Version 42.13 by Xiaoling on 2022/06/06 14:03

Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="385" width="385"]]
3
4
5
6
7 **RS485-BL – Waterproof RS485 to LoRaWAN Converter User Manual**
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19 = 1.Introduction =
20
21 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
22
23 (((
24
25 )))
26
27 (((
28 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
29 )))
30
31 (((
32 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
33 )))
34
35 (((
36 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
37 )))
38
39 (((
40 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
41 )))
42
43 (((
44 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
45 )))
46
47 (((
48 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
49 )))
50
51 (((
52 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
53 )))
54
55 [[image:1652953304999-717.png||height="424" width="733"]]
56
57
58
59 == 1.2 Specifications ==
60
61
62 **Hardware System:**
63
64 * STM32L072CZT6 MCU
65 * SX1276/78 Wireless Chip 
66 * Power Consumption (exclude RS485 device):
67 ** Idle: 6uA@3.3v
68 ** 20dB Transmit: 130mA@3.3v
69
70 **Interface for Model:**
71
72 * 1 x RS485 Interface
73 * 1 x TTL Serial , 3.3v or 5v.
74 * 1 x I2C Interface, 3.3v or 5v.
75 * 1 x one wire interface
76 * 1 x Interrupt Interface
77 * 1 x Controllable 5V output, max
78
79 **LoRa Spec:**
80
81 * Frequency Range:
82 ** Band 1 (HF): 862 ~~ 1020 Mhz
83 ** Band 2 (LF): 410 ~~ 528 Mhz
84 * 168 dB maximum link budget.
85 * +20 dBm - 100 mW constant RF output vs.
86 * Programmable bit rate up to 300 kbps.
87 * High sensitivity: down to -148 dBm.
88 * Bullet-proof front end: IIP3 = -12.5 dBm.
89 * Excellent blocking immunity.
90 * Fully integrated synthesizer with a resolution of 61 Hz.
91 * LoRa modulation.
92 * Built-in bit synchronizer for clock recovery.
93 * Preamble detection.
94 * 127 dB Dynamic Range RSSI.
95 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
96
97 == 1.3 Features ==
98
99 * LoRaWAN Class A & Class C protocol (default Class A)
100 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
101 * AT Commands to change parameters
102 * Remote configure parameters via LoRaWAN Downlink
103 * Firmware upgradable via program port
104 * Support multiply RS485 devices by flexible rules
105 * Support Modbus protocol
106 * Support Interrupt uplink
107
108 == 1.4 Applications ==
109
110 * Smart Buildings & Home Automation
111 * Logistics and Supply Chain Management
112 * Smart Metering
113 * Smart Agriculture
114 * Smart Cities
115 * Smart Factory
116
117 == 1.5 Firmware Change log ==
118
119 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
120
121
122 == 1.6 Hardware Change log ==
123
124 (((
125
126
127 (((
128 v1.4
129 )))
130 )))
131
132 (((
133 (((
134 ~1. Change Power IC to TPS22916
135 )))
136 )))
137
138 (((
139
140 )))
141
142 (((
143 (((
144 v1.3
145 )))
146 )))
147
148 (((
149 (((
150 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
151 )))
152 )))
153
154 (((
155
156 )))
157
158 (((
159 (((
160 v1.2
161 )))
162 )))
163
164 (((
165 (((
166 Release version ​​​​​
167 )))
168
169
170 )))
171
172 = 2. Pin mapping and Power ON Device =
173
174 (((
175 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
176 )))
177
178 [[image:1652953055962-143.png||height="387" width="728"]]
179
180
181 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
182
183
184 = 3. Operation Mode =
185
186 == 3.1 How it works? ==
187
188 (((
189 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
190
191
192 )))
193
194 == 3.2 Example to join LoRaWAN network ==
195
196 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
197
198 [[image:1652953414711-647.png||height="337" width="723"]]
199
200 (((
201 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
202 )))
203
204 (((
205 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
206 )))
207
208 (((
209 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
210 )))
211
212 (((
213 Each RS485-BL is shipped with a sticker with unique device EUI:
214 )))
215
216 [[image:1652953462722-299.png]]
217
218 (((
219 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
220 )))
221
222 (((
223 Add APP EUI in the application.
224 )))
225
226
227 [[image:image-20220519174512-1.png]]
228
229 [[image:image-20220519174512-2.png||height="328" width="731"]]
230
231 [[image:image-20220519174512-3.png||height="556" width="724"]]
232
233 [[image:image-20220519174512-4.png]]
234
235 You can also choose to create the device manually.
236
237 [[image:1652953542269-423.png||height="710" width="723"]]
238
239 Add APP KEY and DEV EUI
240
241 [[image:1652953553383-907.png||height="514" width="724"]]
242
243
244 (((
245 **Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
246 )))
247
248 [[image:1652953568895-172.png||height="232" width="724"]]
249
250
251 == 3.3 Configure Commands to read data ==
252
253 (((
254 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
255
256
257 )))
258
259 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
260
261 (((
262 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
263 )))
264
265 (((
266 **~1. RS485-MODBUS mode:**
267 )))
268
269 (((
270 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
271 )))
272
273 (((
274 **2. TTL mode:**
275 )))
276
277 (((
278 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
279 )))
280
281 (((
282 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
283 )))
284
285 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
286 |=(% style="width: 80px;" %)(((
287 (((
288 **AT Commands**
289 )))
290 )))|=(% style="width: 210px;" %)(((
291 (((
292 **Description**
293 )))
294 )))|=(% style="width: 210px;" %)(((
295 (((
296 **Example**
297 )))
298 )))
299 |(% style="width:80px" %)(((
300 (((
301 AT+BAUDR
302 )))
303 )))|(% style="width:210px" %)(((
304 (((
305 Set the baud rate (for RS485 connection). Default Value is: 9600.
306 )))
307 )))|(% style="width:210px" %)(((
308 (((
309 (((
310 AT+BAUDR=9600
311 )))
312 )))
313
314 (((
315 (((
316 Options: (1200,2400,4800,14400,19200,115200)
317 )))
318 )))
319 )))
320 |(% style="width:80px" %)(((
321 (((
322 AT+PARITY
323 )))
324 )))|(% style="width:210px" %)(((
325 (((
326 (((
327 Set UART parity (for RS485 connection)
328 )))
329 )))
330
331 (((
332 (((
333 Default Value is: no parity.
334 )))
335 )))
336 )))|(% style="width:210px" %)(((
337 (((
338 (((
339 AT+PARITY=0
340 )))
341 )))
342
343 (((
344 (((
345 Option: 0: no parity, 1: odd parity, 2: even parity
346 )))
347 )))
348 )))
349 |(% style="width:80px" %)(((
350 (((
351 AT+STOPBIT
352 )))
353 )))|(% style="width:210px" %)(((
354 (((
355 (((
356 Set serial stopbit (for RS485 connection)
357 )))
358 )))
359
360 (((
361 (((
362 Default Value is: 1bit.
363 )))
364 )))
365 )))|(% style="width:210px" %)(((
366 (((
367 (((
368 AT+STOPBIT=0 for 1bit
369 )))
370 )))
371
372 (((
373 (((
374 AT+STOPBIT=1 for 1.5 bit
375 )))
376 )))
377
378 (((
379 (((
380 AT+STOPBIT=2 for 2 bits
381 )))
382 )))
383 )))
384
385 === 3.3.2 Configure sensors ===
386
387 (((
388 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
389 )))
390
391 (((
392 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
393 )))
394
395 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
396 |=(% style="width: 80px;" %)**AT Commands**|=(% style="width: 210px;" %)**Description**|=(% style="width: 210px;" %)**Example**
397 |AT+CFGDEV|(% style="width:80px" %)(((
398 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
399
400 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
401
402 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
403 )))|(% style="width:210px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
404
405 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
406
407
408
409 === 3.3.3 Configure read commands for each sampling ===
410
411 (((
412 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
413 )))
414
415 (((
416 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
417 )))
418
419 (((
420 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
421 )))
422
423 (((
424 This section describes how to achieve above goals.
425 )))
426
427 (((
428 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
429 )))
430
431 (((
432 **Command from RS485-BL to Sensor:**
433 )))
434
435 (((
436 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
437 )))
438
439 (((
440 **Handle return from sensors to RS485-BL**:
441 )))
442
443 (((
444 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
445 )))
446
447 * (((
448 **AT+DATACUT**
449 )))
450
451 (((
452 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
453 )))
454
455 * (((
456 **AT+SEARCH**
457 )))
458
459 (((
460 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
461 )))
462
463 (((
464 **Define wait timeout:**
465 )))
466
467 (((
468 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
469 )))
470
471 (((
472 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
473 )))
474
475 (((
476 **Examples:**
477 )))
478
479 (((
480 Below are examples for the how above AT Commands works.
481 )))
482
483 (((
484 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
485 )))
486
487 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
488 |(% style="width:498px" %)(((
489 (((
490 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
491 )))
492
493 (((
494 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
495 )))
496
497 (((
498 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
499 )))
500 )))
501
502 (((
503 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
504 )))
505
506 (((
507 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
508 )))
509
510 (((
511
512 )))
513
514 (((
515 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
516 )))
517
518 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
519 |(% style="width:577px" %)(((
520 (((
521 **AT+SEARCHx=aa,xx xx xx xx xx**
522 )))
523
524 * (((
525 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
526 )))
527 * (((
528 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
529 )))
530 )))
531
532 (((
533 **Examples:**
534 )))
535
536 (((
537 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
538 )))
539
540 (((
541 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
542 )))
543
544 (((
545 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
546 )))
547
548 (((
549 [[image:1653271044481-711.png]]
550 )))
551
552 (((
553 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
554 )))
555
556 (((
557 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
558 )))
559
560 (((
561 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
562 )))
563
564 (((
565 [[image:1653271276735-972.png]]
566 )))
567
568 (((
569 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
570 )))
571
572 (% style="background-color:#4f81bd; color:white; width:510px" %)
573 |(% style="width:726px" %)(((
574 (((
575 **AT+DATACUTx=a,b,c**
576 )))
577
578 * (((
579 **a: length for the return of AT+COMMAND**
580 )))
581 * (((
582 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
583 )))
584 * (((
585 **c: define the position for valid value.  **
586 )))
587 )))
588
589 (((
590 **Examples:**
591 )))
592
593 * (((
594 Grab bytes:
595 )))
596
597 (((
598 [[image:1653271581490-837.png||height="313" width="722"]]
599 )))
600
601 (((
602
603 )))
604
605 * (((
606 Grab a section.
607 )))
608
609 (((
610 [[image:1653271648378-342.png||height="326" width="720"]]
611 )))
612
613 (((
614
615 )))
616
617 * (((
618 Grab different sections.
619 )))
620
621 (((
622 [[image:1653271657255-576.png||height="305" width="730"]]
623 )))
624
625 (((
626 (((
627 (% style="color:red" %)**Note:**
628 )))
629 )))
630
631 (((
632 (((
633 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
634 )))
635 )))
636
637 (((
638 (((
639 **Example:**
640 )))
641 )))
642
643 (((
644 (((
645 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
646 )))
647 )))
648
649 (((
650 (((
651 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
652 )))
653 )))
654
655 (((
656 (((
657 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
658 )))
659 )))
660
661 (((
662 (((
663 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
664 )))
665 )))
666
667 (((
668 (((
669 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
670 )))
671 )))
672
673 (((
674 (((
675 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
676 )))
677 )))
678
679 (((
680 [[image:1653271763403-806.png]]
681 )))
682
683
684 === 3.3.4 Compose the uplink payload ===
685
686 (((
687 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
688
689
690 )))
691
692 (((
693 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
694
695
696 )))
697
698 (((
699 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
700 )))
701
702 (((
703 Final Payload is
704 )))
705
706 (((
707 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
708 )))
709
710 (((
711 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
712 )))
713
714 [[image:1653272787040-634.png||height="515" width="719"]]
715
716
717
718 (((
719 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
720
721
722 )))
723
724 (((
725 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
726 )))
727
728 (((
729 Final Payload is
730 )))
731
732 (((
733 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
734 )))
735
736 1. (((
737 Battery Info (2 bytes): Battery voltage
738 )))
739 1. (((
740 PAYVER (1 byte): Defined by AT+PAYVER
741 )))
742 1. (((
743 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
744 )))
745 1. (((
746 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
747 )))
748 1. (((
749 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
750 )))
751
752 [[image:1653272817147-600.png||height="437" width="717"]]
753
754 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
755
756
757 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
758
759 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
760
761 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
762
763
764 Below are the uplink payloads:
765
766 [[image:1653272901032-107.png]]
767
768
769 (% style="color:red" %)Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
770
771 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
772
773 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
774
775 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
776
777 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
778
779
780
781 === 3.3.5 Uplink on demand ===
782
783 (((
784 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
785 )))
786
787 (((
788 Downlink control command:
789 )))
790
791 (((
792 **0x08 command**: Poll an uplink with current command set in RS485-BL.
793 )))
794
795 (((
796 **0xA8 command**: Send a command to RS485-BL and uplink the output from sensors.
797
798
799 )))
800
801 === 3.3.6 Uplink on Interrupt ===
802
803 Put the interrupt sensor between 3.3v_out and GPIO ext.
804
805 [[image:1653273818896-432.png]]
806
807
808 (((
809 AT+INTMOD=0  Disable Interrupt
810 )))
811
812 (((
813 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
814 )))
815
816 (((
817 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
818 )))
819
820 (((
821 AT+INTMOD=3  Interrupt trigger by rising edge.
822
823
824 )))
825
826 == 3.4 Uplink Payload ==
827
828 [[image:image-20220606105412-1.png]]
829
830 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
831
832 (((
833 {{{function Decoder(bytes, port) {}}}
834 )))
835
836 (((
837 {{{//Payload Formats of RS485-BL Deceive}}}
838 )))
839
840 (((
841 {{{return {}}}
842 )))
843
844 (((
845 {{{ //Battery,units:V}}}
846 )))
847
848 (((
849 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
850 )))
851
852 (((
853 {{{ //GPIO_EXTI }}}
854 )))
855
856 (((
857 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
858 )))
859
860 (((
861 {{{ //payload of version}}}
862 )))
863
864 (((
865 {{{ Pay_ver:bytes[2],}}}
866 )))
867
868 (((
869 {{{ }; }}}
870 )))
871
872 (((
873 }
874
875
876 )))
877
878 (((
879 TTN V3 uplink screen shot.
880 )))
881
882 [[image:1653274001211-372.png||height="192" width="732"]]
883
884
885 == 3.5 Configure RS485-BL via AT or Downlink ==
886
887 (((
888 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
889 )))
890
891 (((
892 There are two kinds of Commands:
893 )))
894
895 * (((
896 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
897 )))
898
899 * (((
900 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
901 )))
902
903
904
905 === 3.5.1 Common Commands: ===
906
907 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
908
909
910 === 3.5.2 Sensor related commands: ===
911
912
913
914 ==== **Choose Device Type (RS485 or TTL)** ====
915
916 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
917
918 * **AT Command**
919
920 (% class="box infomessage" %)
921 (((
922 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
923 )))
924
925 (% class="box infomessage" %)
926 (((
927 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
928 )))
929
930
931 * **Downlink Payload**
932
933 **0A aa**  ~-~->  same as AT+MOD=aa
934
935
936
937
938 ==== **RS485 Debug Command (AT+CFGDEV)** ====
939
940 (((
941 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
942 )))
943
944 * (((
945 **AT Command**
946 )))
947
948 (% class="box infomessage" %)
949 (((
950 (((
951 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
952 )))
953 )))
954
955 (((
956 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
957 )))
958
959 (((
960
961 )))
962
963 * (((
964 **Downlink Payload**
965 )))
966
967 (((
968 Format: A8 MM NN XX XX XX XX YY
969 )))
970
971 (((
972 Where:
973 )))
974
975 * (((
976 MM: 1: add CRC-16/MODBUS ; 0: no CRC
977 )))
978 * (((
979 NN: The length of RS485 command
980 )))
981 * (((
982 XX XX XX XX: RS485 command total NN bytes
983 )))
984 * (((
985 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
986 )))
987
988 (((
989 **Example 1:**
990 )))
991
992 (((
993 To connect a Modbus Alarm with below commands.
994 )))
995
996 * (((
997 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
998 )))
999
1000 * (((
1001 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1002 )))
1003
1004 (((
1005 So if user want to use downlink command to control to RS485 Alarm, he can use:
1006 )))
1007
1008 (((
1009 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1010 )))
1011
1012 (((
1013 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1014 )))
1015
1016 (((
1017 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
1018 )))
1019
1020 (((
1021
1022 )))
1023
1024 (((
1025 **Example 2:**
1026 )))
1027
1028 (((
1029 Check TTL Sensor return:
1030 )))
1031
1032 (((
1033 [[image:1654132684752-193.png]]
1034 )))
1035
1036
1037
1038
1039
1040 ==== **Set Payload version** ====
1041
1042 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1043
1044 * **AT Command:**
1045
1046 (% class="box infomessage" %)
1047 (((
1048 **AT+PAYVER: Set PAYVER field = 1**
1049 )))
1050
1051
1052 * **Downlink Payload:**
1053
1054 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
1055
1056 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
1057
1058
1059
1060
1061 ==== **Set RS485 Sampling Commands** ====
1062
1063 (((
1064 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1065 )))
1066
1067 (((
1068 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1069 )))
1070
1071 (((
1072
1073 )))
1074
1075 * (((
1076 **AT Command:**
1077 )))
1078
1079 (% class="box infomessage" %)
1080 (((
1081 (((
1082 **AT+COMMANDx: Configure RS485 read command to sensor.**
1083 )))
1084 )))
1085
1086 (% class="box infomessage" %)
1087 (((
1088 (((
1089 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
1090 )))
1091 )))
1092
1093 (% class="box infomessage" %)
1094 (((
1095 (((
1096 **AT+SEARCHx: Configure search command**
1097 )))
1098 )))
1099
1100 (((
1101
1102 )))
1103
1104 * (((
1105 **Downlink Payload:**
1106 )))
1107
1108 (((
1109 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1110 )))
1111
1112 (((
1113 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
1114 )))
1115
1116 (((
1117 Format: AF MM NN LL XX XX XX XX YY
1118 )))
1119
1120 (((
1121 Where:
1122 )))
1123
1124 * (((
1125 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1126 )))
1127 * (((
1128 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1129 )))
1130 * (((
1131 LL:  The length of AT+COMMAND or AT+DATACUT command
1132 )))
1133 * (((
1134 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1135 )))
1136 * (((
1137 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1138 )))
1139
1140 (((
1141 **Example:**
1142 )))
1143
1144 (((
1145 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1146 )))
1147
1148 (((
1149 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1150 )))
1151
1152 (((
1153 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1154 )))
1155
1156 (((
1157
1158 )))
1159
1160 (((
1161 **0xAB** downlink command can be used for set AT+SEARCHx
1162 )))
1163
1164 (((
1165 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1166 )))
1167
1168 * (((
1169 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1170 )))
1171 * (((
1172 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1173 )))
1174
1175 (((
1176 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1177 )))
1178
1179
1180
1181
1182 ==== **Fast command to handle MODBUS device** ====
1183
1184 (((
1185 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1186 )))
1187
1188 (((
1189 This command is valid since v1.3 firmware version
1190 )))
1191
1192 (((
1193
1194 )))
1195
1196 (((
1197 **AT+MBFUN has only two value:**
1198 )))
1199
1200 * (((
1201 **AT+MBFUN=1**: Enable Modbus reading. And get response base on the MODBUS return
1202 )))
1203
1204 (((
1205 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1206 )))
1207
1208 * (((
1209 **AT+MBFUN=0**: Disable Modbus fast reading.
1210 )))
1211
1212 (((
1213 **Example:**
1214 )))
1215
1216 * (((
1217 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1218 )))
1219 * (((
1220 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1221 )))
1222 * (((
1223 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1224 )))
1225
1226 [[image:1654133913295-597.png]]
1227
1228
1229 [[image:1654133954153-643.png]]
1230
1231
1232 * (((
1233 **Downlink Commands:**
1234 )))
1235
1236 (((
1237 **A9 aa** ~-~-> Same as AT+MBFUN=aa
1238 )))
1239
1240
1241
1242
1243 ==== **RS485 command timeout** ====
1244
1245 (((
1246 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1247 )))
1248
1249 (((
1250 Default value: 0, range:  0 ~~ 5 seconds
1251 )))
1252
1253 (((
1254
1255 )))
1256
1257 * (((
1258 **AT Command:**
1259 )))
1260
1261 (% class="box infomessage" %)
1262 (((
1263 (((
1264 **AT+CMDDLaa=hex(bb cc)**
1265 )))
1266 )))
1267
1268 (((
1269 **Example:**
1270 )))
1271
1272 (((
1273 **AT+CMDDL1=1000** to send the open time to 1000ms
1274 )))
1275
1276 (((
1277
1278 )))
1279
1280 * (((
1281 **Downlink Payload:**
1282 )))
1283
1284 (((
1285 0x AA aa bb cc
1286 )))
1287
1288 (((
1289 Same as: AT+CMDDLaa=hex(bb cc)
1290 )))
1291
1292 (((
1293 **Example:**
1294 )))
1295
1296 (((
1297 **0xAA 01 03 E8**  ~-~-> Same as **AT+CMDDL1=1000 ms**
1298 )))
1299
1300
1301
1302
1303 ==== **Uplink payload mode** ====
1304
1305 (((
1306 Define to use one uplink or multiple uplinks for the sampling.
1307 )))
1308
1309 (((
1310 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1311 )))
1312
1313 * (((
1314 **AT Command:**
1315 )))
1316
1317 (% class="box infomessage" %)
1318 (((
1319 (((
1320 **AT+DATAUP=0**
1321 )))
1322 )))
1323
1324 (% class="box infomessage" %)
1325 (((
1326 (((
1327 **AT+DATAUP=1**
1328 )))
1329 )))
1330
1331 (((
1332
1333 )))
1334
1335 * (((
1336 **Downlink Payload:**
1337 )))
1338
1339 (((
1340 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
1341 )))
1342
1343 (((
1344 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
1345 )))
1346
1347
1348
1349
1350 ==== **Manually trigger an Uplink** ====
1351
1352 Ask device to send an uplink immediately.
1353
1354 * **Downlink Payload:**
1355
1356 **0x08 FF**, RS485-BL will immediately send an uplink.
1357
1358
1359
1360
1361 ==== **Clear RS485 Command** ====
1362
1363 (((
1364 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1365 )))
1366
1367 (((
1368
1369 )))
1370
1371 * (((
1372 **AT Command:**
1373 )))
1374
1375 (((
1376 (% style="color:#037691" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1377 )))
1378
1379 (((
1380 Example screen shot after clear all RS485 commands. 
1381 )))
1382
1383 (((
1384
1385 )))
1386
1387 (((
1388 The uplink screen shot is:
1389 )))
1390
1391 (((
1392 [[image:1654134704555-320.png]]
1393 )))
1394
1395 (((
1396
1397 )))
1398
1399 * (((
1400 **Downlink Payload:**
1401 )))
1402
1403 (((
1404 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1405 )))
1406
1407
1408
1409
1410 ==== **Set Serial Communication Parameters** ====
1411
1412 (((
1413 Set the Rs485 serial communication parameters:
1414 )))
1415
1416 * (((
1417 **AT Command:**
1418 )))
1419
1420 (((
1421 Set Baud Rate:
1422 )))
1423
1424 (% class="box infomessage" %)
1425 (((
1426 (((
1427 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1428 )))
1429 )))
1430
1431 (((
1432 Set UART Parity
1433 )))
1434
1435 (% class="box infomessage" %)
1436 (((
1437 (((
1438 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1439 )))
1440 )))
1441
1442 (((
1443 Set STOPBIT
1444 )))
1445
1446 (% class="box infomessage" %)
1447 (((
1448 (((
1449 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1450 )))
1451 )))
1452
1453 (((
1454
1455 )))
1456
1457 * (((
1458 **Downlink Payload:**
1459 )))
1460
1461 (((
1462 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1463 )))
1464
1465 (((
1466 **Example:**
1467 )))
1468
1469 * (((
1470 A7 01 00 60   same as AT+BAUDR=9600
1471 )))
1472 * (((
1473 A7 01 04 80  same as AT+BAUDR=115200
1474 )))
1475
1476 (((
1477 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1478 )))
1479
1480 (((
1481 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1482 )))
1483
1484
1485
1486
1487 ==== **Control output power duration** ====
1488
1489 (((
1490 User can set the output power duration before each sampling.
1491 )))
1492
1493 * (((
1494 **AT Command:**
1495 )))
1496
1497 (((
1498 **Example:**
1499 )))
1500
1501 (((
1502 **AT+3V3T=1000**  ~/~/ 3V3 output power will open 1s before each sampling.
1503 )))
1504
1505 (((
1506 **AT+5VT=1000**  ~/~/ +5V output power will open 1s before each sampling.
1507 )))
1508
1509 (((
1510
1511 )))
1512
1513 * (((
1514 **LoRaWAN Downlink Command:**
1515 )))
1516
1517 (((
1518 **07 01 aa bb**  Same as AT+5VT=(aa bb)
1519 )))
1520
1521 (((
1522 **07 02 aa bb**  Same as AT+3V3T=(aa bb)
1523 )))
1524
1525
1526
1527 == 3.6 Buttons ==
1528
1529 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:233px" %)
1530 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1531 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1532
1533
1534
1535 == 3.7 +3V3 Output ==
1536
1537 (((
1538 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1539 )))
1540
1541 (((
1542 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1543 )))
1544
1545 (((
1546 The +3V3 output time can be controlled by AT Command.
1547 )))
1548
1549 (((
1550
1551 )))
1552
1553 (((
1554 (% style="color:#037691" %)**AT+3V3T=1000**
1555 )))
1556
1557 (((
1558
1559 )))
1560
1561 (((
1562 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1563 )))
1564
1565 (((
1566 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1567 )))
1568
1569
1570 == 3.8 +5V Output ==
1571
1572 (((
1573 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1574 )))
1575
1576 (((
1577 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1578 )))
1579
1580 (((
1581 The 5V output time can be controlled by AT Command.
1582 )))
1583
1584 (((
1585
1586 )))
1587
1588 (((
1589 (% style="color:#037691" %)**AT+5VT=1000**
1590 )))
1591
1592 (((
1593
1594 )))
1595
1596 (((
1597 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1598 )))
1599
1600 (((
1601 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1602 )))
1603
1604
1605
1606 == 3.9 LEDs ==
1607
1608 (% border="1" style="background-color:#ffffcc; color:green; width:332px" %)
1609 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1610 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1611
1612
1613 == 3.10 Switch Jumper ==
1614
1615 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:509px" %)
1616 |=(% style="width: 123px;" %)**Switch Jumper**|=(% style="width: 382px;" %)**Feature**
1617 |(% style="width:123px" %)**SW1**|(% style="width:382px" %)ISP position: Upgrade firmware via UART
1618 Flash position: Configure device, check running status.
1619 |(% style="width:123px" %)**SW2**|(% style="width:382px" %)5V position: set to compatible with 5v I/O.
1620 3.3v position: set to compatible with 3.3v I/O.,
1621
1622 (((
1623 **+3.3V**: is always ON
1624 )))
1625
1626 (((
1627 **+5V**: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1628 )))
1629
1630
1631 = 4. Case Study =
1632
1633 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1634
1635
1636 = 5. Use AT Command =
1637
1638 == 5.1 Access AT Command ==
1639
1640 (((
1641 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1642 )))
1643
1644 [[image:1654135840598-282.png]]
1645
1646
1647 (((
1648 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1649 )))
1650
1651 [[image:1654136105500-922.png]]
1652
1653
1654 (((
1655 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1656 )))
1657
1658
1659 == 5.2 Common AT Command Sequence ==
1660
1661 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1662
1663 If device has not joined network yet:
1664
1665 (% class="box infomessage" %)
1666 (((
1667 **AT+FDR**
1668 )))
1669
1670 (% class="box infomessage" %)
1671 (((
1672 **AT+NJM=0**
1673 )))
1674
1675 (% class="box infomessage" %)
1676 (((
1677 **ATZ**
1678 )))
1679
1680
1681 (((
1682 If device already joined network:
1683 )))
1684
1685 (% class="box infomessage" %)
1686 (((
1687 **AT+NJM=0**
1688 )))
1689
1690 (% class="box infomessage" %)
1691 (((
1692 **ATZ**
1693 )))
1694
1695
1696 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1697
1698
1699 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1700
1701 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1702
1703 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1704
1705 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%)Set Data Rate
1706
1707 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1708
1709 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1710
1711 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1712
1713 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1714
1715 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1716
1717 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1718
1719
1720 (% style="color:red" %)**Note:**
1721
1722 (((
1723 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1724 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1725 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1726 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1727 )))
1728
1729 [[image:1654136435598-589.png]]
1730
1731
1732 = 6. FAQ =
1733
1734 == 6.1 How to upgrade the image? ==
1735
1736 (((
1737 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1738 )))
1739
1740 * (((
1741 Support new features
1742 )))
1743 * (((
1744 For bug fix
1745 )))
1746 * (((
1747 Change LoRaWAN bands.
1748 )))
1749
1750 (((
1751 Below shows the hardware connection for how to upload an image to RS485-BL:
1752 )))
1753
1754 [[image:1654136646995-976.png]]
1755
1756 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1757
1758 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1759
1760 **Step3: **Open flashloader; choose the correct COM port to update.
1761
1762 [[image:image-20220602102605-1.png]]
1763
1764
1765 [[image:image-20220602102637-2.png]]
1766
1767
1768 [[image:image-20220602102715-3.png]]
1769
1770
1771
1772 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1773
1774 (((
1775 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1776 )))
1777
1778
1779
1780 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1781
1782 (((
1783 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1784 )))
1785
1786
1787
1788 = 7. Trouble Shooting =
1789
1790
1791 == 7.1 Downlink doesn’t work, how to solve it? ==
1792
1793 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1794
1795
1796 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1797
1798 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1799
1800
1801 = 8. Order Info =
1802
1803 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
1804
1805 (% style="color:blue" %)**XXX:**
1806
1807 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1808 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1809 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1810 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1811 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1812 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1813 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1814 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1815 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1816 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1817
1818
1819
1820 = 9. Packing Info =
1821
1822 (((
1823 **Package Includes**:
1824 )))
1825
1826 * (((
1827 RS485-BL x 1
1828 )))
1829 * (((
1830 Stick Antenna for LoRa RF part x 1
1831 )))
1832 * (((
1833 Program cable x 1
1834 )))
1835
1836 (((
1837 **Dimension and weight**:
1838 )))
1839
1840 * (((
1841 Device Size: 13.5 x 7 x 3 cm
1842 )))
1843 * (((
1844 Device Weight: 105g
1845 )))
1846 * (((
1847 Package Size / pcs : 14.5 x 8 x 5 cm
1848 )))
1849 * (((
1850 Weight / pcs : 170g
1851
1852
1853 )))
1854
1855 = 10. Support =
1856
1857 * (((
1858 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1859 )))
1860 * (((
1861 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1862 )))