box infomessage" %)
1439 (((
1440 (((
1441 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1442 )))
1443 )))
1444
1445 (((
1446 Set STOPBIT
1447 )))
1448
1449 (% class="box infomessage" %)
1450 (((
1451 (((
1452 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1453 )))
1454 )))
1455
1456 (((
1457
1458 )))
1459
1460 * (((
1461 **Downlink Payload:**
1462 )))
1463
1464 (((
1465 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1466 )))
1467
1468 (((
1469 **Example:**
1470 )))
1471
1472 * (((
1473 A7 01 00 60   same as AT+BAUDR=9600
1474 )))
1475 * (((
1476 A7 01 04 80  same as AT+BAUDR=115200
1477 )))
1478
1479 (((
1480 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1481 )))
1482
1483 (((
1484 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1485 )))
1486
1487
1488
1489
1490 ==== **Control output power duration** ====
1491
1492 (((
1493 User can set the output power duration before each sampling.
1494 )))
1495
1496 * (((
1497 **AT Command:**
1498 )))
1499
1500 (((
1501 **Example:**
1502 )))
1503
1504 (((
1505 **AT+3V3T=1000**  ~/~/ 3V3 output power will open 1s before each sampling.
1506 )))
1507
1508 (((
1509 **AT+5VT=1000**  ~/~/ +5V output power will open 1s before each sampling.
1510 )))
1511
1512 (((
1513
1514 )))
1515
1516 * (((
1517 **LoRaWAN Downlink Command:**
1518 )))
1519
1520 (((
1521 **07 01 aa bb**  Same as AT+5VT=(aa bb)
1522 )))
1523
1524 (((
1525 **07 02 aa bb**  Same as AT+3V3T=(aa bb)
1526 )))
1527
1528
1529
1530 == 3.6 Buttons ==
1531
1532 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:233px" %)
1533 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1534 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1535
1536
1537 == 3.7 +3V3 Output ==
1538
1539 (((
1540 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1541 )))
1542
1543 (((
1544 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1545 )))
1546
1547 (((
1548 The +3V3 output time can be controlled by AT Command.
1549 )))
1550
1551 (((
1552
1553 )))
1554
1555 (((
1556 (% style="color:#037691" %)**AT+3V3T=1000**
1557 )))
1558
1559 (((
1560
1561 )))
1562
1563 (((
1564 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1565 )))
1566
1567 (((
1568 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1569 )))
1570
1571
1572 == 3.8 +5V Output ==
1573
1574 (((
1575 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1576 )))
1577
1578 (((
1579 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1580 )))
1581
1582 (((
1583 The 5V output time can be controlled by AT Command.
1584 )))
1585
1586 (((
1587
1588 )))
1589
1590 (((
1591 (% style="color:#037691" %)**AT+5VT=1000**
1592 )))
1593
1594 (((
1595
1596 )))
1597
1598 (((
1599 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1600 )))
1601
1602 (((
1603 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1604 )))
1605
1606
1607
1608 == 3.9 LEDs ==
1609
1610 (% border="1" style="background-color:#ffffcc; color:green; width:332px" %)
1611 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1612 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1613
1614
1615 == 3.10 Switch Jumper ==
1616
1617 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:400px" %)
1618 |=(% style="width: 123px;" %)**Switch Jumper**|=(% style="width: 277px;" %)**Feature**
1619 |(% style="width:123px" %)**SW1**|(% style="width:277px" %)ISP position: Upgrade firmware via UART
1620 Flash position: Configure device, check running status.
1621 |(% style="width:123px" %)**SW2**|(% style="width:277px" %)5V position: set to compatible with 5v I/O.
1622 3.3v position: set to compatible with 3.3v I/O.,
1623
1624 (((
1625 **+3.3V**: is always ON
1626 )))
1627
1628 (((
1629 **+5V**: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1630 )))
1631
1632
1633 = 4. Case Study =
1634
1635 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1636
1637
1638 = 5. Use AT Command =
1639
1640 == 5.1 Access AT Command ==
1641
1642 (((
1643 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1644 )))
1645
1646 [[image:1654135840598-282.png]]
1647
1648
1649 (((
1650 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1651 )))
1652
1653 [[image:1654136105500-922.png]]
1654
1655
1656 (((
1657 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1658 )))
1659
1660
1661 == 5.2 Common AT Command Sequence ==
1662
1663 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1664
1665 If device has not joined network yet:
1666
1667 (% class="box infomessage" %)
1668 (((
1669 **AT+FDR**
1670 )))
1671
1672 (% class="box infomessage" %)
1673 (((
1674 **AT+NJM=0**
1675 )))
1676
1677 (% class="box infomessage" %)
1678 (((
1679 **ATZ**
1680 )))
1681
1682
1683 (((
1684 If device already joined network:
1685 )))
1686
1687 (% class="box infomessage" %)
1688 (((
1689 **AT+NJM=0**
1690 )))
1691
1692 (% class="box infomessage" %)
1693 (((
1694 **ATZ**
1695 )))
1696
1697
1698 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1699
1700
1701 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1702
1703 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1704
1705 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1706
1707 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%)Set Data Rate
1708
1709 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1710
1711 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1712
1713 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1714
1715 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1716
1717 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1718
1719 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1720
1721
1722 (% style="color:red" %)**Note:**
1723
1724 (((
1725 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1726 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1727 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1728 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1729 )))
1730
1731 [[image:1654136435598-589.png]]
1732
1733
1734 = 6. FAQ =
1735
1736 == 6.1 How to upgrade the image? ==
1737
1738 (((
1739 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1740 )))
1741
1742 * (((
1743 Support new features
1744 )))
1745 * (((
1746 For bug fix
1747 )))
1748 * (((
1749 Change LoRaWAN bands.
1750 )))
1751
1752 (((
1753 Below shows the hardware connection for how to upload an image to RS485-BL:
1754 )))
1755
1756 [[image:1654136646995-976.png]]
1757
1758 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1759
1760 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1761
1762 **Step3: **Open flashloader; choose the correct COM port to update.
1763
1764 [[image:image-20220602102605-1.png]]
1765
1766
1767 [[image:image-20220602102637-2.png]]
1768
1769
1770 [[image:image-20220602102715-3.png]]
1771
1772
1773
1774 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1775
1776 (((
1777 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1778 )))
1779
1780
1781
1782 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1783
1784 (((
1785 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1786 )))
1787
1788
1789
1790 = 7. Trouble Shooting =
1791
1792
1793 == 7.1 Downlink doesn’t work, how to solve it? ==
1794
1795 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1796
1797
1798 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1799
1800 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1801
1802
1803 = 8. Order Info =
1804
1805 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
1806
1807 (% style="color:blue" %)**XXX:**
1808
1809 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1810 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1811 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1812 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1813 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1814 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1815 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1816 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1817 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1818 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1819
1820
1821 = 9. Packing Info =
1822
1823 (((
1824 **Package Includes**:
1825 )))
1826
1827 * (((
1828 RS485-BL x 1
1829 )))
1830 * (((
1831 Stick Antenna for LoRa RF part x 1
1832 )))
1833 * (((
1834 Program cable x 1
1835 )))
1836
1837 (((
1838 **Dimension and weight**:
1839 )))
1840
1841 * (((
1842 Device Size: 13.5 x 7 x 3 cm
1843 )))
1844 * (((
1845 Device Weight: 105g
1846 )))
1847 * (((
1848 Package Size / pcs : 14.5 x 8 x 5 cm
1849 )))
1850 * (((
1851 Weight / pcs : 170g
1852
1853
1854 )))
1855
1856 = 10. Support =
1857
1858 * (((
1859 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1860 )))
1861 * (((
1862 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1863 )))