Version 42.18 by Xiaoling on 2022/06/06 14:25

Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="385" width="385"]]
3
4
5
6
7 **RS485-BL – Waterproof RS485 to LoRaWAN Converter User Manual**
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19 = 1.Introduction =
20
21 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
22
23 (((
24
25 )))
26
27 (((
28 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
29 )))
30
31 (((
32 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
33 )))
34
35 (((
36 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
37 )))
38
39 (((
40 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
41 )))
42
43 (((
44 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
45 )))
46
47 (((
48 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
49 )))
50
51 (((
52 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
53 )))
54
55 [[image:1652953304999-717.png||height="424" width="733"]]
56
57
58
59 == 1.2 Specifications ==
60
61
62 **Hardware System:**
63
64 * STM32L072CZT6 MCU
65 * SX1276/78 Wireless Chip 
66 * Power Consumption (exclude RS485 device):
67 ** Idle: 6uA@3.3v
68 ** 20dB Transmit: 130mA@3.3v
69
70 **Interface for Model:**
71
72 * 1 x RS485 Interface
73 * 1 x TTL Serial , 3.3v or 5v.
74 * 1 x I2C Interface, 3.3v or 5v.
75 * 1 x one wire interface
76 * 1 x Interrupt Interface
77 * 1 x Controllable 5V output, max
78
79 **LoRa Spec:**
80
81 * Frequency Range:
82 ** Band 1 (HF): 862 ~~ 1020 Mhz
83 ** Band 2 (LF): 410 ~~ 528 Mhz
84 * 168 dB maximum link budget.
85 * +20 dBm - 100 mW constant RF output vs.
86 * Programmable bit rate up to 300 kbps.
87 * High sensitivity: down to -148 dBm.
88 * Bullet-proof front end: IIP3 = -12.5 dBm.
89 * Excellent blocking immunity.
90 * Fully integrated synthesizer with a resolution of 61 Hz.
91 * LoRa modulation.
92 * Built-in bit synchronizer for clock recovery.
93 * Preamble detection.
94 * 127 dB Dynamic Range RSSI.
95 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
96
97
98
99 == 1.3 Features ==
100
101 * LoRaWAN Class A & Class C protocol (default Class A)
102 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
103 * AT Commands to change parameters
104 * Remote configure parameters via LoRaWAN Downlink
105 * Firmware upgradable via program port
106 * Support multiply RS485 devices by flexible rules
107 * Support Modbus protocol
108 * Support Interrupt uplink
109
110 == 1.4 Applications ==
111
112 * Smart Buildings & Home Automation
113 * Logistics and Supply Chain Management
114 * Smart Metering
115 * Smart Agriculture
116 * Smart Cities
117 * Smart Factory
118
119 == 1.5 Firmware Change log ==
120
121 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
122
123
124 == 1.6 Hardware Change log ==
125
126 (((
127
128
129 (((
130 v1.4
131 )))
132 )))
133
134 (((
135 (((
136 ~1. Change Power IC to TPS22916
137 )))
138 )))
139
140 (((
141
142 )))
143
144 (((
145 (((
146 v1.3
147 )))
148 )))
149
150 (((
151 (((
152 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
153 )))
154 )))
155
156 (((
157
158 )))
159
160 (((
161 (((
162 v1.2
163 )))
164 )))
165
166 (((
167 (((
168 Release version ​​​​​
169 )))
170
171
172 )))
173
174 = 2. Pin mapping and Power ON Device =
175
176 (((
177 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
178 )))
179
180 [[image:1652953055962-143.png||height="387" width="728"]]
181
182
183 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
184
185
186 = 3. Operation Mode =
187
188 == 3.1 How it works? ==
189
190 (((
191 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
192
193
194 )))
195
196 == 3.2 Example to join LoRaWAN network ==
197
198 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
199
200 [[image:1652953414711-647.png||height="337" width="723"]]
201
202 (((
203 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
204 )))
205
206 (((
207 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
208 )))
209
210 (((
211 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
212 )))
213
214 (((
215 Each RS485-BL is shipped with a sticker with unique device EUI:
216 )))
217
218 [[image:1652953462722-299.png]]
219
220 (((
221 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
222 )))
223
224 (((
225 Add APP EUI in the application.
226 )))
227
228
229 [[image:image-20220519174512-1.png]]
230
231 [[image:image-20220519174512-2.png||height="328" width="731"]]
232
233 [[image:image-20220519174512-3.png||height="556" width="724"]]
234
235 [[image:image-20220519174512-4.png]]
236
237 You can also choose to create the device manually.
238
239 [[image:1652953542269-423.png||height="710" width="723"]]
240
241 Add APP KEY and DEV EUI
242
243 [[image:1652953553383-907.png||height="514" width="724"]]
244
245
246 (((
247 **Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
248 )))
249
250 [[image:1652953568895-172.png||height="232" width="724"]]
251
252
253 == 3.3 Configure Commands to read data ==
254
255 (((
256 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
257
258
259 )))
260
261 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
262
263 (((
264 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
265 )))
266
267 (((
268 **~1. RS485-MODBUS mode:**
269 )))
270
271 (((
272 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
273 )))
274
275 (((
276 **2. TTL mode:**
277 )))
278
279 (((
280 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
281 )))
282
283 (((
284 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
285 )))
286
287 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
288 |=(% style="width: 80px;" %)(((
289 (((
290 **AT Commands**
291 )))
292 )))|=(% style="width: 210px;" %)(((
293 (((
294 **Description**
295 )))
296 )))|=(% style="width: 210px;" %)(((
297 (((
298 **Example**
299 )))
300 )))
301 |(% style="width:80px" %)(((
302 (((
303 AT+BAUDR
304 )))
305 )))|(% style="width:210px" %)(((
306 (((
307 Set the baud rate (for RS485 connection). Default Value is: 9600.
308 )))
309 )))|(% style="width:210px" %)(((
310 (((
311 (((
312 AT+BAUDR=9600
313 )))
314 )))
315
316 (((
317 (((
318 Options: (1200,2400,4800,14400,19200,115200)
319 )))
320 )))
321 )))
322 |(% style="width:80px" %)(((
323 (((
324 AT+PARITY
325 )))
326 )))|(% style="width:210px" %)(((
327 (((
328 (((
329 Set UART parity (for RS485 connection)
330 )))
331 )))
332
333 (((
334 (((
335 Default Value is: no parity.
336 )))
337 )))
338 )))|(% style="width:210px" %)(((
339 (((
340 (((
341 AT+PARITY=0
342 )))
343 )))
344
345 (((
346 (((
347 Option: 0: no parity, 1: odd parity, 2: even parity
348 )))
349 )))
350 )))
351 |(% style="width:80px" %)(((
352 (((
353 AT+STOPBIT
354 )))
355 )))|(% style="width:210px" %)(((
356 (((
357 (((
358 Set serial stopbit (for RS485 connection)
359 )))
360 )))
361
362 (((
363 (((
364 Default Value is: 1bit.
365 )))
366 )))
367 )))|(% style="width:210px" %)(((
368 (((
369 (((
370 AT+STOPBIT=0 for 1bit
371 )))
372 )))
373
374 (((
375 (((
376 AT+STOPBIT=1 for 1.5 bit
377 )))
378 )))
379
380 (((
381 (((
382 AT+STOPBIT=2 for 2 bits
383 )))
384 )))
385 )))
386
387 === 3.3.2 Configure sensors ===
388
389 (((
390 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
391 )))
392
393 (((
394 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
395 )))
396
397 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
398 |=(% style="width: 80px;" %)**AT Commands**|=(% style="width: 210px;" %)**Description**|=(% style="width: 210px;" %)**Example**
399 |AT+CFGDEV|(% style="width:80px" %)(((
400 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
401
402 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
403
404 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
405 )))|(% style="width:210px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
406
407 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
408
409
410
411 === 3.3.3 Configure read commands for each sampling ===
412
413 (((
414 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
415 )))
416
417 (((
418 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
419 )))
420
421 (((
422 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
423 )))
424
425 (((
426 This section describes how to achieve above goals.
427 )))
428
429 (((
430 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
431 )))
432
433 (((
434 **Command from RS485-BL to Sensor:**
435 )))
436
437 (((
438 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
439 )))
440
441 (((
442 **Handle return from sensors to RS485-BL**:
443 )))
444
445 (((
446 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
447 )))
448
449 * (((
450 **AT+DATACUT**
451 )))
452
453 (((
454 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
455 )))
456
457 * (((
458 **AT+SEARCH**
459 )))
460
461 (((
462 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
463 )))
464
465 (((
466 **Define wait timeout:**
467 )))
468
469 (((
470 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
471 )))
472
473 (((
474 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
475 )))
476
477 (((
478 **Examples:**
479 )))
480
481 (((
482 Below are examples for the how above AT Commands works.
483 )))
484
485 (((
486 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
487 )))
488
489 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
490 |(% style="width:498px" %)(((
491 (((
492 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
493 )))
494
495 (((
496 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
497 )))
498
499 (((
500 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
501 )))
502 )))
503
504 (((
505 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
506 )))
507
508 (((
509 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
510 )))
511
512 (((
513
514 )))
515
516 (((
517 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
518 )))
519
520 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
521 |(% style="width:577px" %)(((
522 (((
523 **AT+SEARCHx=aa,xx xx xx xx xx**
524 )))
525
526 * (((
527 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
528 )))
529 * (((
530 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
531 )))
532 )))
533
534 (((
535 **Examples:**
536 )))
537
538 (((
539 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
540 )))
541
542 (((
543 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
544 )))
545
546 (((
547 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
548 )))
549
550 (((
551 [[image:1653271044481-711.png]]
552 )))
553
554 (((
555 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
556 )))
557
558 (((
559 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
560 )))
561
562 (((
563 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
564 )))
565
566 (((
567 [[image:1653271276735-972.png]]
568 )))
569
570 (((
571 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
572 )))
573
574 (% style="background-color:#4f81bd; color:white; width:510px" %)
575 |(% style="width:726px" %)(((
576 (((
577 **AT+DATACUTx=a,b,c**
578 )))
579
580 * (((
581 **a: length for the return of AT+COMMAND**
582 )))
583 * (((
584 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
585 )))
586 * (((
587 **c: define the position for valid value.  **
588 )))
589 )))
590
591 (((
592 **Examples:**
593 )))
594
595 * (((
596 Grab bytes:
597 )))
598
599 (((
600 [[image:1653271581490-837.png||height="313" width="722"]]
601 )))
602
603 (((
604
605 )))
606
607 * (((
608 Grab a section.
609 )))
610
611 (((
612 [[image:1653271648378-342.png||height="326" width="720"]]
613 )))
614
615 (((
616
617 )))
618
619 * (((
620 Grab different sections.
621 )))
622
623 (((
624 [[image:1653271657255-576.png||height="305" width="730"]]
625 )))
626
627 (((
628 (((
629 (% style="color:red" %)**Note:**
630 )))
631 )))
632
633 (((
634 (((
635 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
636 )))
637 )))
638
639 (((
640 (((
641 **Example:**
642 )))
643 )))
644
645 (((
646 (((
647 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
648 )))
649 )))
650
651 (((
652 (((
653 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
654 )))
655 )))
656
657 (((
658 (((
659 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
660 )))
661 )))
662
663 (((
664 (((
665 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
666 )))
667 )))
668
669 (((
670 (((
671 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
672 )))
673 )))
674
675 (((
676 (((
677 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
678 )))
679 )))
680
681 (((
682 [[image:1653271763403-806.png]]
683 )))
684
685
686 === 3.3.4 Compose the uplink payload ===
687
688 (((
689 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
690
691
692 )))
693
694 (((
695 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
696
697
698 )))
699
700 (((
701 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
702 )))
703
704 (((
705 Final Payload is
706 )))
707
708 (((
709 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
710 )))
711
712 (((
713 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
714 )))
715
716 [[image:1653272787040-634.png||height="515" width="719"]]
717
718
719
720 (((
721 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
722
723
724 )))
725
726 (((
727 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
728 )))
729
730 (((
731 Final Payload is
732 )))
733
734 (((
735 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
736 )))
737
738 1. (((
739 Battery Info (2 bytes): Battery voltage
740 )))
741 1. (((
742 PAYVER (1 byte): Defined by AT+PAYVER
743 )))
744 1. (((
745 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
746 )))
747 1. (((
748 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
749 )))
750 1. (((
751 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
752 )))
753
754 [[image:1653272817147-600.png||height="437" width="717"]]
755
756 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
757
758
759 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
760
761 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
762
763 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
764
765
766 Below are the uplink payloads:
767
768 [[image:1653272901032-107.png]]
769
770
771 (% style="color:red" %)Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
772
773 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
774
775 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
776
777 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
778
779 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
780
781
782
783 === 3.3.5 Uplink on demand ===
784
785 (((
786 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
787 )))
788
789 (((
790 Downlink control command:
791 )))
792
793 (((
794 **0x08 command**: Poll an uplink with current command set in RS485-BL.
795 )))
796
797 (((
798 **0xA8 command**: Send a command to RS485-BL and uplink the output from sensors.
799
800
801 )))
802
803 === 3.3.6 Uplink on Interrupt ===
804
805 Put the interrupt sensor between 3.3v_out and GPIO ext.
806
807 [[image:1653273818896-432.png]]
808
809
810 (((
811 AT+INTMOD=0  Disable Interrupt
812 )))
813
814 (((
815 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
816 )))
817
818 (((
819 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
820 )))
821
822 (((
823 AT+INTMOD=3  Interrupt trigger by rising edge.
824
825
826 )))
827
828 == 3.4 Uplink Payload ==
829
830 [[image:image-20220606105412-1.png]]
831
832 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
833
834 (((
835 {{{function Decoder(bytes, port) {}}}
836 )))
837
838 (((
839 {{{//Payload Formats of RS485-BL Deceive}}}
840 )))
841
842 (((
843 {{{return {}}}
844 )))
845
846 (((
847 {{{ //Battery,units:V}}}
848 )))
849
850 (((
851 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
852 )))
853
854 (((
855 {{{ //GPIO_EXTI }}}
856 )))
857
858 (((
859 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
860 )))
861
862 (((
863 {{{ //payload of version}}}
864 )))
865
866 (((
867 {{{ Pay_ver:bytes[2],}}}
868 )))
869
870 (((
871 {{{ }; }}}
872 )))
873
874 (((
875 }
876
877
878 )))
879
880 (((
881 TTN V3 uplink screen shot.
882 )))
883
884 [[image:1653274001211-372.png||height="192" width="732"]]
885
886
887 == 3.5 Configure RS485-BL via AT or Downlink ==
888
889 (((
890 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
891 )))
892
893 (((
894 There are two kinds of Commands:
895 )))
896
897 * (((
898 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
899 )))
900
901 * (((
902 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
903 )))
904
905
906 === 3.5.1 Common Commands: ===
907
908 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
909
910
911 === 3.5.2 Sensor related commands: ===
912
913
914
915 ==== **Choose Device Type (RS485 or TTL)** ====
916
917 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
918
919 * **AT Command**
920
921 (% class="box infomessage" %)
922 (((
923 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
924 )))
925
926 (% class="box infomessage" %)
927 (((
928 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
929 )))
930
931
932 * **Downlink Payload**
933
934 **0A aa**  ~-~->  same as AT+MOD=aa
935
936
937
938
939 ==== **RS485 Debug Command (AT+CFGDEV)** ====
940
941 (((
942 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
943 )))
944
945 * (((
946 **AT Command**
947 )))
948
949 (% class="box infomessage" %)
950 (((
951 (((
952 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
953 )))
954 )))
955
956 (((
957 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
958 )))
959
960 (((
961
962 )))
963
964 * (((
965 **Downlink Payload**
966 )))
967
968 (((
969 Format: A8 MM NN XX XX XX XX YY
970 )))
971
972 (((
973 Where:
974 )))
975
976 * (((
977 MM: 1: add CRC-16/MODBUS ; 0: no CRC
978 )))
979 * (((
980 NN: The length of RS485 command
981 )))
982 * (((
983 XX XX XX XX: RS485 command total NN bytes
984 )))
985 * (((
986 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
987 )))
988
989 (((
990 **Example 1:**
991 )))
992
993 (((
994 To connect a Modbus Alarm with below commands.
995 )))
996
997 * (((
998 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
999 )))
1000
1001 * (((
1002 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1003 )))
1004
1005 (((
1006 So if user want to use downlink command to control to RS485 Alarm, he can use:
1007 )))
1008
1009 (((
1010 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1011 )))
1012
1013 (((
1014 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1015 )))
1016
1017 (((
1018 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
1019 )))
1020
1021 (((
1022
1023 )))
1024
1025 (((
1026 **Example 2:**
1027 )))
1028
1029 (((
1030 Check TTL Sensor return:
1031 )))
1032
1033 (((
1034 [[image:1654132684752-193.png]]
1035 )))
1036
1037
1038
1039
1040
1041 ==== **Set Payload version** ====
1042
1043 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1044
1045 * **AT Command:**
1046
1047 (% class="box infomessage" %)
1048 (((
1049 **AT+PAYVER: Set PAYVER field = 1**
1050 )))
1051
1052
1053 * **Downlink Payload:**
1054
1055 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
1056
1057 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
1058
1059
1060
1061
1062 ==== **Set RS485 Sampling Commands** ====
1063
1064 (((
1065 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1066 )))
1067
1068 (((
1069 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1070 )))
1071
1072 (((
1073
1074 )))
1075
1076 * (((
1077 **AT Command:**
1078 )))
1079
1080 (% class="box infomessage" %)
1081 (((
1082 (((
1083 **AT+COMMANDx: Configure RS485 read command to sensor.**
1084 )))
1085 )))
1086
1087 (% class="box infomessage" %)
1088 (((
1089 (((
1090 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
1091 )))
1092 )))
1093
1094 (% class="box infomessage" %)
1095 (((
1096 (((
1097 **AT+SEARCHx: Configure search command**
1098 )))
1099 )))
1100
1101 (((
1102
1103 )))
1104
1105 * (((
1106 **Downlink Payload:**
1107 )))
1108
1109 (((
1110 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1111 )))
1112
1113 (((
1114 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
1115 )))
1116
1117 (((
1118 Format: AF MM NN LL XX XX XX XX YY
1119 )))
1120
1121 (((
1122 Where:
1123 )))
1124
1125 * (((
1126 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1127 )))
1128 * (((
1129 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1130 )))
1131 * (((
1132 LL:  The length of AT+COMMAND or AT+DATACUT command
1133 )))
1134 * (((
1135 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1136 )))
1137 * (((
1138 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1139 )))
1140
1141 (((
1142 **Example:**
1143 )))
1144
1145 (((
1146 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1147 )))
1148
1149 (((
1150 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1151 )))
1152
1153 (((
1154 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1155 )))
1156
1157 (((
1158
1159 )))
1160
1161 (((
1162 **0xAB** downlink command can be used for set AT+SEARCHx
1163 )))
1164
1165 (((
1166 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1167 )))
1168
1169 * (((
1170 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1171 )))
1172 * (((
1173 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1174 )))
1175
1176 (((
1177 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1178 )))
1179
1180
1181
1182
1183 ==== **Fast command to handle MODBUS device** ====
1184
1185 (((
1186 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1187 )))
1188
1189 (((
1190 This command is valid since v1.3 firmware version
1191 )))
1192
1193 (((
1194
1195 )))
1196
1197 (((
1198 **AT+MBFUN has only two value:**
1199 )))
1200
1201 * (((
1202 **AT+MBFUN=1**: Enable Modbus reading. And get response base on the MODBUS return
1203 )))
1204
1205 (((
1206 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1207 )))
1208
1209 * (((
1210 **AT+MBFUN=0**: Disable Modbus fast reading.
1211 )))
1212
1213 (((
1214 **Example:**
1215 )))
1216
1217 * (((
1218 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1219 )))
1220 * (((
1221 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1222 )))
1223 * (((
1224 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1225 )))
1226
1227 [[image:1654133913295-597.png]]
1228
1229
1230 [[image:1654133954153-643.png]]
1231
1232
1233 * (((
1234 **Downlink Commands:**
1235 )))
1236
1237 (((
1238 **A9 aa** ~-~-> Same as AT+MBFUN=aa
1239 )))
1240
1241
1242
1243
1244 ==== **RS485 command timeout** ====
1245
1246 (((
1247 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1248 )))
1249
1250 (((
1251 Default value: 0, range:  0 ~~ 5 seconds
1252 )))
1253
1254 (((
1255
1256 )))
1257
1258 * (((
1259 **AT Command:**
1260 )))
1261
1262 (% class="box infomessage" %)
1263 (((
1264 (((
1265 **AT+CMDDLaa=hex(bb cc)**
1266 )))
1267 )))
1268
1269 (((
1270 **Example:**
1271 )))
1272
1273 (((
1274 **AT+CMDDL1=1000** to send the open time to 1000ms
1275 )))
1276
1277 (((
1278
1279 )))
1280
1281 * (((
1282 **Downlink Payload:**
1283 )))
1284
1285 (((
1286 0x AA aa bb cc
1287 )))
1288
1289 (((
1290 Same as: AT+CMDDLaa=hex(bb cc)
1291 )))
1292
1293 (((
1294 **Example:**
1295 )))
1296
1297 (((
1298 **0xAA 01 03 E8**  ~-~-> Same as **AT+CMDDL1=1000 ms**
1299 )))
1300
1301
1302
1303
1304 ==== **Uplink payload mode** ====
1305
1306 (((
1307 Define to use one uplink or multiple uplinks for the sampling.
1308 )))
1309
1310 (((
1311 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1312 )))
1313
1314 * (((
1315 **AT Command:**
1316 )))
1317
1318 (% class="box infomessage" %)
1319 (((
1320 (((
1321 **AT+DATAUP=0**
1322 )))
1323 )))
1324
1325 (% class="box infomessage" %)
1326 (((
1327 (((
1328 **AT+DATAUP=1**
1329 )))
1330 )))
1331
1332 (((
1333
1334 )))
1335
1336 * (((
1337 **Downlink Payload:**
1338 )))
1339
1340 (((
1341 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
1342 )))
1343
1344 (((
1345 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
1346 )))
1347
1348
1349
1350
1351 ==== **Manually trigger an Uplink** ====
1352
1353 Ask device to send an uplink immediately.
1354
1355 * **Downlink Payload:**
1356
1357 **0x08 FF**, RS485-BL will immediately send an uplink.
1358
1359
1360
1361
1362 ==== **Clear RS485 Command** ====
1363
1364 (((
1365 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1366 )))
1367
1368 (((
1369
1370 )))
1371
1372 * (((
1373 **AT Command:**
1374 )))
1375
1376 (((
1377 (% style="color:#037691" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1378 )))
1379
1380 (((
1381 Example screen shot after clear all RS485 commands. 
1382 )))
1383
1384 (((
1385
1386 )))
1387
1388 (((
1389 The uplink screen shot is:
1390 )))
1391
1392 (((
1393 [[image:1654134704555-320.png]]
1394 )))
1395
1396 (((
1397
1398 )))
1399
1400 * (((
1401 **Downlink Payload:**
1402 )))
1403
1404 (((
1405 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1406 )))
1407
1408
1409
1410
1411 ==== **Set Serial Communication Parameters** ====
1412
1413 (((
1414 Set the Rs485 serial communication parameters:
1415 )))
1416
1417 * (((
1418 **AT Command:**
1419 )))
1420
1421 (((
1422 Set Baud Rate:
1423 )))
1424
1425 (% class="box infomessage" %)
1426 (((
1427 (((
1428 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1429 )))
1430 )))
1431
1432 (((
1433 Set UART Parity
1434 )))
1435
1436 (% class="box infomessage" %)
1437 (((
1438 (((
1439 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1440 )))
1441 )))
1442
1443 (((
1444 Set STOPBIT
1445 )))
1446
1447 (% class="box infomessage" %)
1448 (((
1449 (((
1450 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1451 )))
1452 )))
1453
1454 (((
1455
1456 )))
1457
1458 * (((
1459 **Downlink Payload:**
1460 )))
1461
1462 (((
1463 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1464 )))
1465
1466 (((
1467 **Example:**
1468 )))
1469
1470 * (((
1471 A7 01 00 60   same as AT+BAUDR=9600
1472 )))
1473 * (((
1474 A7 01 04 80  same as AT+BAUDR=115200
1475 )))
1476
1477 (((
1478 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1479 )))
1480
1481 (((
1482 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1483 )))
1484
1485
1486
1487
1488 ==== **Control output power duration** ====
1489
1490 (((
1491 User can set the output power duration before each sampling.
1492 )))
1493
1494 * (((
1495 **AT Command:**
1496 )))
1497
1498 (((
1499 **Example:**
1500 )))
1501
1502 (((
1503 **AT+3V3T=1000**  ~/~/ 3V3 output power will open 1s before each sampling.
1504 )))
1505
1506 (((
1507 **AT+5VT=1000**  ~/~/ +5V output power will open 1s before each sampling.
1508 )))
1509
1510 (((
1511
1512 )))
1513
1514 * (((
1515 **LoRaWAN Downlink Command:**
1516 )))
1517
1518 (((
1519 **07 01 aa bb**  Same as AT+5VT=(aa bb)
1520 )))
1521
1522 (((
1523 **07 02 aa bb**  Same as AT+3V3T=(aa bb)
1524 )))
1525
1526
1527
1528 == 3.6 Buttons ==
1529
1530 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:233px" %)
1531 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1532 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1533
1534
1535 == 3.7 +3V3 Output ==
1536
1537 (((
1538 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1539 )))
1540
1541 (((
1542 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1543 )))
1544
1545 (((
1546 The +3V3 output time can be controlled by AT Command.
1547 )))
1548
1549 (((
1550
1551 )))
1552
1553 (((
1554 (% style="color:#037691" %)**AT+3V3T=1000**
1555 )))
1556
1557 (((
1558
1559 )))
1560
1561 (((
1562 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1563 )))
1564
1565 (((
1566 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1567 )))
1568
1569
1570 == 3.8 +5V Output ==
1571
1572 (((
1573 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1574 )))
1575
1576 (((
1577 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1578 )))
1579
1580 (((
1581 The 5V output time can be controlled by AT Command.
1582 )))
1583
1584 (((
1585
1586 )))
1587
1588 (((
1589 (% style="color:#037691" %)**AT+5VT=1000**
1590 )))
1591
1592 (((
1593
1594 )))
1595
1596 (((
1597 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1598 )))
1599
1600 (((
1601 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1602 )))
1603
1604
1605
1606 == 3.9 LEDs ==
1607
1608 (% border="1" style="background-color:#ffffcc; color:green; width:332px" %)
1609 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1610 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1611
1612
1613 == 3.10 Switch Jumper ==
1614
1615 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:400px" %)
1616 |=(% style="width: 123px;" %)**Switch Jumper**|=(% style="width: 277px;" %)**Feature**
1617 |(% style="width:123px" %)**SW1**|(% style="width:277px" %)ISP position: Upgrade firmware via UART
1618 Flash position: Configure device, check running status.
1619 |(% style="width:123px" %)**SW2**|(% style="width:277px" %)5V position: set to compatible with 5v I/O.
1620 3.3v position: set to compatible with 3.3v I/O.,
1621
1622 (((
1623 **+3.3V**: is always ON
1624 )))
1625
1626 (((
1627 **+5V**: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1628 )))
1629
1630
1631 = 4. Case Study =
1632
1633 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1634
1635
1636 = 5. Use AT Command =
1637
1638 == 5.1 Access AT Command ==
1639
1640 (((
1641 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1642 )))
1643
1644 [[image:1654135840598-282.png]]
1645
1646
1647 (((
1648 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1649 )))
1650
1651 [[image:1654136105500-922.png]]
1652
1653
1654 (((
1655 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1656 )))
1657
1658
1659 == 5.2 Common AT Command Sequence ==
1660
1661 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1662
1663 If device has not joined network yet:
1664
1665 (% class="box infomessage" %)
1666 (((
1667 **AT+FDR**
1668 )))
1669
1670 (% class="box infomessage" %)
1671 (((
1672 **AT+NJM=0**
1673 )))
1674
1675 (% class="box infomessage" %)
1676 (((
1677 **ATZ**
1678 )))
1679
1680
1681 (((
1682 If device already joined network:
1683 )))
1684
1685 (% class="box infomessage" %)
1686 (((
1687 **AT+NJM=0**
1688 )))
1689
1690 (% class="box infomessage" %)
1691 (((
1692 **ATZ**
1693 )))
1694
1695
1696 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1697
1698
1699 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1700
1701 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1702
1703 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1704
1705 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%)Set Data Rate
1706
1707 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1708
1709 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1710
1711 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1712
1713 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1714
1715 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1716
1717 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1718
1719
1720 (% style="color:red" %)**Note:**
1721
1722 (((
1723 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1724 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1725 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1726 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1727 )))
1728
1729 [[image:1654136435598-589.png]]
1730
1731
1732 = 6. FAQ =
1733
1734 == 6.1 How to upgrade the image? ==
1735
1736 (((
1737 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1738 )))
1739
1740 * (((
1741 Support new features
1742 )))
1743 * (((
1744 For bug fix
1745 )))
1746 * (((
1747 Change LoRaWAN bands.
1748 )))
1749
1750 (((
1751 Below shows the hardware connection for how to upload an image to RS485-BL:
1752 )))
1753
1754 [[image:1654136646995-976.png]]
1755
1756 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1757
1758 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1759
1760 **Step3: **Open flashloader; choose the correct COM port to update.
1761
1762 [[image:image-20220602102605-1.png]]
1763
1764
1765 [[image:image-20220602102637-2.png]]
1766
1767
1768 [[image:image-20220602102715-3.png]]
1769
1770
1771
1772 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1773
1774 (((
1775 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1776 )))
1777
1778
1779
1780 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1781
1782 (((
1783 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1784 )))
1785
1786
1787
1788 = 7. Trouble Shooting =
1789
1790
1791 == 7.1 Downlink doesn’t work, how to solve it? ==
1792
1793 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1794
1795
1796 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1797
1798 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1799
1800
1801 = 8. Order Info =
1802
1803 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
1804
1805 (% style="color:blue" %)**XXX:**
1806
1807 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1808 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1809 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1810 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1811 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1812 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1813 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1814 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1815 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1816 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1817
1818
1819 = 9. Packing Info =
1820
1821 (((
1822 **Package Includes**:
1823 )))
1824
1825 * (((
1826 RS485-BL x 1
1827 )))
1828 * (((
1829 Stick Antenna for LoRa RF part x 1
1830 )))
1831 * (((
1832 Program cable x 1
1833 )))
1834
1835 (((
1836 **Dimension and weight**:
1837 )))
1838
1839 * (((
1840 Device Size: 13.5 x 7 x 3 cm
1841 )))
1842 * (((
1843 Device Weight: 105g
1844 )))
1845 * (((
1846 Package Size / pcs : 14.5 x 8 x 5 cm
1847 )))
1848 * (((
1849 Weight / pcs : 170g
1850
1851
1852 )))
1853
1854 = 10. Support =
1855
1856 * (((
1857 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1858 )))
1859 * (((
1860 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1861 )))