Version 41.34 by Xiaoling on 2022/06/06 11:19

Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="385" width="385"]]
3
4
5
6
7 **RS485-BL – Waterproof RS485 to LoRaWAN Converter User Manual**
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19 = 1.Introduction =
20
21 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
22
23 (((
24
25 )))
26
27 (((
28 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
29 )))
30
31 (((
32 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
33 )))
34
35 (((
36 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
37 )))
38
39 (((
40 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
41 )))
42
43 (((
44 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
45 )))
46
47 (((
48 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
49 )))
50
51 (((
52 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
53 )))
54
55 [[image:1652953304999-717.png||height="424" width="733"]]
56
57
58
59 == 1.2 Specifications ==
60
61
62 **Hardware System:**
63
64 * STM32L072CZT6 MCU
65 * SX1276/78 Wireless Chip 
66 * Power Consumption (exclude RS485 device):
67 ** Idle: 6uA@3.3v
68 ** 20dB Transmit: 130mA@3.3v
69
70 **Interface for Model:**
71
72 * 1 x RS485 Interface
73 * 1 x TTL Serial , 3.3v or 5v.
74 * 1 x I2C Interface, 3.3v or 5v.
75 * 1 x one wire interface
76 * 1 x Interrupt Interface
77 * 1 x Controllable 5V output, max
78
79 **LoRa Spec:**
80
81 * Frequency Range:
82 ** Band 1 (HF): 862 ~~ 1020 Mhz
83 ** Band 2 (LF): 410 ~~ 528 Mhz
84 * 168 dB maximum link budget.
85 * +20 dBm - 100 mW constant RF output vs.
86 * Programmable bit rate up to 300 kbps.
87 * High sensitivity: down to -148 dBm.
88 * Bullet-proof front end: IIP3 = -12.5 dBm.
89 * Excellent blocking immunity.
90 * Fully integrated synthesizer with a resolution of 61 Hz.
91 * LoRa modulation.
92 * Built-in bit synchronizer for clock recovery.
93 * Preamble detection.
94 * 127 dB Dynamic Range RSSI.
95 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
96
97 == 1.3 Features ==
98
99 * LoRaWAN Class A & Class C protocol (default Class A)
100 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
101 * AT Commands to change parameters
102 * Remote configure parameters via LoRaWAN Downlink
103 * Firmware upgradable via program port
104 * Support multiply RS485 devices by flexible rules
105 * Support Modbus protocol
106 * Support Interrupt uplink
107
108 == 1.4 Applications ==
109
110 * Smart Buildings & Home Automation
111 * Logistics and Supply Chain Management
112 * Smart Metering
113 * Smart Agriculture
114 * Smart Cities
115 * Smart Factory
116
117 == 1.5 Firmware Change log ==
118
119 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
120
121
122 == 1.6 Hardware Change log ==
123
124 (((
125
126
127 (((
128 v1.4
129 )))
130 )))
131
132 (((
133 (((
134 ~1. Change Power IC to TPS22916
135 )))
136 )))
137
138 (((
139
140 )))
141
142 (((
143 (((
144 v1.3
145 )))
146 )))
147
148 (((
149 (((
150 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
151 )))
152 )))
153
154 (((
155
156 )))
157
158 (((
159 (((
160 v1.2
161 )))
162 )))
163
164 (((
165 (((
166 Release version ​​​​​
167 )))
168
169
170 )))
171
172 = 2. Pin mapping and Power ON Device =
173
174 (((
175 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
176 )))
177
178 [[image:1652953055962-143.png||height="387" width="728"]]
179
180
181 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
182
183
184 = 3. Operation Mode =
185
186 == 3.1 How it works? ==
187
188 (((
189 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
190
191
192 )))
193
194 == 3.2 Example to join LoRaWAN network ==
195
196 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
197
198 [[image:1652953414711-647.png||height="337" width="723"]]
199
200 (((
201 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
202 )))
203
204 (((
205 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
206 )))
207
208 (((
209 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
210 )))
211
212 (((
213 Each RS485-BL is shipped with a sticker with unique device EUI:
214 )))
215
216 [[image:1652953462722-299.png]]
217
218 (((
219 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
220 )))
221
222 (((
223 Add APP EUI in the application.
224 )))
225
226
227 [[image:image-20220519174512-1.png]]
228
229 [[image:image-20220519174512-2.png||height="328" width="731"]]
230
231 [[image:image-20220519174512-3.png||height="556" width="724"]]
232
233 [[image:image-20220519174512-4.png]]
234
235 You can also choose to create the device manually.
236
237 [[image:1652953542269-423.png||height="710" width="723"]]
238
239 Add APP KEY and DEV EUI
240
241 [[image:1652953553383-907.png||height="514" width="724"]]
242
243
244 (((
245 **Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
246 )))
247
248 [[image:1652953568895-172.png||height="232" width="724"]]
249
250
251 == 3.3 Configure Commands to read data ==
252
253 (((
254 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
255
256
257 )))
258
259 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
260
261 (((
262 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
263 )))
264
265 (((
266 **~1. RS485-MODBUS mode:**
267 )))
268
269 (((
270 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
271 )))
272
273 (((
274 **2. TTL mode:**
275 )))
276
277 (((
278 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
279 )))
280
281 (((
282 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
283 )))
284
285 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
286 |=(% style="width: 120px;" %)(((
287 (((
288 **AT Commands**
289 )))
290 )))|=(% style="width: 190px;" %)(((
291 (((
292 **Description**
293 )))
294 )))|=(% style="width: 190px;" %)(((
295 (((
296 **Example**
297 )))
298 )))
299 |(% style="width:120px" %)(((
300 (((
301 AT+BAUDR
302 )))
303 )))|(% style="width:190px" %)(((
304 (((
305 Set the baud rate (for RS485 connection). Default Value is: 9600.
306 )))
307 )))|(% style="width:190px" %)(((
308 (((
309 (((
310 AT+BAUDR=9600
311 )))
312 )))
313
314 (((
315 (((
316 Options: (1200,2400,4800,14400,19200,115200)
317 )))
318 )))
319 )))
320 |(% style="width:120px" %)(((
321 (((
322 AT+PARITY
323 )))
324 )))|(% style="width:190px" %)(((
325 (((
326 (((
327 Set UART parity (for RS485 connection)
328 )))
329 )))
330
331 (((
332 (((
333 Default Value is: no parity.
334 )))
335 )))
336 )))|(% style="width:190px" %)(((
337 (((
338 (((
339 AT+PARITY=0
340 )))
341 )))
342
343 (((
344 (((
345 Option: 0: no parity, 1: odd parity, 2: even parity
346 )))
347 )))
348 )))
349 |(% style="width:120px" %)(((
350 (((
351 AT+STOPBIT
352 )))
353 )))|(% style="width:190px" %)(((
354 (((
355 (((
356 Set serial stopbit (for RS485 connection)
357 )))
358 )))
359
360 (((
361 (((
362 Default Value is: 1bit.
363 )))
364 )))
365 )))|(% style="width:190px" %)(((
366 (((
367 (((
368 AT+STOPBIT=0 for 1bit
369 )))
370 )))
371
372 (((
373 (((
374 AT+STOPBIT=1 for 1.5 bit
375 )))
376 )))
377
378 (((
379 (((
380 AT+STOPBIT=2 for 2 bits
381 )))
382 )))
383 )))
384
385
386
387 === 3.3.2 Configure sensors ===
388
389 (((
390 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
391 )))
392
393 (((
394 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
395 )))
396
397 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
398 |=(% style="width: 120px;" %)**AT Commands**|=(% style="width: 190px;" %)**Description**|=(% style="width: 190px;" %)**Example**
399 |AT+CFGDEV|(% style="width:120px" %)(((
400 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
401
402 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
403
404 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
405 )))|(% style="width:190px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
406
407 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
408
409
410
411 === 3.3.3 Configure read commands for each sampling ===
412
413 (((
414 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
415 )))
416
417 (((
418 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
419 )))
420
421 (((
422 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
423 )))
424
425 (((
426 This section describes how to achieve above goals.
427 )))
428
429 (((
430 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
431 )))
432
433 (((
434 **Command from RS485-BL to Sensor:**
435 )))
436
437 (((
438 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
439 )))
440
441 (((
442 **Handle return from sensors to RS485-BL**:
443 )))
444
445 (((
446 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
447 )))
448
449 * (((
450 **AT+DATACUT**
451 )))
452
453 (((
454 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
455 )))
456
457 * (((
458 **AT+SEARCH**
459 )))
460
461 (((
462 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
463 )))
464
465 (((
466 **Define wait timeout:**
467 )))
468
469 (((
470 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
471 )))
472
473 (((
474 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
475 )))
476
477 (((
478 **Examples:**
479 )))
480
481 (((
482 Below are examples for the how above AT Commands works.
483 )))
484
485 (((
486 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
487 )))
488
489 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
490 |(% style="width:498px" %)(((
491 (((
492 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
493 )))
494
495 (((
496 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
497 )))
498
499 (((
500 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
501 )))
502 )))
503
504 (((
505 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
506 )))
507
508 (((
509 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
510 )))
511
512 (((
513
514 )))
515
516 (((
517 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
518 )))
519
520 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
521 |(% style="width:577px" %)(((
522 (((
523 **AT+SEARCHx=aa,xx xx xx xx xx**
524 )))
525
526 * (((
527 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
528 )))
529 * (((
530 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
531 )))
532 )))
533
534 (((
535 **Examples:**
536 )))
537
538 (((
539 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
540 )))
541
542 (((
543 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
544 )))
545
546 (((
547 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
548 )))
549
550 (((
551 [[image:1653271044481-711.png]]
552 )))
553
554 (((
555 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
556 )))
557
558 (((
559 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
560 )))
561
562 (((
563 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
564 )))
565
566 (((
567 [[image:1653271276735-972.png]]
568 )))
569
570 (((
571 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
572 )))
573
574 (% style="background-color:#4f81bd; color:white; width:510px" %)
575 |(% style="width:726px" %)(((
576 (((
577 **AT+DATACUTx=a,b,c**
578 )))
579
580 * (((
581 **a: length for the return of AT+COMMAND**
582 )))
583 * (((
584 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
585 )))
586 * (((
587 **c: define the position for valid value.  **
588 )))
589 )))
590
591 (((
592 **Examples:**
593 )))
594
595 * (((
596 Grab bytes:
597 )))
598
599 (((
600 [[image:1653271581490-837.png||height="313" width="722"]]
601 )))
602
603 (((
604
605 )))
606
607 * (((
608 Grab a section.
609 )))
610
611 (((
612 [[image:1653271648378-342.png||height="326" width="720"]]
613 )))
614
615 (((
616
617 )))
618
619 * (((
620 Grab different sections.
621 )))
622
623 (((
624 [[image:1653271657255-576.png||height="305" width="730"]]
625 )))
626
627 (((
628 (((
629 (% style="color:red" %)**Note:**
630 )))
631 )))
632
633 (((
634 (((
635 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
636 )))
637 )))
638
639 (((
640 (((
641 **Example:**
642 )))
643 )))
644
645 (((
646 (((
647 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
648 )))
649 )))
650
651 (((
652 (((
653 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
654 )))
655 )))
656
657 (((
658 (((
659 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
660 )))
661 )))
662
663 (((
664 (((
665 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
666 )))
667 )))
668
669 (((
670 (((
671 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
672 )))
673 )))
674
675 (((
676 (((
677 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
678 )))
679 )))
680
681 (((
682 [[image:1653271763403-806.png]]
683 )))
684
685
686 === 3.3.4 Compose the uplink payload ===
687
688 (((
689 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
690
691
692 )))
693
694 (((
695 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
696
697
698 )))
699
700 (((
701 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
702 )))
703
704 (((
705 Final Payload is
706 )))
707
708 (((
709 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
710 )))
711
712 (((
713 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
714 )))
715
716 [[image:1653272787040-634.png||height="515" width="719"]]
717
718
719
720 (((
721 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
722
723
724 )))
725
726 (((
727 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
728 )))
729
730 (((
731 Final Payload is
732 )))
733
734 (((
735 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
736 )))
737
738 1. (((
739 Battery Info (2 bytes): Battery voltage
740 )))
741 1. (((
742 PAYVER (1 byte): Defined by AT+PAYVER
743 )))
744 1. (((
745 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
746 )))
747 1. (((
748 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
749 )))
750 1. (((
751 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
752 )))
753
754 [[image:1653272817147-600.png||height="437" width="717"]]
755
756 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
757
758
759 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
760
761 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
762
763 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
764
765
766 Below are the uplink payloads:
767
768 [[image:1653272901032-107.png]]
769
770
771 (% style="color:red" %)Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
772
773 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
774
775 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
776
777 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
778
779 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
780
781
782
783 === 3.3.5 Uplink on demand ===
784
785 (((
786 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
787 )))
788
789 (((
790 Downlink control command:
791 )))
792
793 (((
794 **0x08 command**: Poll an uplink with current command set in RS485-BL.
795 )))
796
797 (((
798 **0xA8 command**: Send a command to RS485-BL and uplink the output from sensors.
799
800
801 )))
802
803 === 3.3.6 Uplink on Interrupt ===
804
805 Put the interrupt sensor between 3.3v_out and GPIO ext.
806
807 [[image:1653273818896-432.png]]
808
809
810 (((
811 AT+INTMOD=0  Disable Interrupt
812 )))
813
814 (((
815 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
816 )))
817
818 (((
819 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
820 )))
821
822 (((
823 AT+INTMOD=3  Interrupt trigger by rising edge.
824
825
826 )))
827
828 == 3.4 Uplink Payload ==
829
830 [[image:image-20220606105412-1.png]]
831
832 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
833
834 (((
835 {{{function Decoder(bytes, port) {}}}
836 )))
837
838 (((
839 {{{//Payload Formats of RS485-BL Deceive}}}
840 )))
841
842 (((
843 {{{return {}}}
844 )))
845
846 (((
847 {{{ //Battery,units:V}}}
848 )))
849
850 (((
851 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
852 )))
853
854 (((
855 {{{ //GPIO_EXTI }}}
856 )))
857
858 (((
859 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
860 )))
861
862 (((
863 {{{ //payload of version}}}
864 )))
865
866 (((
867 {{{ Pay_ver:bytes[2],}}}
868 )))
869
870 (((
871 {{{ }; }}}
872 )))
873
874 (((
875 {{{}}}}
876
877
878 )))
879
880 (((
881 TTN V3 uplink screen shot.
882 )))
883
884 [[image:1653274001211-372.png||height="192" width="732"]]
885
886
887 == 3.5 Configure RS485-BL via AT or Downlink ==
888
889 (((
890 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
891 )))
892
893 (((
894 There are two kinds of Commands:
895 )))
896
897 * (((
898 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
899 )))
900
901 * (((
902 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
903 )))
904
905
906
907 === 3.5.1 Common Commands: ===
908
909 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
910
911
912 === 3.5.2 Sensor related commands: ===
913
914
915
916 ==== **Choose Device Type (RS485 or TTL)** ====
917
918 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
919
920 * **AT Command**
921
922 (% class="box infomessage" %)
923 (((
924 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
925 )))
926
927 (% class="box infomessage" %)
928 (((
929 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
930 )))
931
932
933 * **Downlink Payload**
934
935 **0A aa**  ~-~->  same as AT+MOD=aa
936
937
938
939
940 ==== **RS485 Debug Command (AT+CFGDEV)** ====
941
942 (((
943 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
944 )))
945
946 * (((
947 **AT Command**
948 )))
949
950 (% class="box infomessage" %)
951 (((
952 (((
953 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
954 )))
955 )))
956
957 (((
958 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
959 )))
960
961 (((
962
963 )))
964
965 * (((
966 **Downlink Payload**
967 )))
968
969 (((
970 Format: A8 MM NN XX XX XX XX YY
971 )))
972
973 (((
974 Where:
975 )))
976
977 * (((
978 MM: 1: add CRC-16/MODBUS ; 0: no CRC
979 )))
980 * (((
981 NN: The length of RS485 command
982 )))
983 * (((
984 XX XX XX XX: RS485 command total NN bytes
985 )))
986 * (((
987 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
988 )))
989
990 (((
991 **Example 1:**
992 )))
993
994 (((
995 To connect a Modbus Alarm with below commands.
996 )))
997
998 * (((
999 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
1000 )))
1001
1002 * (((
1003 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1004 )))
1005
1006 (((
1007 So if user want to use downlink command to control to RS485 Alarm, he can use:
1008 )))
1009
1010 (((
1011 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1012 )))
1013
1014 (((
1015 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1016 )))
1017
1018 (((
1019 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
1020 )))
1021
1022 (((
1023
1024 )))
1025
1026 (((
1027 **Example 2:**
1028 )))
1029
1030 (((
1031 Check TTL Sensor return:
1032 )))
1033
1034 (((
1035 [[image:1654132684752-193.png]]
1036 )))
1037
1038
1039
1040
1041
1042 ==== **Set Payload version** ====
1043
1044 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1045
1046 * **AT Command:**
1047
1048 (% class="box infomessage" %)
1049 (((
1050 **AT+PAYVER: Set PAYVER field = 1**
1051 )))
1052
1053
1054 * **Downlink Payload:**
1055
1056 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
1057
1058 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
1059
1060
1061
1062
1063 ==== **Set RS485 Sampling Commands** ====
1064
1065 (((
1066 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1067 )))
1068
1069 (((
1070 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1071 )))
1072
1073 (((
1074
1075 )))
1076
1077 * (((
1078 **AT Command:**
1079 )))
1080
1081 (% class="box infomessage" %)
1082 (((
1083 (((
1084 **AT+COMMANDx: Configure RS485 read command to sensor.**
1085 )))
1086 )))
1087
1088 (% class="box infomessage" %)
1089 (((
1090 (((
1091 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
1092 )))
1093 )))
1094
1095 (% class="box infomessage" %)
1096 (((
1097 (((
1098 **AT+SEARCHx: Configure search command**
1099 )))
1100 )))
1101
1102 (((
1103
1104 )))
1105
1106 * (((
1107 **Downlink Payload:**
1108 )))
1109
1110 (((
1111 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1112 )))
1113
1114 (((
1115 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
1116 )))
1117
1118 (((
1119 Format: AF MM NN LL XX XX XX XX YY
1120 )))
1121
1122 (((
1123 Where:
1124 )))
1125
1126 * (((
1127 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1128 )))
1129 * (((
1130 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1131 )))
1132 * (((
1133 LL:  The length of AT+COMMAND or AT+DATACUT command
1134 )))
1135 * (((
1136 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1137 )))
1138 * (((
1139 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1140 )))
1141
1142 (((
1143 **Example:**
1144 )))
1145
1146 (((
1147 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1148 )))
1149
1150 (((
1151 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1152 )))
1153
1154 (((
1155 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1156 )))
1157
1158 (((
1159
1160 )))
1161
1162 (((
1163 **0xAB** downlink command can be used for set AT+SEARCHx
1164 )))
1165
1166 (((
1167 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1168 )))
1169
1170 * (((
1171 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1172 )))
1173 * (((
1174 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1175 )))
1176
1177 (((
1178 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1179 )))
1180
1181
1182
1183
1184 ==== **Fast command to handle MODBUS device** ====
1185
1186 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1187
1188 This command is valid since v1.3 firmware version
1189
1190
1191 **AT+MBFUN has only two value:**
1192
1193 * **AT+MBFUN=1**: Enable Modbus reading. And get response base on the MODBUS return
1194
1195 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1196
1197 * **AT+MBFUN=0**: Disable Modbus fast reading.
1198
1199 **Example:**
1200
1201 * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1202 * AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1203 * AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1204
1205 [[image:1654133913295-597.png]]
1206
1207
1208 [[image:1654133954153-643.png]]
1209
1210
1211 * **Downlink Commands:**
1212
1213 **A9 aa** ~-~-> Same as AT+MBFUN=aa
1214
1215
1216
1217
1218 ==== **RS485 command timeout** ====
1219
1220 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1221
1222 Default value: 0, range:  0 ~~ 5 seconds
1223
1224
1225 * **AT Command:**
1226
1227 (% class="box infomessage" %)
1228 (((
1229 **AT+CMDDLaa=hex(bb cc)**
1230 )))
1231
1232 **Example:**
1233
1234 **AT+CMDDL1=1000** to send the open time to 1000ms
1235
1236
1237 * **Downlink Payload:**
1238
1239 0x AA aa bb cc
1240
1241 Same as: AT+CMDDLaa=hex(bb cc)
1242
1243 **Example:**
1244
1245 **0xAA 01 03 E8**  ~-~-> Same as **AT+CMDDL1=1000 ms**
1246
1247
1248
1249
1250 ==== **Uplink payload mode** ====
1251
1252 Define to use one uplink or multiple uplinks for the sampling.
1253
1254 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1255
1256 * **AT Command:**
1257
1258 (% class="box infomessage" %)
1259 (((
1260 **AT+DATAUP=0**
1261 )))
1262
1263 (% class="box infomessage" %)
1264 (((
1265 **AT+DATAUP=1**
1266 )))
1267
1268
1269 * **Downlink Payload:**
1270
1271 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
1272
1273 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
1274
1275
1276
1277
1278 ==== **Manually trigger an Uplink** ====
1279
1280 Ask device to send an uplink immediately.
1281
1282 * **Downlink Payload:**
1283
1284 **0x08 FF**, RS485-BL will immediately send an uplink.
1285
1286
1287
1288
1289 ==== **Clear RS485 Command** ====
1290
1291 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1292
1293
1294 * **AT Command:**
1295
1296 (((
1297 (% style="color:#037691" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1298 )))
1299
1300 Example screen shot after clear all RS485 commands. 
1301
1302
1303 The uplink screen shot is:
1304
1305 [[image:1654134704555-320.png]]
1306
1307
1308 * **Downlink Payload:**
1309
1310 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1311
1312
1313
1314
1315 ==== **Set Serial Communication Parameters** ====
1316
1317 Set the Rs485 serial communication parameters:
1318
1319 * **AT Command:**
1320
1321 Set Baud Rate:
1322
1323 (% class="box infomessage" %)
1324 (((
1325 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1326 )))
1327
1328 Set UART Parity
1329
1330 (% class="box infomessage" %)
1331 (((
1332 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1333 )))
1334
1335 Set STOPBIT
1336
1337 (% class="box infomessage" %)
1338 (((
1339 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1340 )))
1341
1342
1343 * **Downlink Payload:**
1344
1345 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1346
1347 **Example:**
1348
1349 * A7 01 00 60   same as AT+BAUDR=9600
1350 * A7 01 04 80  same as AT+BAUDR=115200
1351
1352 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1353
1354 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1355
1356
1357
1358
1359 ==== **Control output power duration** ====
1360
1361 User can set the output power duration before each sampling.
1362
1363 * **AT Command:**
1364
1365 **Example:**
1366
1367 **AT+3V3T=1000**  ~/~/ 3V3 output power will open 1s before each sampling.
1368
1369 **AT+5VT=1000**  ~/~/ +5V output power will open 1s before each sampling.
1370
1371
1372 * **LoRaWAN Downlink Command:**
1373
1374 **07 01 aa bb**  Same as AT+5VT=(aa bb)
1375
1376 **07 02 aa bb**  Same as AT+3V3T=(aa bb)
1377
1378
1379
1380 == 3.6 Buttons ==
1381
1382 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:233px" %)
1383 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1384 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1385
1386
1387
1388 == 3.7 +3V3 Output ==
1389
1390 (((
1391 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1392 )))
1393
1394 (((
1395 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1396 )))
1397
1398 (((
1399 The +3V3 output time can be controlled by AT Command.
1400 )))
1401
1402 (((
1403
1404 )))
1405
1406 (((
1407 (% style="color:#037691" %)**AT+3V3T=1000**
1408 )))
1409
1410 (((
1411
1412 )))
1413
1414 (((
1415 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1416 )))
1417
1418 (((
1419 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1420 )))
1421
1422
1423 == 3.8 +5V Output ==
1424
1425 (((
1426 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1427 )))
1428
1429 (((
1430 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1431 )))
1432
1433 (((
1434 The 5V output time can be controlled by AT Command.
1435 )))
1436
1437 (((
1438
1439 )))
1440
1441 (((
1442 (% style="color:#037691" %)**AT+5VT=1000**
1443 )))
1444
1445 (((
1446
1447 )))
1448
1449 (((
1450 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1451 )))
1452
1453 (((
1454 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1455 )))
1456
1457
1458
1459 == 3.9 LEDs ==
1460
1461 (% border="1" style="background-color:#ffffcc; color:green; width:332px" %)
1462 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1463 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1464
1465
1466
1467 == 3.10 Switch Jumper ==
1468
1469 (% border="1" style="background-color:#ffffcc; color:green; width:515px" %)
1470 |=(% style="width: 124px;" %)**Switch Jumper**|=(% style="width: 388px;" %)**Feature**
1471 |(% style="width:124px" %)**SW1**|(% style="width:388px" %)(((
1472 ISP position: Upgrade firmware via UART
1473
1474 Flash position: Configure device, check running status.
1475 )))
1476 |(% style="width:124px" %)**SW2**|(% style="width:388px" %)(((
1477 5V position: set to compatible with 5v I/O.
1478
1479 3.3v position: set to compatible with 3.3v I/O.,
1480 )))
1481
1482 (((
1483 **+3.3V**: is always ON
1484 )))
1485
1486 (((
1487 **+5V**: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1488 )))
1489
1490
1491 = 4. Case Study =
1492
1493 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1494
1495
1496 = 5. Use AT Command =
1497
1498 == 5.1 Access AT Command ==
1499
1500 (((
1501 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1502 )))
1503
1504 [[image:1654135840598-282.png]]
1505
1506
1507 (((
1508 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1509 )))
1510
1511 [[image:1654136105500-922.png]]
1512
1513
1514 (((
1515 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1516 )))
1517
1518
1519 == 5.2 Common AT Command Sequence ==
1520
1521 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1522
1523 If device has not joined network yet:
1524
1525 (% class="box infomessage" %)
1526 (((
1527 **AT+FDR**
1528 )))
1529
1530 (% class="box infomessage" %)
1531 (((
1532 **AT+NJM=0**
1533 )))
1534
1535 (% class="box infomessage" %)
1536 (((
1537 **ATZ**
1538 )))
1539
1540
1541 (((
1542 If device already joined network:
1543 )))
1544
1545 (% class="box infomessage" %)
1546 (((
1547 **AT+NJM=0**
1548 )))
1549
1550 (% class="box infomessage" %)
1551 (((
1552 **ATZ**
1553 )))
1554
1555
1556 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1557
1558
1559 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1560
1561 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1562
1563 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1564
1565 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%)Set Data Rate
1566
1567 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1568
1569 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1570
1571 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1572
1573 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1574
1575 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1576
1577 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1578
1579
1580 (% style="color:red" %)**Note:**
1581
1582 (((
1583 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1584 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1585 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1586 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1587 )))
1588
1589 [[image:1654136435598-589.png]]
1590
1591
1592 = 6. FAQ =
1593
1594 == 6.1 How to upgrade the image? ==
1595
1596 (((
1597 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1598 )))
1599
1600 * (((
1601 Support new features
1602 )))
1603 * (((
1604 For bug fix
1605 )))
1606 * (((
1607 Change LoRaWAN bands.
1608 )))
1609
1610 (((
1611 Below shows the hardware connection for how to upload an image to RS485-BL:
1612 )))
1613
1614 [[image:1654136646995-976.png]]
1615
1616 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1617
1618 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1619
1620 **Step3: **Open flashloader; choose the correct COM port to update.
1621
1622 [[image:image-20220602102605-1.png]]
1623
1624
1625 [[image:image-20220602102637-2.png]]
1626
1627
1628 [[image:image-20220602102715-3.png]]
1629
1630
1631
1632 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1633
1634 (((
1635 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1636 )))
1637
1638
1639
1640 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1641
1642 (((
1643 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1644 )))
1645
1646
1647
1648 = 7. Trouble Shooting =
1649
1650
1651 == 7.1 Downlink doesn’t work, how to solve it? ==
1652
1653 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1654
1655
1656 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1657
1658 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1659
1660
1661 = 8. Order Info =
1662
1663 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
1664
1665 (% style="color:blue" %)**XXX:**
1666
1667 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1668 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1669 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1670 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1671 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1672 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1673 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1674 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1675 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1676 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1677
1678
1679
1680 = 9. Packing Info =
1681
1682 (((
1683 **Package Includes**:
1684 )))
1685
1686 * (((
1687 RS485-BL x 1
1688 )))
1689 * (((
1690 Stick Antenna for LoRa RF part x 1
1691 )))
1692 * (((
1693 Program cable x 1
1694 )))
1695
1696 (((
1697 **Dimension and weight**:
1698 )))
1699
1700 * (((
1701 Device Size: 13.5 x 7 x 3 cm
1702 )))
1703 * (((
1704 Device Weight: 105g
1705 )))
1706 * (((
1707 Package Size / pcs : 14.5 x 8 x 5 cm
1708 )))
1709 * (((
1710 Weight / pcs : 170g
1711
1712
1713 )))
1714
1715 = 10. Support =
1716
1717 * (((
1718 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1719 )))
1720 * (((
1721 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1722 )))