Version 41.33 by Xiaoling on 2022/06/06 11:18

Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="385" width="385"]]
3
4
5
6
7 **RS485-BL – Waterproof RS485 to LoRaWAN Converter User Manual**
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19 = 1.Introduction =
20
21 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
22
23 (((
24
25 )))
26
27 (((
28 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
29 )))
30
31 (((
32 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
33 )))
34
35 (((
36 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
37 )))
38
39 (((
40 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
41 )))
42
43 (((
44 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
45 )))
46
47 (((
48 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
49 )))
50
51 (((
52 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
53 )))
54
55 [[image:1652953304999-717.png||height="424" width="733"]]
56
57
58
59 == 1.2 Specifications ==
60
61
62 **Hardware System:**
63
64 * STM32L072CZT6 MCU
65 * SX1276/78 Wireless Chip 
66 * Power Consumption (exclude RS485 device):
67 ** Idle: 6uA@3.3v
68 ** 20dB Transmit: 130mA@3.3v
69
70 **Interface for Model:**
71
72 * 1 x RS485 Interface
73 * 1 x TTL Serial , 3.3v or 5v.
74 * 1 x I2C Interface, 3.3v or 5v.
75 * 1 x one wire interface
76 * 1 x Interrupt Interface
77 * 1 x Controllable 5V output, max
78
79 **LoRa Spec:**
80
81 * Frequency Range:
82 ** Band 1 (HF): 862 ~~ 1020 Mhz
83 ** Band 2 (LF): 410 ~~ 528 Mhz
84 * 168 dB maximum link budget.
85 * +20 dBm - 100 mW constant RF output vs.
86 * Programmable bit rate up to 300 kbps.
87 * High sensitivity: down to -148 dBm.
88 * Bullet-proof front end: IIP3 = -12.5 dBm.
89 * Excellent blocking immunity.
90 * Fully integrated synthesizer with a resolution of 61 Hz.
91 * LoRa modulation.
92 * Built-in bit synchronizer for clock recovery.
93 * Preamble detection.
94 * 127 dB Dynamic Range RSSI.
95 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
96
97 == 1.3 Features ==
98
99 * LoRaWAN Class A & Class C protocol (default Class A)
100 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
101 * AT Commands to change parameters
102 * Remote configure parameters via LoRaWAN Downlink
103 * Firmware upgradable via program port
104 * Support multiply RS485 devices by flexible rules
105 * Support Modbus protocol
106 * Support Interrupt uplink
107
108 == 1.4 Applications ==
109
110 * Smart Buildings & Home Automation
111 * Logistics and Supply Chain Management
112 * Smart Metering
113 * Smart Agriculture
114 * Smart Cities
115 * Smart Factory
116
117 == 1.5 Firmware Change log ==
118
119 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
120
121
122 == 1.6 Hardware Change log ==
123
124 (((
125
126
127 (((
128 v1.4
129 )))
130 )))
131
132 (((
133 (((
134 ~1. Change Power IC to TPS22916
135 )))
136 )))
137
138 (((
139
140 )))
141
142 (((
143 (((
144 v1.3
145 )))
146 )))
147
148 (((
149 (((
150 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
151 )))
152 )))
153
154 (((
155
156 )))
157
158 (((
159 (((
160 v1.2
161 )))
162 )))
163
164 (((
165 (((
166 Release version ​​​​​
167 )))
168
169
170 )))
171
172 = 2. Pin mapping and Power ON Device =
173
174 (((
175 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
176 )))
177
178 [[image:1652953055962-143.png||height="387" width="728"]]
179
180
181 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
182
183
184 = 3. Operation Mode =
185
186 == 3.1 How it works? ==
187
188 (((
189 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
190
191
192 )))
193
194 == 3.2 Example to join LoRaWAN network ==
195
196 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
197
198 [[image:1652953414711-647.png||height="337" width="723"]]
199
200 (((
201 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
202 )))
203
204 (((
205 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
206 )))
207
208 (((
209 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
210 )))
211
212 (((
213 Each RS485-BL is shipped with a sticker with unique device EUI:
214 )))
215
216 [[image:1652953462722-299.png]]
217
218 (((
219 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
220 )))
221
222 (((
223 Add APP EUI in the application.
224 )))
225
226
227 [[image:image-20220519174512-1.png]]
228
229 [[image:image-20220519174512-2.png||height="328" width="731"]]
230
231 [[image:image-20220519174512-3.png||height="556" width="724"]]
232
233 [[image:image-20220519174512-4.png]]
234
235 You can also choose to create the device manually.
236
237 [[image:1652953542269-423.png||height="710" width="723"]]
238
239 Add APP KEY and DEV EUI
240
241 [[image:1652953553383-907.png||height="514" width="724"]]
242
243
244 (((
245 **Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
246 )))
247
248 [[image:1652953568895-172.png||height="232" width="724"]]
249
250
251 == 3.3 Configure Commands to read data ==
252
253 (((
254 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
255
256
257 )))
258
259 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
260
261 (((
262 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
263 )))
264
265 (((
266 **~1. RS485-MODBUS mode:**
267 )))
268
269 (((
270 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
271 )))
272
273 (((
274 **2. TTL mode:**
275 )))
276
277 (((
278 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
279 )))
280
281 (((
282 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
283 )))
284
285 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
286 |=(% style="width: 120px;" %)(((
287 (((
288 **AT Commands**
289 )))
290 )))|=(% style="width: 190px;" %)(((
291 (((
292 **Description**
293 )))
294 )))|=(% style="width: 190px;" %)(((
295 (((
296 **Example**
297 )))
298 )))
299 |(% style="width:120px" %)(((
300 (((
301 AT+BAUDR
302 )))
303 )))|(% style="width:190px" %)(((
304 (((
305 Set the baud rate (for RS485 connection). Default Value is: 9600.
306 )))
307 )))|(% style="width:190px" %)(((
308 (((
309 (((
310 AT+BAUDR=9600
311 )))
312 )))
313
314 (((
315 (((
316 Options: (1200,2400,4800,14400,19200,115200)
317 )))
318 )))
319 )))
320 |(% style="width:120px" %)(((
321 (((
322 AT+PARITY
323 )))
324 )))|(% style="width:190px" %)(((
325 (((
326 (((
327 Set UART parity (for RS485 connection)
328 )))
329 )))
330
331 (((
332 (((
333 Default Value is: no parity.
334 )))
335 )))
336 )))|(% style="width:190px" %)(((
337 (((
338 (((
339 AT+PARITY=0
340 )))
341 )))
342
343 (((
344 (((
345 Option: 0: no parity, 1: odd parity, 2: even parity
346 )))
347 )))
348 )))
349 |(% style="width:120px" %)(((
350 (((
351 AT+STOPBIT
352 )))
353 )))|(% style="width:190px" %)(((
354 (((
355 (((
356 Set serial stopbit (for RS485 connection)
357 )))
358 )))
359
360 (((
361 (((
362 Default Value is: 1bit.
363 )))
364 )))
365 )))|(% style="width:190px" %)(((
366 (((
367 (((
368 AT+STOPBIT=0 for 1bit
369 )))
370 )))
371
372 (((
373 (((
374 AT+STOPBIT=1 for 1.5 bit
375 )))
376 )))
377
378 (((
379 (((
380 AT+STOPBIT=2 for 2 bits
381 )))
382 )))
383 )))
384
385
386
387 === 3.3.2 Configure sensors ===
388
389 (((
390 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
391 )))
392
393 (((
394 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
395 )))
396
397 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
398 |=(% style="width: 120px;" %)**AT Commands**|=(% style="width: 190px;" %)**Description**|=(% style="width: 190px;" %)**Example**
399 |AT+CFGDEV|(% style="width:120px" %)(((
400 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
401
402 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
403
404 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
405 )))|(% style="width:190px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
406
407 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
408
409
410
411 === 3.3.3 Configure read commands for each sampling ===
412
413 (((
414 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
415 )))
416
417 (((
418 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
419 )))
420
421 (((
422 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
423 )))
424
425 (((
426 This section describes how to achieve above goals.
427 )))
428
429 (((
430 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
431 )))
432
433 (((
434 **Command from RS485-BL to Sensor:**
435 )))
436
437 (((
438 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
439 )))
440
441 (((
442 **Handle return from sensors to RS485-BL**:
443 )))
444
445 (((
446 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
447 )))
448
449 * (((
450 **AT+DATACUT**
451 )))
452
453 (((
454 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
455 )))
456
457 * (((
458 **AT+SEARCH**
459 )))
460
461 (((
462 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
463 )))
464
465 (((
466 **Define wait timeout:**
467 )))
468
469 (((
470 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
471 )))
472
473 (((
474 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
475 )))
476
477 (((
478 **Examples:**
479 )))
480
481 (((
482 Below are examples for the how above AT Commands works.
483 )))
484
485 (((
486 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
487 )))
488
489 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
490 |(% style="width:498px" %)(((
491 (((
492 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
493 )))
494
495 (((
496 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
497 )))
498
499 (((
500 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
501 )))
502 )))
503
504 (((
505 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
506 )))
507
508 (((
509 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
510 )))
511
512 (((
513
514 )))
515
516 (((
517 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
518 )))
519
520 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
521 |(% style="width:577px" %)(((
522 (((
523 **AT+SEARCHx=aa,xx xx xx xx xx**
524 )))
525
526 * (((
527 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
528 )))
529 * (((
530 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
531 )))
532 )))
533
534 (((
535 **Examples:**
536 )))
537
538 (((
539 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
540 )))
541
542 (((
543 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
544 )))
545
546 (((
547 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
548 )))
549
550 (((
551 [[image:1653271044481-711.png]]
552 )))
553
554 (((
555 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
556 )))
557
558 (((
559 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
560 )))
561
562 (((
563 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
564 )))
565
566 (((
567 [[image:1653271276735-972.png]]
568 )))
569
570 (((
571 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
572 )))
573
574 (% style="background-color:#4f81bd; color:white; width:510px" %)
575 |(% style="width:726px" %)(((
576 (((
577 **AT+DATACUTx=a,b,c**
578 )))
579
580 * (((
581 **a: length for the return of AT+COMMAND**
582 )))
583 * (((
584 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
585 )))
586 * (((
587 **c: define the position for valid value.  **
588 )))
589 )))
590
591 (((
592 **Examples:**
593 )))
594
595 * (((
596 Grab bytes:
597 )))
598
599 (((
600 [[image:1653271581490-837.png||height="313" width="722"]]
601 )))
602
603 (((
604
605 )))
606
607 * (((
608 Grab a section.
609 )))
610
611 (((
612 [[image:1653271648378-342.png||height="326" width="720"]]
613 )))
614
615 (((
616
617 )))
618
619 * (((
620 Grab different sections.
621 )))
622
623 (((
624 [[image:1653271657255-576.png||height="305" width="730"]]
625 )))
626
627 (((
628 (((
629 (% style="color:red" %)**Note:**
630 )))
631 )))
632
633 (((
634 (((
635 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
636 )))
637 )))
638
639 (((
640 (((
641 **Example:**
642 )))
643 )))
644
645 (((
646 (((
647 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
648 )))
649 )))
650
651 (((
652 (((
653 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
654 )))
655 )))
656
657 (((
658 (((
659 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
660 )))
661 )))
662
663 (((
664 (((
665 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
666 )))
667 )))
668
669 (((
670 (((
671 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
672 )))
673 )))
674
675 (((
676 (((
677 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
678 )))
679 )))
680
681 (((
682 [[image:1653271763403-806.png]]
683 )))
684
685
686 === 3.3.4 Compose the uplink payload ===
687
688 (((
689 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
690
691
692 )))
693
694 (((
695 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
696
697
698 )))
699
700 (((
701 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
702 )))
703
704 (((
705 Final Payload is
706 )))
707
708 (((
709 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
710 )))
711
712 (((
713 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
714 )))
715
716 [[image:1653272787040-634.png||height="515" width="719"]]
717
718
719
720 (((
721 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
722
723
724 )))
725
726 (((
727 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
728 )))
729
730 (((
731 Final Payload is
732 )))
733
734 (((
735 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
736 )))
737
738 1. (((
739 Battery Info (2 bytes): Battery voltage
740 )))
741 1. (((
742 PAYVER (1 byte): Defined by AT+PAYVER
743 )))
744 1. (((
745 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
746 )))
747 1. (((
748 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
749 )))
750 1. (((
751 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
752 )))
753
754 [[image:1653272817147-600.png||height="437" width="717"]]
755
756 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
757
758
759 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
760
761 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
762
763 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
764
765
766 Below are the uplink payloads:
767
768 [[image:1653272901032-107.png]]
769
770
771 (% style="color:red" %)Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
772
773 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
774
775 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
776
777 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
778
779 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
780
781
782
783 === 3.3.5 Uplink on demand ===
784
785 (((
786 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
787 )))
788
789 (((
790 Downlink control command:
791 )))
792
793 (((
794 **0x08 command**: Poll an uplink with current command set in RS485-BL.
795 )))
796
797 (((
798 **0xA8 command**: Send a command to RS485-BL and uplink the output from sensors.
799
800
801 )))
802
803 === 3.3.6 Uplink on Interrupt ===
804
805 Put the interrupt sensor between 3.3v_out and GPIO ext.
806
807 [[image:1653273818896-432.png]]
808
809
810 (((
811 AT+INTMOD=0  Disable Interrupt
812 )))
813
814 (((
815 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
816 )))
817
818 (((
819 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
820 )))
821
822 (((
823 AT+INTMOD=3  Interrupt trigger by rising edge.
824
825
826 )))
827
828 == 3.4 Uplink Payload ==
829
830 [[image:image-20220606105412-1.png]]
831
832 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
833
834 (((
835 {{{function Decoder(bytes, port) {}}}
836 )))
837
838 (((
839 {{{//Payload Formats of RS485-BL Deceive}}}
840 )))
841
842 (((
843 {{{return {}}}
844 )))
845
846 (((
847 {{{ //Battery,units:V}}}
848 )))
849
850 (((
851 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
852 )))
853
854 (((
855 {{{ //GPIO_EXTI }}}
856 )))
857
858 (((
859 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
860 )))
861
862 (((
863 {{{ //payload of version}}}
864 )))
865
866 (((
867 {{{ Pay_ver:bytes[2],}}}
868 )))
869
870 (((
871 {{{ }; }}}
872 )))
873
874 (((
875 {{{}}}}
876
877
878 )))
879
880 (((
881 TTN V3 uplink screen shot.
882 )))
883
884 [[image:1653274001211-372.png||height="192" width="732"]]
885
886
887 == 3.5 Configure RS485-BL via AT or Downlink ==
888
889 (((
890 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
891 )))
892
893 (((
894 There are two kinds of Commands:
895 )))
896
897 * (((
898 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
899 )))
900
901 * (((
902 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
903 )))
904
905
906
907 === 3.5.1 Common Commands: ===
908
909 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
910
911
912 === 3.5.2 Sensor related commands: ===
913
914
915
916 ==== **Choose Device Type (RS485 or TTL)** ====
917
918 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
919
920 * **AT Command**
921
922 (% class="box infomessage" %)
923 (((
924 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
925 )))
926
927 (% class="box infomessage" %)
928 (((
929 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
930 )))
931
932
933 * **Downlink Payload**
934
935 **0A aa**  ~-~->  same as AT+MOD=aa
936
937
938
939
940 ==== **RS485 Debug Command (AT+CFGDEV)** ====
941
942 (((
943 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
944 )))
945
946 * (((
947 **AT Command**
948 )))
949
950 (% class="box infomessage" %)
951 (((
952 (((
953 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
954 )))
955 )))
956
957 (((
958 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
959 )))
960
961 (((
962
963 )))
964
965 * (((
966 **Downlink Payload**
967 )))
968
969 (((
970 Format: A8 MM NN XX XX XX XX YY
971 )))
972
973 (((
974 Where:
975 )))
976
977 * (((
978 MM: 1: add CRC-16/MODBUS ; 0: no CRC
979 )))
980 * (((
981 NN: The length of RS485 command
982 )))
983 * (((
984 XX XX XX XX: RS485 command total NN bytes
985 )))
986 * (((
987 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
988 )))
989
990 (((
991 **Example 1:**
992 )))
993
994 (((
995 To connect a Modbus Alarm with below commands.
996 )))
997
998 * (((
999 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
1000 )))
1001
1002 * (((
1003 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1004 )))
1005
1006 (((
1007 So if user want to use downlink command to control to RS485 Alarm, he can use:
1008 )))
1009
1010 (((
1011 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1012 )))
1013
1014 (((
1015 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1016 )))
1017
1018 (((
1019 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
1020 )))
1021
1022 (((
1023
1024 )))
1025
1026 (((
1027 **Example 2:**
1028 )))
1029
1030 (((
1031 Check TTL Sensor return:
1032 )))
1033
1034 (((
1035 [[image:1654132684752-193.png]]
1036 )))
1037
1038
1039
1040
1041
1042 ==== **Set Payload version** ====
1043
1044 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1045
1046 * **AT Command:**
1047
1048 (% class="box infomessage" %)
1049 (((
1050 **AT+PAYVER: Set PAYVER field = 1**
1051 )))
1052
1053
1054 * **Downlink Payload:**
1055
1056 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
1057
1058 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
1059
1060
1061
1062
1063 ==== **Set RS485 Sampling Commands** ====
1064
1065 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1066
1067 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1068
1069
1070 * **AT Command:**
1071
1072 (% class="box infomessage" %)
1073 (((
1074 **AT+COMMANDx: Configure RS485 read command to sensor.**
1075 )))
1076
1077 (% class="box infomessage" %)
1078 (((
1079 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
1080 )))
1081
1082 (% class="box infomessage" %)
1083 (((
1084 **AT+SEARCHx: Configure search command**
1085 )))
1086
1087
1088 * **Downlink Payload:**
1089
1090 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1091
1092 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
1093
1094 Format: AF MM NN LL XX XX XX XX YY
1095
1096 Where:
1097
1098 * MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1099 * NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1100 * LL:  The length of AT+COMMAND or AT+DATACUT command
1101 * XX XX XX XX: AT+COMMAND or AT+DATACUT command
1102 * YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1103
1104 **Example:**
1105
1106 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1107
1108 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1109
1110 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1111
1112
1113 **0xAB** downlink command can be used for set AT+SEARCHx
1114
1115 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1116
1117 * AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1118 * AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1119
1120 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1121
1122
1123
1124
1125 ==== **Fast command to handle MODBUS device** ====
1126
1127 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1128
1129 This command is valid since v1.3 firmware version
1130
1131
1132 **AT+MBFUN has only two value:**
1133
1134 * **AT+MBFUN=1**: Enable Modbus reading. And get response base on the MODBUS return
1135
1136 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1137
1138 * **AT+MBFUN=0**: Disable Modbus fast reading.
1139
1140 **Example:**
1141
1142 * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1143 * AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1144 * AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1145
1146 [[image:1654133913295-597.png]]
1147
1148
1149 [[image:1654133954153-643.png]]
1150
1151
1152 * **Downlink Commands:**
1153
1154 **A9 aa** ~-~-> Same as AT+MBFUN=aa
1155
1156
1157
1158
1159 ==== **RS485 command timeout** ====
1160
1161 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1162
1163 Default value: 0, range:  0 ~~ 5 seconds
1164
1165
1166 * **AT Command:**
1167
1168 (% class="box infomessage" %)
1169 (((
1170 **AT+CMDDLaa=hex(bb cc)**
1171 )))
1172
1173 **Example:**
1174
1175 **AT+CMDDL1=1000** to send the open time to 1000ms
1176
1177
1178 * **Downlink Payload:**
1179
1180 0x AA aa bb cc
1181
1182 Same as: AT+CMDDLaa=hex(bb cc)
1183
1184 **Example:**
1185
1186 **0xAA 01 03 E8**  ~-~-> Same as **AT+CMDDL1=1000 ms**
1187
1188
1189
1190
1191 ==== **Uplink payload mode** ====
1192
1193 Define to use one uplink or multiple uplinks for the sampling.
1194
1195 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1196
1197 * **AT Command:**
1198
1199 (% class="box infomessage" %)
1200 (((
1201 **AT+DATAUP=0**
1202 )))
1203
1204 (% class="box infomessage" %)
1205 (((
1206 **AT+DATAUP=1**
1207 )))
1208
1209
1210 * **Downlink Payload:**
1211
1212 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
1213
1214 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
1215
1216
1217
1218
1219 ==== **Manually trigger an Uplink** ====
1220
1221 Ask device to send an uplink immediately.
1222
1223 * **Downlink Payload:**
1224
1225 **0x08 FF**, RS485-BL will immediately send an uplink.
1226
1227
1228
1229
1230 ==== **Clear RS485 Command** ====
1231
1232 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1233
1234
1235 * **AT Command:**
1236
1237 (((
1238 (% style="color:#037691" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1239 )))
1240
1241 Example screen shot after clear all RS485 commands. 
1242
1243
1244 The uplink screen shot is:
1245
1246 [[image:1654134704555-320.png]]
1247
1248
1249 * **Downlink Payload:**
1250
1251 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1252
1253
1254
1255
1256 ==== **Set Serial Communication Parameters** ====
1257
1258 Set the Rs485 serial communication parameters:
1259
1260 * **AT Command:**
1261
1262 Set Baud Rate:
1263
1264 (% class="box infomessage" %)
1265 (((
1266 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1267 )))
1268
1269 Set UART Parity
1270
1271 (% class="box infomessage" %)
1272 (((
1273 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1274 )))
1275
1276 Set STOPBIT
1277
1278 (% class="box infomessage" %)
1279 (((
1280 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1281 )))
1282
1283
1284 * **Downlink Payload:**
1285
1286 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1287
1288 **Example:**
1289
1290 * A7 01 00 60   same as AT+BAUDR=9600
1291 * A7 01 04 80  same as AT+BAUDR=115200
1292
1293 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1294
1295 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1296
1297
1298
1299
1300 ==== **Control output power duration** ====
1301
1302 User can set the output power duration before each sampling.
1303
1304 * **AT Command:**
1305
1306 **Example:**
1307
1308 **AT+3V3T=1000**  ~/~/ 3V3 output power will open 1s before each sampling.
1309
1310 **AT+5VT=1000**  ~/~/ +5V output power will open 1s before each sampling.
1311
1312
1313 * **LoRaWAN Downlink Command:**
1314
1315 **07 01 aa bb**  Same as AT+5VT=(aa bb)
1316
1317 **07 02 aa bb**  Same as AT+3V3T=(aa bb)
1318
1319
1320
1321 == 3.6 Buttons ==
1322
1323 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:233px" %)
1324 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1325 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1326
1327
1328
1329 == 3.7 +3V3 Output ==
1330
1331 (((
1332 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1333 )))
1334
1335 (((
1336 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1337 )))
1338
1339 (((
1340 The +3V3 output time can be controlled by AT Command.
1341 )))
1342
1343 (((
1344
1345 )))
1346
1347 (((
1348 (% style="color:#037691" %)**AT+3V3T=1000**
1349 )))
1350
1351 (((
1352
1353 )))
1354
1355 (((
1356 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1357 )))
1358
1359 (((
1360 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1361 )))
1362
1363
1364 == 3.8 +5V Output ==
1365
1366 (((
1367 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1368 )))
1369
1370 (((
1371 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1372 )))
1373
1374 (((
1375 The 5V output time can be controlled by AT Command.
1376 )))
1377
1378 (((
1379
1380 )))
1381
1382 (((
1383 (% style="color:#037691" %)**AT+5VT=1000**
1384 )))
1385
1386 (((
1387
1388 )))
1389
1390 (((
1391 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1392 )))
1393
1394 (((
1395 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1396 )))
1397
1398
1399
1400 == 3.9 LEDs ==
1401
1402 (% border="1" style="background-color:#ffffcc; color:green; width:332px" %)
1403 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1404 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1405
1406
1407
1408 == 3.10 Switch Jumper ==
1409
1410 (% border="1" style="background-color:#ffffcc; color:green; width:515px" %)
1411 |=(% style="width: 124px;" %)**Switch Jumper**|=(% style="width: 388px;" %)**Feature**
1412 |(% style="width:124px" %)**SW1**|(% style="width:388px" %)(((
1413 ISP position: Upgrade firmware via UART
1414
1415 Flash position: Configure device, check running status.
1416 )))
1417 |(% style="width:124px" %)**SW2**|(% style="width:388px" %)(((
1418 5V position: set to compatible with 5v I/O.
1419
1420 3.3v position: set to compatible with 3.3v I/O.,
1421 )))
1422
1423 (((
1424 **+3.3V**: is always ON
1425 )))
1426
1427 (((
1428 **+5V**: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1429 )))
1430
1431
1432 = 4. Case Study =
1433
1434 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1435
1436
1437 = 5. Use AT Command =
1438
1439 == 5.1 Access AT Command ==
1440
1441 (((
1442 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1443 )))
1444
1445 [[image:1654135840598-282.png]]
1446
1447
1448 (((
1449 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1450 )))
1451
1452 [[image:1654136105500-922.png]]
1453
1454
1455 (((
1456 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1457 )))
1458
1459
1460 == 5.2 Common AT Command Sequence ==
1461
1462 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1463
1464 If device has not joined network yet:
1465
1466 (% class="box infomessage" %)
1467 (((
1468 **AT+FDR**
1469 )))
1470
1471 (% class="box infomessage" %)
1472 (((
1473 **AT+NJM=0**
1474 )))
1475
1476 (% class="box infomessage" %)
1477 (((
1478 **ATZ**
1479 )))
1480
1481
1482 (((
1483 If device already joined network:
1484 )))
1485
1486 (% class="box infomessage" %)
1487 (((
1488 **AT+NJM=0**
1489 )))
1490
1491 (% class="box infomessage" %)
1492 (((
1493 **ATZ**
1494 )))
1495
1496
1497 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1498
1499
1500 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1501
1502 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1503
1504 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1505
1506 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%)Set Data Rate
1507
1508 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1509
1510 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1511
1512 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1513
1514 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1515
1516 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1517
1518 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1519
1520
1521 (% style="color:red" %)**Note:**
1522
1523 (((
1524 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1525 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1526 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1527 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1528 )))
1529
1530 [[image:1654136435598-589.png]]
1531
1532
1533 = 6. FAQ =
1534
1535 == 6.1 How to upgrade the image? ==
1536
1537 (((
1538 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1539 )))
1540
1541 * (((
1542 Support new features
1543 )))
1544 * (((
1545 For bug fix
1546 )))
1547 * (((
1548 Change LoRaWAN bands.
1549 )))
1550
1551 (((
1552 Below shows the hardware connection for how to upload an image to RS485-BL:
1553 )))
1554
1555 [[image:1654136646995-976.png]]
1556
1557 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1558
1559 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1560
1561 **Step3: **Open flashloader; choose the correct COM port to update.
1562
1563 [[image:image-20220602102605-1.png]]
1564
1565
1566 [[image:image-20220602102637-2.png]]
1567
1568
1569 [[image:image-20220602102715-3.png]]
1570
1571
1572
1573 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1574
1575 (((
1576 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1577 )))
1578
1579
1580
1581 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1582
1583 (((
1584 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1585 )))
1586
1587
1588
1589 = 7. Trouble Shooting =
1590
1591
1592 == 7.1 Downlink doesn’t work, how to solve it? ==
1593
1594 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1595
1596
1597 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1598
1599 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1600
1601
1602 = 8. Order Info =
1603
1604 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
1605
1606 (% style="color:blue" %)**XXX:**
1607
1608 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1609 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1610 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1611 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1612 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1613 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1614 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1615 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1616 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1617 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1618
1619
1620
1621 = 9. Packing Info =
1622
1623 (((
1624 **Package Includes**:
1625 )))
1626
1627 * (((
1628 RS485-BL x 1
1629 )))
1630 * (((
1631 Stick Antenna for LoRa RF part x 1
1632 )))
1633 * (((
1634 Program cable x 1
1635 )))
1636
1637 (((
1638 **Dimension and weight**:
1639 )))
1640
1641 * (((
1642 Device Size: 13.5 x 7 x 3 cm
1643 )))
1644 * (((
1645 Device Weight: 105g
1646 )))
1647 * (((
1648 Package Size / pcs : 14.5 x 8 x 5 cm
1649 )))
1650 * (((
1651 Weight / pcs : 170g
1652
1653
1654 )))
1655
1656 = 10. Support =
1657
1658 * (((
1659 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1660 )))
1661 * (((
1662 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1663 )))