Version 40.54 by Xiaoling on 2022/06/06 10:51

Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="385" width="385"]]
3
4
5
6
7 **RS485-BL – Waterproof RS485 to LoRaWAN Converter User Manual**
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19 = 1.Introduction =
20
21 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
22
23 (((
24
25 )))
26
27 (((
28 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
29 )))
30
31 (((
32 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
33 )))
34
35 (((
36 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
37 )))
38
39 (((
40 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
41 )))
42
43 (((
44 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
45 )))
46
47 (((
48 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
49 )))
50
51 (((
52 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
53 )))
54
55 [[image:1652953304999-717.png||height="424" width="733"]]
56
57
58
59 == 1.2 Specifications ==
60
61
62 **Hardware System:**
63
64 * STM32L072CZT6 MCU
65 * SX1276/78 Wireless Chip 
66 * Power Consumption (exclude RS485 device):
67 ** Idle: 6uA@3.3v
68 ** 20dB Transmit: 130mA@3.3v
69
70 **Interface for Model:**
71
72 * 1 x RS485 Interface
73 * 1 x TTL Serial , 3.3v or 5v.
74 * 1 x I2C Interface, 3.3v or 5v.
75 * 1 x one wire interface
76 * 1 x Interrupt Interface
77 * 1 x Controllable 5V output, max
78
79 **LoRa Spec:**
80
81 * Frequency Range:
82 ** Band 1 (HF): 862 ~~ 1020 Mhz
83 ** Band 2 (LF): 410 ~~ 528 Mhz
84 * 168 dB maximum link budget.
85 * +20 dBm - 100 mW constant RF output vs.
86 * Programmable bit rate up to 300 kbps.
87 * High sensitivity: down to -148 dBm.
88 * Bullet-proof front end: IIP3 = -12.5 dBm.
89 * Excellent blocking immunity.
90 * Fully integrated synthesizer with a resolution of 61 Hz.
91 * LoRa modulation.
92 * Built-in bit synchronizer for clock recovery.
93 * Preamble detection.
94 * 127 dB Dynamic Range RSSI.
95 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
96
97 == 1.3 Features ==
98
99 * LoRaWAN Class A & Class C protocol (default Class A)
100 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
101 * AT Commands to change parameters
102 * Remote configure parameters via LoRaWAN Downlink
103 * Firmware upgradable via program port
104 * Support multiply RS485 devices by flexible rules
105 * Support Modbus protocol
106 * Support Interrupt uplink
107
108 == 1.4 Applications ==
109
110 * Smart Buildings & Home Automation
111 * Logistics and Supply Chain Management
112 * Smart Metering
113 * Smart Agriculture
114 * Smart Cities
115 * Smart Factory
116
117 == 1.5 Firmware Change log ==
118
119 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
120
121
122 == 1.6 Hardware Change log ==
123
124 (((
125
126
127 (((
128 v1.4
129 )))
130 )))
131
132 (((
133 (((
134 ~1. Change Power IC to TPS22916
135 )))
136 )))
137
138 (((
139
140 )))
141
142 (((
143 (((
144 v1.3
145 )))
146 )))
147
148 (((
149 (((
150 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
151 )))
152 )))
153
154 (((
155
156 )))
157
158 (((
159 (((
160 v1.2
161 )))
162 )))
163
164 (((
165 (((
166 Release version ​​​​​
167 )))
168
169
170 )))
171
172 = 2. Pin mapping and Power ON Device =
173
174 (((
175 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
176 )))
177
178 [[image:1652953055962-143.png||height="387" width="728"]]
179
180
181 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
182
183
184 = 3. Operation Mode =
185
186 == 3.1 How it works? ==
187
188 (((
189 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
190
191
192 )))
193
194 == 3.2 Example to join LoRaWAN network ==
195
196 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
197
198 [[image:1652953414711-647.png||height="337" width="723"]]
199
200 (((
201 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
202 )))
203
204 (((
205 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
206 )))
207
208 (((
209 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
210 )))
211
212 (((
213 Each RS485-BL is shipped with a sticker with unique device EUI:
214 )))
215
216 [[image:1652953462722-299.png]]
217
218 (((
219 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
220 )))
221
222 (((
223 Add APP EUI in the application.
224 )))
225
226
227 [[image:image-20220519174512-1.png]]
228
229 [[image:image-20220519174512-2.png||height="328" width="731"]]
230
231 [[image:image-20220519174512-3.png||height="556" width="724"]]
232
233 [[image:image-20220519174512-4.png]]
234
235 You can also choose to create the device manually.
236
237 [[image:1652953542269-423.png||height="710" width="723"]]
238
239 Add APP KEY and DEV EUI
240
241 [[image:1652953553383-907.png||height="514" width="724"]]
242
243
244 (((
245 **Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
246 )))
247
248 [[image:1652953568895-172.png||height="232" width="724"]]
249
250
251 == 3.3 Configure Commands to read data ==
252
253 (((
254 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
255
256
257 )))
258
259 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
260
261 (((
262 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
263 )))
264
265 (((
266 **~1. RS485-MODBUS mode:**
267 )))
268
269 (((
270 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
271 )))
272
273 (((
274 **2. TTL mode:**
275 )))
276
277 (((
278 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
279 )))
280
281 (((
282 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
283 )))
284
285 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
286 |=(% style="width: 120px;" %)(((
287 (((
288 **AT Commands**
289 )))
290 )))|=(% style="width: 190px;" %)(((
291 (((
292 **Description**
293 )))
294 )))|=(% style="width: 190px;" %)(((
295 (((
296 **Example**
297 )))
298 )))
299 |(% style="width:120px" %)(((
300 (((
301 AT+BAUDR
302 )))
303 )))|(% style="width:190px" %)(((
304 (((
305 Set the baud rate (for RS485 connection). Default Value is: 9600.
306 )))
307 )))|(% style="width:190px" %)(((
308 (((
309 (((
310 AT+BAUDR=9600
311 )))
312 )))
313
314 (((
315 (((
316 Options: (1200,2400,4800,14400,19200,115200)
317 )))
318 )))
319 )))
320 |(% style="width:120px" %)(((
321 (((
322 AT+PARITY
323 )))
324 )))|(% style="width:190px" %)(((
325 (((
326 (((
327 Set UART parity (for RS485 connection)
328 )))
329 )))
330
331 (((
332 (((
333 Default Value is: no parity.
334 )))
335 )))
336 )))|(% style="width:190px" %)(((
337 (((
338 (((
339 AT+PARITY=0
340 )))
341 )))
342
343 (((
344 (((
345 Option: 0: no parity, 1: odd parity, 2: even parity
346 )))
347 )))
348 )))
349 |(% style="width:120px" %)(((
350 (((
351 AT+STOPBIT
352 )))
353 )))|(% style="width:190px" %)(((
354 (((
355 (((
356 Set serial stopbit (for RS485 connection)
357 )))
358 )))
359
360 (((
361 (((
362 Default Value is: 1bit.
363 )))
364 )))
365 )))|(% style="width:190px" %)(((
366 (((
367 (((
368 AT+STOPBIT=0 for 1bit
369 )))
370 )))
371
372 (((
373 (((
374 AT+STOPBIT=1 for 1.5 bit
375 )))
376 )))
377
378 (((
379 (((
380 AT+STOPBIT=2 for 2 bits
381 )))
382 )))
383 )))
384
385
386
387 === 3.3.2 Configure sensors ===
388
389 (((
390 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
391 )))
392
393 (((
394 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
395 )))
396
397 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
398 |=(% style="width: 120px;" %)**AT Commands**|=(% style="width: 190px;" %)**Description**|=(% style="width: 190px;" %)**Example**
399 |AT+CFGDEV|(% style="width:120px" %)(((
400 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
401
402 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
403
404 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
405 )))|(% style="width:190px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
406
407 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
408
409
410
411 === 3.3.3 Configure read commands for each sampling ===
412
413 (((
414 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
415 )))
416
417 (((
418 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
419 )))
420
421 (((
422 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
423 )))
424
425 (((
426 This section describes how to achieve above goals.
427 )))
428
429 (((
430 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
431 )))
432
433 (((
434 **Command from RS485-BL to Sensor:**
435 )))
436
437 (((
438 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
439 )))
440
441 (((
442 **Handle return from sensors to RS485-BL**:
443 )))
444
445 (((
446 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
447 )))
448
449 * (((
450 **AT+DATACUT**
451 )))
452
453 (((
454 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
455 )))
456
457 * (((
458 **AT+SEARCH**
459 )))
460
461 (((
462 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
463 )))
464
465 (((
466 **Define wait timeout:**
467 )))
468
469 (((
470 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
471 )))
472
473 (((
474 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
475 )))
476
477 (((
478 **Examples:**
479 )))
480
481 (((
482 Below are examples for the how above AT Commands works.
483 )))
484
485 (((
486 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
487 )))
488
489 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
490 |(% style="width:498px" %)(((
491 (((
492 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
493 )))
494
495 (((
496 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
497 )))
498
499 (((
500 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
501 )))
502 )))
503
504 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
505
506 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
507
508 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
509
510 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
511 |(% style="width:577px" %)(((
512 **AT+SEARCHx=aa,xx xx xx xx xx**
513
514 * **aa: 1: prefix match mode; 2: prefix and suffix match mode**
515 * **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
516 )))
517
518 **Examples:**
519
520 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
521
522 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
523
524 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
525
526 [[image:1653271044481-711.png]]
527
528 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
529
530 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
531
532 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
533
534 [[image:1653271276735-972.png]]
535
536 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
537
538 (% style="background-color:#4f81bd; color:white; width:510px" %)
539 |(% style="width:726px" %)(((
540 **AT+DATACUTx=a,b,c**
541
542 * **a: length for the return of AT+COMMAND**
543 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
544 * **c: define the position for valid value.  **
545 )))
546
547 **Examples:**
548
549 * Grab bytes:
550
551 [[image:1653271581490-837.png||height="313" width="722"]]
552
553
554 * Grab a section.
555
556 [[image:1653271648378-342.png||height="326" width="720"]]
557
558
559 * Grab different sections.
560
561 [[image:1653271657255-576.png||height="305" width="730"]]
562
563 (((
564 (% style="color:red" %)**Note:**
565 )))
566
567 (((
568 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
569 )))
570
571 (((
572 **Example:**
573 )))
574
575 (((
576 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
577 )))
578
579 (((
580 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
581 )))
582
583 (((
584 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
585 )))
586
587 (((
588 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
589 )))
590
591 (((
592 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
593 )))
594
595 (((
596 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
597 )))
598
599 [[image:1653271763403-806.png]]
600
601
602 === 3.3.4 Compose the uplink payload ===
603
604 (((
605 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
606
607
608 )))
609
610 (((
611 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
612
613
614 )))
615
616 (((
617 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
618 )))
619
620 (((
621 Final Payload is
622 )))
623
624 (((
625 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
626 )))
627
628 (((
629 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
630 )))
631
632 [[image:1653272787040-634.png||height="515" width="719"]]
633
634
635
636 (((
637 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
638
639
640 )))
641
642 (((
643 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
644 )))
645
646 (((
647 Final Payload is
648 )))
649
650 (((
651 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
652 )))
653
654 1. (((
655 Battery Info (2 bytes): Battery voltage
656 )))
657 1. (((
658 PAYVER (1 byte): Defined by AT+PAYVER
659 )))
660 1. (((
661 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
662 )))
663 1. (((
664 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
665 )))
666 1. (((
667 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
668 )))
669
670 [[image:1653272817147-600.png||height="437" width="717"]]
671
672 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
673
674
675 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
676
677 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
678
679 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
680
681
682 Below are the uplink payloads:
683
684 [[image:1653272901032-107.png]]
685
686
687 (% style="color:red" %)Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
688
689 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
690
691 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
692
693 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
694
695 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
696
697
698
699 === 3.3.5 Uplink on demand ===
700
701 (((
702 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
703 )))
704
705 (((
706 Downlink control command:
707 )))
708
709 (((
710 **0x08 command**: Poll an uplink with current command set in RS485-BL.
711 )))
712
713 (((
714 **0xA8 command**: Send a command to RS485-BL and uplink the output from sensors.
715
716
717 )))
718
719 === 3.3.6 Uplink on Interrupt ===
720
721 Put the interrupt sensor between 3.3v_out and GPIO ext.
722
723 [[image:1653273818896-432.png]]
724
725
726 (((
727 AT+INTMOD=0  Disable Interrupt
728 )))
729
730 (((
731 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
732 )))
733
734 (((
735 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
736 )))
737
738 (((
739 AT+INTMOD=3  Interrupt trigger by rising edge.
740
741
742 )))
743
744 == 3.4 Uplink Payload ==
745
746 (% border="1" style="background-color:#4f81bd; color:white; width:850px" %)
747 |**Size(bytes)**|(% style="width:130px" %)**2**|(% style="width:93px" %)**1**|(% style="width:509px" %)**Length depends on the return from the commands**
748 |Value|(% style="width:130px" %)(((
749 (((
750 Battery(mV)
751 )))
752
753 (((
754 &
755 )))
756
757 (((
758 Interrupt _Flag
759 )))
760 )))|(% style="width:93px" %)(((
761 PAYLOAD_VER
762
763
764 )))|(% style="width:509px" %)If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
765
766 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
767
768 (((
769 {{{function Decoder(bytes, port) {}}}
770 )))
771
772 (((
773 {{{//Payload Formats of RS485-BL Deceive}}}
774 )))
775
776 (((
777 {{{return {}}}
778 )))
779
780 (((
781 {{{ //Battery,units:V}}}
782 )))
783
784 (((
785 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
786 )))
787
788 (((
789 {{{ //GPIO_EXTI }}}
790 )))
791
792 (((
793 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
794 )))
795
796 (((
797 {{{ //payload of version}}}
798 )))
799
800 (((
801 {{{ Pay_ver:bytes[2],}}}
802 )))
803
804 (((
805 {{{ }; }}}
806 )))
807
808 (((
809 **}**
810
811
812 )))
813
814 (((
815 TTN V3 uplink screen shot.
816 )))
817
818 [[image:1653274001211-372.png||height="192" width="732"]]
819
820
821 == 3.5 Configure RS485-BL via AT or Downlink ==
822
823 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
824
825 There are two kinds of Commands:
826
827 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
828
829 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
830
831 === 3.5.1 Common Commands: ===
832
833 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
834
835
836 === 3.5.2 Sensor related commands: ===
837
838
839 ==== **Choose Device Type (RS485 or TTL)** ====
840
841 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
842
843 * **AT Command**
844
845 (% class="box infomessage" %)
846 (((
847 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
848 )))
849
850 (% class="box infomessage" %)
851 (((
852 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
853 )))
854
855
856 * **Downlink Payload**
857
858 **0A aa**  ~-~->  same as AT+MOD=aa
859
860
861
862 ==== **RS485 Debug Command (AT+CFGDEV)** ====
863
864 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
865
866 * **AT Command**
867
868 (% class="box infomessage" %)
869 (((
870 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
871 )))
872
873 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
874
875
876 * **Downlink Payload**
877
878 Format: A8 MM NN XX XX XX XX YY
879
880 Where:
881
882 * MM: 1: add CRC-16/MODBUS ; 0: no CRC
883 * NN: The length of RS485 command
884 * XX XX XX XX: RS485 command total NN bytes
885 * YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
886
887 **Example 1:**
888
889 To connect a Modbus Alarm with below commands.
890
891 * The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
892
893 * The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
894
895 So if user want to use downlink command to control to RS485 Alarm, he can use:
896
897 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
898
899 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
900
901 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
902
903
904 **Example 2:**
905
906 Check TTL Sensor return:
907
908 [[image:1654132684752-193.png]]
909
910
911
912
913 ==== **Set Payload version** ====
914
915 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
916
917 * **AT Command:**
918
919 (% class="box infomessage" %)
920 (((
921 **AT+PAYVER: Set PAYVER field = 1**
922 )))
923
924
925 * **Downlink Payload:**
926
927 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
928
929 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
930
931
932
933 ==== **Set RS485 Sampling Commands** ====
934
935 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
936
937 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
938
939
940 * **AT Command:**
941
942 (% class="box infomessage" %)
943 (((
944 **AT+COMMANDx: Configure RS485 read command to sensor.**
945 )))
946
947 (% class="box infomessage" %)
948 (((
949 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
950 )))
951
952 (% class="box infomessage" %)
953 (((
954 **AT+SEARCHx: Configure search command**
955 )))
956
957
958 * **Downlink Payload:**
959
960 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
961
962 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
963
964 Format: AF MM NN LL XX XX XX XX YY
965
966 Where:
967
968 * MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
969 * NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
970 * LL:  The length of AT+COMMAND or AT+DATACUT command
971 * XX XX XX XX: AT+COMMAND or AT+DATACUT command
972 * YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
973
974 **Example:**
975
976 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
977
978 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
979
980 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
981
982
983 **0xAB** downlink command can be used for set AT+SEARCHx
984
985 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
986
987 * AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
988 * AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
989
990 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
991
992
993
994 ==== **Fast command to handle MODBUS device** ====
995
996 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
997
998 This command is valid since v1.3 firmware version
999
1000
1001 **AT+MBFUN has only two value:**
1002
1003 * **AT+MBFUN=1**: Enable Modbus reading. And get response base on the MODBUS return
1004
1005 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1006
1007 * **AT+MBFUN=0**: Disable Modbus fast reading.
1008
1009 **Example:**
1010
1011 * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1012 * AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1013 * AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1014
1015 [[image:1654133913295-597.png]]
1016
1017
1018 [[image:1654133954153-643.png]]
1019
1020
1021 * **Downlink Commands:**
1022
1023 **A9 aa** ~-~-> Same as AT+MBFUN=aa
1024
1025
1026
1027 ==== **RS485 command timeout** ====
1028
1029 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1030
1031 Default value: 0, range:  0 ~~ 5 seconds
1032
1033
1034 * **AT Command:**
1035
1036 (% class="box infomessage" %)
1037 (((
1038 **AT+CMDDLaa=hex(bb cc)**
1039 )))
1040
1041 **Example:**
1042
1043 **AT+CMDDL1=1000** to send the open time to 1000ms
1044
1045
1046 * **Downlink Payload:**
1047
1048 0x AA aa bb cc
1049
1050 Same as: AT+CMDDLaa=hex(bb cc)
1051
1052 **Example:**
1053
1054 **0xAA 01 03 E8**  ~-~-> Same as **AT+CMDDL1=1000 ms**
1055
1056
1057
1058 ==== **Uplink payload mode** ====
1059
1060 Define to use one uplink or multiple uplinks for the sampling.
1061
1062 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1063
1064 * **AT Command:**
1065
1066 (% class="box infomessage" %)
1067 (((
1068 **AT+DATAUP=0**
1069 )))
1070
1071 (% class="box infomessage" %)
1072 (((
1073 **AT+DATAUP=1**
1074 )))
1075
1076
1077 * **Downlink Payload:**
1078
1079 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
1080
1081 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
1082
1083
1084
1085
1086 ==== **Manually trigger an Uplink** ====
1087
1088 Ask device to send an uplink immediately.
1089
1090 * **Downlink Payload:**
1091
1092 **0x08 FF**, RS485-BL will immediately send an uplink.
1093
1094
1095
1096
1097 ==== **Clear RS485 Command** ====
1098
1099 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1100
1101
1102 * **AT Command:**
1103
1104 (% style="color:#037691" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1105
1106 Example screen shot after clear all RS485 commands. 
1107
1108
1109 The uplink screen shot is:
1110
1111 [[image:1654134704555-320.png]]
1112
1113
1114 * **Downlink Payload:**
1115
1116 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1117
1118
1119
1120 ==== **Set Serial Communication Parameters** ====
1121
1122 Set the Rs485 serial communication parameters:
1123
1124 * **AT Command:**
1125
1126 Set Baud Rate:
1127
1128 (% class="box infomessage" %)
1129 (((
1130 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1131 )))
1132
1133 Set UART Parity
1134
1135 (% class="box infomessage" %)
1136 (((
1137 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1138 )))
1139
1140 Set STOPBIT
1141
1142 (% class="box infomessage" %)
1143 (((
1144 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1145 )))
1146
1147
1148 * **Downlink Payload:**
1149
1150 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1151
1152 **Example:**
1153
1154 * A7 01 00 60   same as AT+BAUDR=9600
1155 * A7 01 04 80  same as AT+BAUDR=115200
1156
1157 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1158
1159 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1160
1161
1162
1163 ==== **Control output power duration** ====
1164
1165 User can set the output power duration before each sampling.
1166
1167 * **AT Command:**
1168
1169 **Example:**
1170
1171 **AT+3V3T=1000**  ~/~/ 3V3 output power will open 1s before each sampling.
1172
1173 **AT+5VT=1000**  ~/~/ +5V output power will open 1s before each sampling.
1174
1175
1176 * **LoRaWAN Downlink Command:**
1177
1178 **07 01 aa bb**  Same as AT+5VT=(aa bb)
1179
1180 **07 02 aa bb**  Same as AT+3V3T=(aa bb)
1181
1182
1183
1184 == 3.6 Buttons ==
1185
1186 (% border="1" style="background-color:#ffffcc; color:green; width:233px" %)
1187 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1188 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1189
1190 == 3.7 +3V3 Output ==
1191
1192 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1193
1194 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1195
1196 The +3V3 output time can be controlled by AT Command.
1197
1198
1199 (% style="color:#037691" %)**AT+3V3T=1000**
1200
1201
1202 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1203
1204 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1205
1206
1207 == 3.8 +5V Output ==
1208
1209 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1210
1211 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1212
1213 The 5V output time can be controlled by AT Command.
1214
1215
1216 (% style="color:#037691" %)**AT+5VT=1000**
1217
1218
1219 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1220
1221 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1222
1223
1224 == 3.9 LEDs ==
1225
1226 (% border="1" style="background-color:#ffffcc; color:green; width:332px" %)
1227 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1228 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1229
1230 == 3.10 Switch Jumper ==
1231
1232 (% border="1" style="background-color:#ffffcc; color:green; width:515px" %)
1233 |=(% style="width: 124px;" %)**Switch Jumper**|=(% style="width: 388px;" %)**Feature**
1234 |(% style="width:124px" %)**SW1**|(% style="width:388px" %)(((
1235 ISP position: Upgrade firmware via UART
1236
1237 Flash position: Configure device, check running status.
1238 )))
1239 |(% style="width:124px" %)**SW2**|(% style="width:388px" %)(((
1240 5V position: set to compatible with 5v I/O.
1241
1242 3.3v position: set to compatible with 3.3v I/O.,
1243 )))
1244
1245 **+3.3V**: is always ON
1246
1247 **+5V**: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1248
1249
1250 = 4. Case Study =
1251
1252 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1253
1254
1255 = 5. Use AT Command =
1256
1257 == 5.1 Access AT Command ==
1258
1259 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1260
1261 [[image:1654135840598-282.png]]
1262
1263
1264 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1265
1266 [[image:1654136105500-922.png]]
1267
1268
1269 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1270
1271
1272 == 5.2 Common AT Command Sequence ==
1273
1274 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1275
1276 If device has not joined network yet:
1277
1278 (% class="box infomessage" %)
1279 (((
1280 **AT+FDR**
1281 )))
1282
1283 (% class="box infomessage" %)
1284 (((
1285 **AT+NJM=0**
1286 )))
1287
1288 (% class="box infomessage" %)
1289 (((
1290 **ATZ**
1291 )))
1292
1293
1294 If device already joined network:
1295
1296 (% class="box infomessage" %)
1297 (((
1298 **AT+NJM=0**
1299 )))
1300
1301 (% class="box infomessage" %)
1302 (((
1303 **ATZ**
1304 )))
1305
1306
1307 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1308
1309
1310 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1311
1312 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1313
1314 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1315
1316 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%)Set Data Rate
1317
1318 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1319
1320 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1321
1322 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1323
1324 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1325
1326 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1327
1328 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1329
1330
1331 (% style="color:red" %)**Note:**
1332
1333 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1334 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1335 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1336 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1337
1338 [[image:1654136435598-589.png]]
1339
1340
1341 = 6. FAQ =
1342
1343 == 6.1 How to upgrade the image? ==
1344
1345 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1346
1347 * Support new features
1348 * For bug fix
1349 * Change LoRaWAN bands.
1350
1351 Below shows the hardware connection for how to upload an image to RS485-BL:
1352
1353 [[image:1654136646995-976.png]]
1354
1355 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1356
1357 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1358
1359 **Step3: **Open flashloader; choose the correct COM port to update.
1360
1361 [[image:image-20220602102605-1.png]]
1362
1363
1364 [[image:image-20220602102637-2.png]]
1365
1366
1367 [[image:image-20220602102715-3.png]]
1368
1369
1370
1371 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1372
1373 (((
1374 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1375 )))
1376
1377
1378
1379 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1380
1381 (((
1382 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1383 )))
1384
1385
1386
1387 = 7. Trouble Shooting =
1388
1389
1390 == 7.1 Downlink doesn’t work, how to solve it? ==
1391
1392 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1393
1394
1395 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1396
1397 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1398
1399
1400 = 8. Order Info =
1401
1402 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
1403
1404 (% style="color:blue" %)**XXX:**
1405
1406 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1407 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1408 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1409 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1410 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1411 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1412 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1413 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1414 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1415 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1416
1417 = 9. Packing Info =
1418
1419 (((
1420 **Package Includes**:
1421 )))
1422
1423 * (((
1424 RS485-BL x 1
1425 )))
1426 * (((
1427 Stick Antenna for LoRa RF part x 1
1428 )))
1429 * (((
1430 Program cable x 1
1431 )))
1432
1433 (((
1434 **Dimension and weight**:
1435 )))
1436
1437 * (((
1438 Device Size: 13.5 x 7 x 3 cm
1439 )))
1440 * (((
1441 Device Weight: 105g
1442 )))
1443 * (((
1444 Package Size / pcs : 14.5 x 8 x 5 cm
1445 )))
1446 * (((
1447 Weight / pcs : 170g
1448
1449
1450 )))
1451
1452 = 10. Support =
1453
1454 * (((
1455 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1456 )))
1457 * (((
1458 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1459 )))